The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature490, 61–70 (2012).
Mehra, K. et al. STICS, SCOUTs and p53 signatures; a new language for pelvic serous carcinogenesis. Front. Biosci. (Elite Ed)3, 625–634 (2011). Google Scholar
Lee, Y. et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol.211, 26–35 (2007). ArticleCASPubMed Google Scholar
Piek, J. M. et al. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J. Pathol.195, 451–456 (2001). ArticleCASPubMed Google Scholar
Falconer, H., Yin, L., Gronberg, H. & Altman, D. Ovarian cancer risk after salpingectomy: a nationwide population-based study. J. Natl. Cancer Inst.107 (2015).
Kuhn, E. et al. TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma—evidence supporting the clonal relationship of the two lesions. J. Pathol.226, 421–426 (2012). ArticleCASPubMed Google Scholar
Kindelberger, D. W. et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. Am. J. Surg. Pathol.31, 161–169 (2007). ArticlePubMed Google Scholar
Perets, R. et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell24, 751–765 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kim, J., Coffey, D. M., Ma, L. & Matzuk, M. M. The ovary is an alternative site of origin for high-grade serous ovarian cancer in mice. Endocrinology156, 1975–1981 (2015). ArticleCASPubMedPubMed Central Google Scholar
Howitt, B. E. et al. Evidence for a dualistic model of high-grade serous carcinoma: BRCA mutation status, histology, and tubal intraepithelial carcinoma. Am. J. Surg. Pathol.39, 287–293 (2015). ArticlePubMed Google Scholar
Yemelyanova, A. et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod. Pathol.24, 1248–1253 (2011). ArticleCASPubMed Google Scholar
Martins, F. C. et al. Combined image and genomic analysis of high-grade serous ovarian cancer reveals PTEN loss as a common driver event and prognostic classifier. Genome Biol.15, 526 (2014). ArticleCASPubMedPubMed Central Google Scholar
Patch, A. M. et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature521, 489–494 (2015). ArticleCASPubMed Google Scholar
Mukhopadhyay, A. et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin. Cancer Res.16, 2344–2351 (2010). ArticleCASPubMed Google Scholar
Mukhopadhyay, A. et al. Clinicopathological features of homologous recombination-deficient epithelial ovarian cancers: sensitivity to PARP inhibitors, platinum, and survival. Cancer Res.72, 5675–5682 (2012). ArticleCASPubMed Google Scholar
Alsop, K. et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol.30, 2654–2663 (2012). ArticleCASPubMedPubMed Central Google Scholar
Walsh, T. et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc. Natl Acad. Sci. USA107, 12629–12633 (2010). ArticlePubMedPubMed Central Google Scholar
Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med.361, 123–134 (2009). ArticleCASPubMed Google Scholar
Ledermann, J. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med.366, 1382–1392 (2012). ArticleCASPubMed Google Scholar
Scott, C. L., Swisher, E. M. & Kaufmann, S. H. Poly (adp-ribose) polymerase inhibitors: recent advances and future development. J. Clin. Oncol.33, 1397–1406 (2015). ArticleCASPubMedPubMed Central Google Scholar
Karst, A. M. et al. Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. Cancer Res.74, 1141–1152 (2014). ArticleCASPubMed Google Scholar
Etemadmoghadam, D. et al. Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer. PLoS ONE5, e15498 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tothill, R. W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res.14, 5198–5208 (2008). ArticleCASPubMed Google Scholar
Konecny, G. E. et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J. Natl. Cancer Inst.106, dju249 (2014). ArticleCASPubMedPubMed Central Google Scholar
Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med.17, 1498–1503 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yang, D. et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell23, 186–199 (2013). ArticleCASPubMedPubMed Central Google Scholar
Vecchione, A. et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc. Natl Acad. Sci. USA110, 9845–9850 (2013). ArticlePubMedPubMed Central Google Scholar
Parikh, A. et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat. Commun.5, 2977 (2014). ArticleCASPubMed Google Scholar
Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med.348, 203–213 (2003). ArticleCASPubMed Google Scholar
Domcke, S., Sinha, R., Levine, D. A., Sander, C. & Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun.4, 2126 (2013). ArticleCASPubMed Google Scholar
Beaufort, C. M. et al. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS ONE9, e103988 (2014). ArticleCASPubMedPubMed Central Google Scholar
O'Donnell, R. et al. The use of ovarian cancer cells from patients undergoing surgery to generate primary cultures capable of undergoing functional analysis. PLoS ONE9, e90604 (2014). ArticlePubMed Central Google Scholar
Ince, T. A. et al. Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours. Nat. Commun.6, 7419 (2015). ArticleCASPubMed Google Scholar
Kenny, H. A. et al. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nat. Commun.6, 6220 (2015). ArticleCASPubMed Google Scholar
Kenny, H. A. et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J. Clin. Invest.124, 4614–4628 (2014). ArticleCASPubMedPubMed Central Google Scholar
Karst, A. M. & Drapkin, R. Primary culture and immortalization of human fallopian tube secretory epithelial cells. Nat. Protoc.7, 1755–1764 (2012). ArticleCASPubMedPubMed Central Google Scholar
Karst, A. M., Levanon, K. & Drapkin, R. Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. Proc. Natl Acad. Sci. USA108, 7547–7552 (2011). ArticlePubMedPubMed Central Google Scholar
Jazaeri, A. A. et al. Molecular requirements for transformation of fallopian tube epithelial cells into serous carcinoma. Neoplasia13, 899–911 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sherman-Baust, C. A. et al. A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high-grade serous carcinoma development. J. Pathol.233, 228–237 (2014). ArticleCASPubMedPubMed Central Google Scholar
Topp, M. D. et al. Molecular correlates of platinum response in human high-grade serous ovarian cancer patient-derived xenografts. Mol. Oncol.8, 656–668 (2014). ArticlePubMedPubMed Central Google Scholar
Dobbin, Z. C. et al. Using heterogeneity of the patient-derived xenograft model to identify the chemoresistant population in ovarian cancer. Oncotarget5, 8750–8764 (2014). ArticlePubMedPubMed Central Google Scholar
Ricci, F. et al. Patient-derived ovarian tumor xenografts recapitulate human clinicopathology and genetic alterations. Cancer Res.74, 6980–6990 (2014). ArticleCASPubMed Google Scholar
Malaney, P., Nicosia, S. V. & Dave, V. One mouse, one patient paradigm: New avatars of personalized cancer therapy. Cancer Lett.344, 1–12 (2014). ArticleCASPubMed Google Scholar
Cai, S. et al. Humanized bone marrow mouse model as a preclinical tool to assess therapy-mediated hematotoxicity. Clin. Cancer Res.17, 2195–2206 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bashashati, A. et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J. Pathol.231, 21–34 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cowin, P. A. et al. LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin. Cancer Res.72, 4060–4073 (2012). ArticleCASPubMed Google Scholar
Cooke, S. L. et al. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene29, 4905–4913 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schwarz, R. F. et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med.12, e1001789 (2015). ArticleCASPubMedPubMed Central Google Scholar
Stronach, E. A. et al. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia13, 1069–1080 (2011). ArticleCASPubMedPubMed Central Google Scholar
Norquist, B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol.29, 3008–3015 (2011). ArticleCASPubMedPubMed Central Google Scholar
Blagden, S. et al. Afuresertib (GSK2110183), an oral AKT kinase inhibitor, in combination with carboplatin and paclitaxel in recurrent ovarian cancer. Eur. J. Cancer50, 7 (2014). Article Google Scholar
Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature497, 108–112 (2013). ArticleCASPubMed Google Scholar
Ye, Q. et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin. Cancer Res.20, 44–55 (2014). ArticleCASPubMed Google Scholar
Kandalaft, L. E., Powell, D. J. Jr, Singh, N. & Coukos, G. Immunotherapy for ovarian cancer: what's next? J. Clin. Oncol.29, 925–933 (2011). ArticleCASPubMed Google Scholar
Wick, D. A. et al. Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancer. Clin. Cancer Res.20, 1125–1134 (2014). ArticleCASPubMed Google Scholar
Chao, M. P., Weissman, I. L. & Majeti, R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol.24, 225–232 (2012). ArticleCASPubMedPubMed Central Google Scholar
Inaba, T. et al. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol. Oncol.115, 185–192 (2009). ArticleCASPubMed Google Scholar
Duraiswamy, J., Freeman, G. J. & Coukos, G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res.73, 6900–6912 (2013). ArticleCASPubMed Google Scholar
Kryczek, I. et al. Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res.67, 8900–8905 (2007). ArticleCASPubMed Google Scholar
Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity39, 1–10 (2013). ArticleCASPubMed Google Scholar
Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science348, 124–128 (2015). ArticleCASPubMedPubMed Central Google Scholar
Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell160, 48–61 (2015). ArticleCASPubMedPubMed Central Google Scholar
George, J. et al. Nonequivalent gene expression and copy number alterations in high-grade serous ovarian cancers with BRCA1 and BRCA2 mutations. Clin. Cancer Res.19, 3474–3484 (2013). ArticleCASPubMed Google Scholar
Soslow, R. A. et al. Morphologic patterns associated with BRCA1 and BRCA2 genotype in ovarian carcinoma. Mod. Pathol.25, 625–636 (2012). ArticleCASPubMed Google Scholar
Fujiwara, M. et al. Prediction of BRCA1 germline mutation status in women with ovarian cancer using morphology-based criteria: identification of a BRCA1 ovarian cancer phenotype. Am. J. Surg. Pathol.36, 1170–1177 (2012). ArticlePubMedPubMed Central Google Scholar
Clarke, B. et al. Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Mod. Pathol.22, 393–402 (2009). ArticleCASPubMed Google Scholar
Yang, D. et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA306, 1557–1565 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bjorkman, A. et al. Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells. Proc. Natl Acad. Sci. USA112, 2157–2162 (2015). ArticleCASPubMedPubMed Central Google Scholar
Galon, J. et al. Towards the introduction of the 'Immunoscore' in the classification of malignant tumours. J. Pathol.232, 199–209 (2014). ArticleCASPubMed Google Scholar
Galon, J., Angell, H. K., Bedognetti, D. & Marincola, F. M. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity39, 11–26 (2013). ArticleCASPubMed Google Scholar
Wrangle, J. et al. Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget4, 2067–2079 (2013). ArticlePubMedPubMed Central Google Scholar
Li, H. et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget5, 587–598 (2014). PubMedPubMed Central Google Scholar
Fang, F. et al. The novel, small-molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer. Clin. Cancer Res.20, 6504–6516 (2014). ArticleCASPubMedPubMed Central Google Scholar
Fang, F. et al. Decitabine reactivated pathways in platinum resistant ovarian cancer. Oncotarget5, 3579–3589 (2014). PubMedPubMed Central Google Scholar
Nielsen, J. S. et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res.18, 3281–3292 (2012). ArticleCASPubMed Google Scholar
Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity39, 782–795 (2013). ArticleCASPubMed Google Scholar
Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313, 1960–1964 (2006). ArticleCASPubMed Google Scholar
Davidowitz, R. A. et al. Mesenchymal gene program-expressing ovarian cancer spheroids exhibit enhanced mesothelial clearance. J. Clin. Invest.124, 2611–2625 (2014). ArticleCASPubMedPubMed Central Google Scholar
Yeung, T. L. et al. TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res.73, 5016–5028 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cheon, D. J. et al. A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin. Cancer Res.20, 711–723 (2014). ArticleCASPubMed Google Scholar
Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science324, 1457–1461 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ahmed, A. A. et al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel. Cancer Cell12, 514–527 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell25, 719–734 (2014). ArticleCASPubMedPubMed Central Google Scholar
Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell25, 735–747 (2014). ArticleCASPubMedPubMed Central Google Scholar
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). ArticleCASPubMed Google Scholar
Ledermann, J. et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol.15, 852–861 (2014). ArticleCASPubMed Google Scholar
Abkevich, V. et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br. J. Cancer107, 1776–1782 (2012). ArticleCASPubMedPubMed Central Google Scholar
McNeish, I. A. et al. Results of ARIEL2: A phase 2 trial to prospectively identify ovarian cancer patients likely to respond to rucaparib using tumor genetic analysis. J. Clin. Oncol.33, 5508 (2015). Article Google Scholar
Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature451, 1111–1115 (2008). ArticleCASPubMed Google Scholar
Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med.365, 2484–2496 (2011). ArticleCASPubMed Google Scholar
Burger, R. A. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med.365, 2473–2483 (2011). ArticleCASPubMed Google Scholar
Pujade-Lauraine, E. et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. J. Clin. Oncol.32, 1302–1308 (2014). ArticleCASPubMed Google Scholar
Oliver, K. E. & McGuire, W. P. Ovarian cancer and antiangiogenic therapy: caveat emptor. J. Clin. Oncol.32, 3353–3356 (2014). ArticleCASPubMed Google Scholar
Gourley, G. et al. Molecular subgroup of high-grade serous ovarian cancer (HGSOC) as a predictor of outcome following bevacizumab. J. Clin. Oncol.32, 5502 (2014). Article Google Scholar
Choi, H. J. et al. Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches. Cancer Metastasis Rev.34, 19–40 (2015). ArticleCASPubMedPubMed Central Google Scholar
Zaid, T. M. et al. Identification of FGFR4 as a potential therapeutic target for advanced-stage, high-grade serous ovarian cancer. Clin. Cancer Res.19, 809–820 (2013). ArticleCASPubMedPubMed Central Google Scholar
Liu, J. F. et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol.15, 1207–1214 (2014). ArticleCASPubMedPubMed Central Google Scholar
Rubin, E. H., Anderson, K. M. & Gause, C. K. The BATTLE trial: a bold step toward improving the efficiency of biomarker-based drug development. Cancer Discov.1, 17–20 (2011). ArticleCASPubMed Google Scholar
Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA108, 12372–12377 (2011). ArticlePubMedPubMed Central Google Scholar
Baratta, M. G. et al. An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proc. Natl Acad. Sci. USA112, 232–237 (2015). ArticleCASPubMed Google Scholar
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature483, 603–607 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bookman, M. A., Darcy, K. M., Clarke-Pearson, D., Boothby, R. A. & Horowitz, I. R. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol.21, 283–290 (2003). ArticleCASPubMed Google Scholar
McKie, A. B. et al. The OPCML tumor suppressor functions as a cell surface repressor-adaptor, negatively regulating receptor tyrosine kinases in epithelial ovarian cancer. Cancer Discov.2, 156–171 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov.2, 401–404 (2012). ArticlePubMed Google Scholar
Ramos, P. et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat. Genet.46, 427–429 (2014). ArticleCASPubMedPubMed Central Google Scholar
Silva, I. A. et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res.71, 3991–4001 (2011). ArticleCASPubMedPubMed Central Google Scholar
Condello, S. et al. β-catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene34, 2297–2308 (2015). ArticleCASPubMed Google Scholar
Zhang, S. et al. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy. Proc. Natl Acad. Sci. USA111, 17266–17271 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kalinsky, K. & Hershman, D. L. Cracking open window of opportunity trials. J. Clin. Oncol.30, 2573–2575 (2012). ArticleCASPubMed Google Scholar
Rustin, G., van der Burg, M., Griffin, C., Qian, W. & Swart, A. M. Early versus delayed treatment of relapsed ovarian cancer. Lancet377, 380–381 (2011). ArticlePubMed Google Scholar
Kotsopoulos, J. et al. Factors influencing ovulation and the risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers. Int. J. Cancer137, 1136–1146 (2014). ArticleCASPubMedPubMed Central Google Scholar
Trabert, B. et al. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: a pooled analysis in the Ovarian Cancer Association Consortium. J. Natl. Cancer Inst.106, djt431 (2014). ArticleCASPubMedPubMed Central Google Scholar
Baandrup, L., Kjaer, S. K., Olsen, J. H., Dehlendorff, C. & Friis, S. Low-dose aspirin use and the risk of ovarian cancer in Denmark. Ann. Oncol.4, 787–792 (2014). Google Scholar
Kumar, S. et al. Metformin intake is associated with better survival in ovarian cancer: a case-control study. Cancer119, 555–562 (2013). ArticleCASPubMed Google Scholar
Lengyel, E. et al. Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models. Am. J. Obstet. Gynecol.212, e1–479.e10 (2014). Google Scholar
Collaborative Group on Epidemiological Studies of Ovarian Cancer. Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies. Lancet385, 1835–1842 (2015).
Collaborative Group on Epidemiological Studies of Ovarian Cancer. Ovarian cancer and body size: individual participant meta-analysis including 25,157 women with ovarian cancer from 47 epidemiological studies. PLoS Med.9, e1001200 (2012).
Bristow, R. E. et al. Disparities in ovarian cancer care quality and survival according to race and socioeconomic status. J. Natl Cancer Inst.105, 823–832 (2013). ArticleCASPubMedPubMed Central Google Scholar
Norquist, B. M. et al. Characteristics of women with ovarian carcinoma who have BRCA1 and BRCA2 mutations not identified by clinical testing. Gynecol. Oncol.128, 483–487 (2013). ArticleCASPubMed Google Scholar
Daniels, M. S. et al. Underestimation of risk of a BRCA1 or BRCA2 mutation in women with high-grade serous ovarian cancer by BRCAPRO: a multi-institution study. J. Clin. Oncol.32, 1249–1255 (2014). ArticlePubMedPubMed Central Google Scholar
Schrader, K. A. et al. Germline BRCA1 and BRCA2 mutations in ovarian cancer: utility of a histology-based referral strategy. Obstet. Gynecol.120, 235–240 (2012). ArticleCASPubMed Google Scholar
Song, H. et al. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum. Mol. Genet.23, 4703–4709 (2014). ArticleCASPubMedPubMed Central Google Scholar
Pennington, K. P. et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res.20, 764–775 (2014). ArticleCASPubMed Google Scholar
Manchanda, R. et al. Cost-effectiveness of population screening for BRCA mutations in Ashkenazi jewish women compared with family history-based testing. J. Natl Cancer Inst.107, 380 (2015). PubMed Google Scholar
Manchanda, R. et al. Population testing for cancer predisposing BRCA1/BRCA2 mutations in the Ashkenazi-Jewish community: a randomized controlled trial. J. Natl Cancer Inst.107, 379 (2015). PubMed Google Scholar
Meyer, L. A. et al. Evaluating women with ovarian cancer for BRCA1 and BRCA2 mutations: missed opportunities. Obstet. Gynecol.115, 945–952 (2010). ArticlePubMedPubMed Central Google Scholar
Loveday, C. et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat. Genet.44, 475–476 (2012). ArticleCASPubMed Google Scholar
Meindl, A. et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat. Genet.42, 410–414 (2010). ArticleCASPubMed Google Scholar
Rafnar, T. et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat. Genet.43, 1104–1107 (2011). ArticleCASPubMed Google Scholar
Kuchenbaecker, K. B. et al. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat. Genet.47, 164–171 (2015). ArticleCASPubMedPubMed Central Google Scholar
Kwon, J. S. et al. Prophylactic salpingectomy and delayed oophorectomy as an alternative for BRCA mutation carriers. Obstet. Gynecol.121, 14–24 (2013). ArticlePubMed Google Scholar
McAlpine, J. N. et al. Opportunistic salpingectomy: uptake, risks, and complications of a regional initiative for ovarian cancer prevention. Am. J. Obstet. Gynecol.210, 471e1-11 (2014). Article Google Scholar
Pearce, C. L. et al. Population distribution of lifetime risk of ovarian cancer in the United States. Cancer Epidemiol. Biomarkers Prev.24, 671–676 (2015). ArticlePubMedPubMed Central Google Scholar
Buys, S. S. et al. Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA305, 2295–2303 (2011). ArticleCASPubMed Google Scholar
Menon, U. et al. Risk algorithm using serial biomarker measurements doubles the number of screen-detected cancers compared with a single-threshold rule in the United Kingdom collaborative trial of ovarian cancer screening. J. Clin. Oncol.33, 2062–2071 (2015). ArticlePubMedPubMed Central Google Scholar
Horowitz, N. S. et al. Does aggressive surgery improve outcomes? interaction between preoperative disease burden and complex surgery in patients with advanced-stage ovarian cancer: an analysis of GOG 182. J. Clin. Oncol.33, 937–943 (2015). ArticlePubMedPubMed Central Google Scholar
Menon, U., Griffin, M. & Gentry-Maharaj, A. Ovarian cancer screening—current status, future directions. Gynecol. Oncol.132, 490–495 (2014). ArticlePubMedPubMed Central Google Scholar
Drescher, C. W. et al. Longitudinal screening algorithm that incorporates change over time in CA125 levels identifies ovarian cancer earlier than a single-threshold rule. J. Clin. Oncol.31, 387–392 (2013). ArticlePubMed Google Scholar
Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl Med.4, 136ra68 (2012). ArticleCASPubMed Google Scholar
Kinde, I. et al. Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci. Transl Med.5, 167ra4 (2013). ArticleCASPubMedPubMed Central Google Scholar
McAlpine, J. N. et al. Autofluorescence imaging can identify preinvasive or clinically occult lesions in fallopian tube epithelium: a promising step towards screening and early detection. Gynecol. Oncol.120, 385–392 (2011). ArticleCASPubMed Google Scholar
Lutz, A. M. et al. Ultrasound molecular imaging in a human CD276 expression-modulated murine ovarian cancer model. Clin. Cancer Res.20, 1313–1322 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bristow, R. E., Montz, F. J., Lagasse, L. D., Leuchter, R. S. & Karlan, B. Y. Survival impact of surgical cytoreduction in stage IV epithelial ovarian cancer. Gynecol. Oncol.72, 278–287 (1999). ArticleCASPubMed Google Scholar
du Bois, A. et al. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d'Investigateurs Nationaux Pour les Etudes des Cancers de l'Ovaire (GINECO). Cancer115, 1234–1244 (2009). ArticleCASPubMed Google Scholar
Vergote, I. et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N. Engl. J. Med.363, 943–953 (2010). ArticleCASPubMed Google Scholar
Naik, R., Edmondson, R. J., Galaal, K., Hatem, M. H. & Godfrey, K. A. A statement for extensive primary cytoreductive surgery in advanced ovarian cancer. BJOG115, 1713–1714 (2008). CASPubMed Google Scholar
Enshaei, A., Robson, C. N. & Edmondson, R. J. Artificial intelligence systems as prognostic and predictive tools in ovarian cancer. Ann. Surg. Oncol.22, 3970–3975 (2015). ArticleCASPubMed Google Scholar
van Meurs, H. S. et al. Which patients benefit most from primary surgery or neoadjuvant chemotherapy in stage IIIC or IV ovarian cancer? An exploratory analysis of the European Organisation for Research and Treatment of Cancer 55971 randomised trial. Eur. J. Cancer49, 3191–3201 (2013). ArticlePubMed Google Scholar
Riester, M. et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J. Natl Cancer Inst.106, dju048 (2014). ArticlePubMedPubMed Central Google Scholar
Nick, A. M., Coleman, R. L., Ramirez, P. T. & Sood, A. K. A framework for a personalized surgical approach to ovarian cancer. Nat. Rev. Clin. Oncol.12, 239–245 (2015). ArticleCASPubMedPubMed Central Google Scholar
Harter, P. et al. Prospective validation study of a predictive score for operability of recurrent ovarian cancer: the Multicenter Intergroup Study DESKTOP II. A project of the AGO Kommission OVAR, AGO Study Group, NOGGO, AGO-Austria, and MITO. Int. J. Gynecol. Cancer21, 289–295 (2011). ArticlePubMed Google Scholar
Harter, P. et al. Surgery in recurrent ovarian cancer: the Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) DESKTOP OVAR trial. Ann. Surg. Oncol.13, 1702–1710 (2006). ArticlePubMed Google Scholar
Fotopoulou, C. et al. Value of tertiary cytoreductive surgery in epithelial ovarian cancer: an international multicenter evaluation. Ann. Surg. Oncol.20, 1348–1354 (2013). ArticlePubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Mittag, J., Winterhager, E., Bauer, K. & Grummer, R. Congenital hypothyroid female pax8-deficient mice are infertile despite thyroid hormone replacement therapy. Endocrinology148, 719–725 (2007). ArticleCASPubMed Google Scholar
Tacha, D., Zhou, D. & Cheng, L. Expression of PAX8 in normal and neoplastic tissues: a comprehensive immunohistochemical study. Appl. Immunohistochem Mol. Morphol.19, 293–299 (2011). ArticleCASPubMed Google Scholar
Laury, A. R. et al. PAX8 reliably distinguishes ovarian serous tumors from malignant mesothelioma. Am. J. Surg. Pathol.34, 627–635 (2010). PubMed Google Scholar
Aspuria, P. J. et al. Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism. Cancer Metab.2, 21 (2014). ArticlePubMedPubMed Central Google Scholar
Karst, A. M. et al. Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. Gynecol. Oncol.123, 5–12 (2011). ArticleCASPubMedPubMed Central Google Scholar