Attardi, L. D. & Jacks, T. The role of p53 in tumour suppression: lessons from mouse models. Cell. Mol. Life Sci.55, 48–63 (1999). ArticleCASPubMed Google Scholar
Artandi, S. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature406, 641–645 (2000). ArticleCASPubMed Google Scholar
Lewin, M. et al. In vivo assessment of vascular endothelial growth factor-induced angiogenesis. Int. J. Cancer83, 798–802 (1999). ArticleCASPubMed Google Scholar
Taylor, J. S. et al. MR imaging of tumor microcirculation: promise for the new millennium. J. Magn. Reson. Imaging10, 903–907 (1999). ArticleCASPubMed Google Scholar
Weissleder, R., Cheng, H., Marecos, E., Kwong, K. & Bogdanov, A. Mapping of tumor vascular and interstitial volume fractions non-invasively in vivo. Eur. J. Cancer34, 1448–1454 (1998). ArticleCASPubMed Google Scholar
Mandeville, J. B. et al. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn. Reson. Med.39, 615–624 (1998). ArticleCASPubMed Google Scholar
Neeman, M., Dafni, H., Bukhari, O., Braun, R. D. & Dewhirst, M. W. In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation: validation by intravital microscopy. Magn. Reson. Med.45, 887–898 (2001). ArticleCASPubMed Google Scholar
Brasch, R. et al. Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J. Magn. Reson. Imaging7, 68–74 (1997). ArticleCASPubMed Google Scholar
Dennie, J. et al. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn. Reson. Med.40, 793–799 (1998). ArticleCASPubMed Google Scholar
Koutcher, J. A., Zakian, K. & Hricak, H. Magnetic resonance spectroscopic studies of the prostate. Mol. Urol.4, 143–152; discussion 153 (2000). CASPubMed Google Scholar
Sipkins, D. A. et al. Detection of tumor angiogenesis in vivo by αVβ3-targeted magnetic resonance imaging. Nature Med.4, 623–626 (1998). ArticleCASPubMed Google Scholar
Bogdanov, A., Matuszewski, L., Bremer, C., Petrovsky, A. & Weissleder, R. Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol. Imaging1, 1–9 (2001). Google Scholar
Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nature Med.6, 351–355 (2000). ArticleCASPubMed Google Scholar
Josephson, L., Perez, M. & Weissleder, R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. (Int Ed.Engl.)40, 3204–3206 (2001).Describes the use of magnetic nanoparticles as sensors to read out DNA hybdridization and, potentially, interactions between large and small molecules. Similar nanoparticles are also used for imaging of other molecular targets by high-resolution MRI. ArticleCAS Google Scholar
Lewin, M. et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol.18, 410–414 (2000).Describes a versatile magnetic label that can be used to image a variety of cell typesin vivo. Labelled cells were isolated after intravenous injection using a magnetic separation column. ArticleCAS Google Scholar
Kennel, S. J. et al. High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology. Med. Phys.27, 1101–1107 (2000). ArticleCASPubMed Google Scholar
Borah, B. et al. Three-dimensional microimaging (MRmicroI and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat. Rec.265, 101–110 (2001). ArticleCASPubMed Google Scholar
Paulus, M. J., Gleason, S. S., Kennel, S. J., Hunsicker, P. R. & Johnson, D. K. High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia2, 62–70 (2000). ArticleCASPubMedPubMed Central Google Scholar
Paulus, M. J., Gleason, S. S., Easterly, M. E. & Foltz, C. J. A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. Lab. Anim. (NY)30, 36–45 (2001). CAS Google Scholar
Turnbull, D. et al. Ultrasound backscatter microscope analysis of mouse melanoma progression. Ultrasound Med. Biol.22, 845–853 (1996). ArticleCASPubMed Google Scholar
Rooks, V., Beecken, W., Iordanescu, I. & Taylor, J. A. Sonographic evaluation of orthopic bladder tumors in mice treated with TNP-470, an angiogenesis inhibitor. Acad. Radiol.8, 121–127 (2001). ArticleCASPubMed Google Scholar
Drevs, J. et al. Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res.60, 4819–4824 (2000). CASPubMed Google Scholar
Zagar, B., Fornaris, R. & Ferrara, K. Ultrasonic mapping of the microvasculature: signal alignment. Ultrasound Med. Biol.24, 809–824 (1998). ArticleCASPubMed Google Scholar
Ferrara, K. W. et al. Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents. Acad. Radiol.7, 824–839 (2000). ArticleCASPubMed Google Scholar
Turnbull, D. H., Bloomfield, T. S., Baldwin, H. S., Foster, F. S. & Joyner, A. L. Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc. Natl Acad. Sci. USA92, 2239–2243 (1995). ArticleCASPubMedPubMed Central Google Scholar
Liu, A., Joyner, A. L. & Turnbull, D. H. Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mech. Dev.75, 107–115 (1998). ArticleCASPubMed Google Scholar
Haubner, R. et al. Noninvasive imaging of α(v)β3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res.61, 1781–1785 (2001). CASPubMed Google Scholar
Shields, A. F. et al. Imaging proliferation in vivo with [18F]FLT and positron emission tomography. Nature Med.4, 1334–1336 (1998). ArticleCASPubMed Google Scholar
Price, P. Positron emission tomography (PET) in diagnostic oncology: is it a necessary tool today? Eur. J. Cancer36, 691–693 (2000). ArticleCASPubMed Google Scholar
MacLaren, D. C. et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther.6, 785–791 (1999). ArticleCASPubMed Google Scholar
Yang, D. et al. Imaging, biodistribution and therapeutic potential of halogenated tamoxifen analogues. Life Sci.55, 53–67 (1994). ArticleCASPubMed Google Scholar
Tjuvajev, J. G. et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a pothential method for monitoring clinical gene therapy. Cancer Res.56, 4087–4095 (1996). CASPubMed Google Scholar
Gambhir, S. S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl Acad. Sci. USA96, 2333–2338 (1999). ArticleCASPubMedPubMed Central Google Scholar
Luker, G. & Piwnica-Worms, D. Beyond the genome: molecular imaging in vivo with PET and SPECT. Acad. Radiol.8, 4–14 (2001). ArticleCASPubMed Google Scholar
Gambhir, S., Barrio, J., Herschman, H. & Phelps, M. Assays for non-invasive imaging of reporter gene expression. Nucl. Med. Biol.26, 481–490 (1999). ArticleCASPubMed Google Scholar
Tjuvajev, J. G. et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res.59, 5186–5193 (1999). CASPubMed Google Scholar
Doubrovin, M. et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc. Natl Acad. Sci. USA98, 9300–9305 (2001). ArticleCASPubMedPubMed Central Google Scholar
Boland, A. et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res.60, 3484–3492 (2000). CASPubMed Google Scholar
Groch, M. W. & Erwin, W. D. Single-photon emission computed tomography in the year 2001: instrumentation and quality control. J. Nucl. Med. Technol.29, 12–18 (2001). CASPubMed Google Scholar
Blankenberg, F. G. et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc. Natl Acad. Sci. USA95, 6349–6354 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rogers, B. et al. Localization of iodine-125-mIP-Des-Met14-bombesin (7-13)NH2 in ovarian carcinoma induced to express the gastrin releasing peptide receptor by adenoviral vector-mediated gene transfer. J. Nucl. Med.38, 1221–1229 (1997). CASPubMed Google Scholar
Bogdanov, A., Tung, C., Kayne, L., Hnatowich, D.J. & Weissleder, R. in NASA–NCI Workshop on Sensors for Bio-Molecular Signatures 170 (Pasadena,1999). Google Scholar
Hnatowich, D. J. et al. Technetium-99m labeling of DNA oligonucleotides. J. Nucl. Med.36, 2306–2314 (1995). CASPubMed Google Scholar
Zalutsky, M. R. et al. Radioiodinated antibody targeting of the HER-2/neu oncoprotein: effects of labeling method on cellular processing and tissue distribution. Nucl. Med. Biol.26, 781–790 (1999). ArticleCASPubMed Google Scholar
Zinn, K. R., Chaudhuri, T. R., Buchsbaum, D. J., Mountz, J. M. & Rogers, B. E. Simultaneous evaluation of dual gene transfer to adherent cells by gamma-ray imaging. Nucl. Med. Biol.28, 135–144 (2001). ArticleCASPubMed Google Scholar
Katzenellenbogen, J. A. et al. Tumor receptor imaging: proceedings of the National Cancer Institute workshop, review of current work, and prospective for further investigations. Clin. Cancer Res.1, 921–932 (1995). CASPubMed Google Scholar
Hom, R. K. & Katzenellenbogen, J. A. Technetium-99m-labeled receptor-specific small-molecule radiopharmaceuticals: recent developments and encouraging results. Nucl. Med. Biol.24, 485–498 (1997). ArticleCASPubMed Google Scholar
Melder, R. et al. Systemic distribution and tumor localization of adoptively transferred lymphocytes in mice: comparison with physiologically based pharmacokinetic model. Neoplasia (in the press).
Schellingerhout, D., Rainov, N., Breakefield, X. & Weissleder, R. Quantitation of HSV mass distribution in a rodent brain tumor model. Gene Ther.7, 1648–1655 (2000). ArticleCASPubMed Google Scholar
Mahmood, U., Tung, C. H., Bogdanov, A. Jr, & Weissleder, R. Near-infrared optical imaging of protease activity for tumor detection. Radiology213, 866–870 (1999). ArticleCASPubMed Google Scholar
Kaneko, K. et al. Detection of peritoneal micrometastases of gastric carcinoma with green fluorescent protein and carcinoembryonic antigen promoter. Cancer Res.61, 5570–5574 (2001). CASPubMed Google Scholar
Becker, A. et al. Receptor targeted optical imaging of tumors with near infrared flurorescent ligands. Nature Biotechnol.19, 327–331 (2001). ArticleCAS Google Scholar
Folli, S. et al. Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res.54, 2643–2649 (1994). CASPubMed Google Scholar
Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnol.17, 375–378 (1999). ArticleCAS Google Scholar
Bremer, C., Tung, C.H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Med.7, 743–748 (2001).Describes novel fluorescent sensors that are specific for proteinases, and explains how they can be used to image therapeutic proteinase inhibitionin vivo. ArticleCASPubMed Google Scholar
Tung, C. H., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res.60, 4953–4958 (2000). CASPubMed Google Scholar
Shalinsky, D. R. et al. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann. NY Acad. Sci.878, 236–270 (1999). ArticleCASPubMed Google Scholar
Marten, K. et al. Detection of dysplastic intestinal adenomas using enzyme sensing molecular beacons. Gastroenterology (in the press).
Ntziachristos, V. & Weissleder, R. Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation. Optics Lett.26, 893–895 (2001). ArticleCAS Google Scholar
Ntziachristos, V., Ripoll, J. & Weissleder, R. Can near-infrared fluorescence propagate through human organs for non–invasive clinical examinations? Optics Lett. (in the press).
Ntziachristos, V., Yodh, A. G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl Acad. Sci. USA97, 2767–2772 (2000). ArticleCASPubMedPubMed Central Google Scholar
Contag, C. H. et al. Photonic detection of bacterial pathogens in living hosts. Mol. Microbiol.18, 593–603 (1995). ArticleCASPubMed Google Scholar
Contag, C. H., Jenkins, D., Contag, P. R. & Negrin, R. S. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia2, 41–52 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hoegeman, D., Ntziachristos, V., Josephson, L. & Weissleder, R. High throughput MR imaging for evaluating targeted magnetic nanoparticle probes. Bioconj. Chem. (in the press).
Louie, A. Y. et al. In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnol.18, 321–325 (2000). ArticleCAS Google Scholar
Moats, R. A., Fraser, S. E. & Meade, T. J. A 'smart' magnetic resonance imaging agent that reports on specific enzymatic activity. Angew. Chem. Int. Ed. Engl.36, 726–731 (1997). ArticleCAS Google Scholar