Gli and hedgehog in cancer: tumours, embryos and stem cells (original) (raw)
Ackerman, A. B. in Ackermans' Histologic Diagnosis of Neoplastic Skin Diseases: A Method by Pattern Analysis (Ardor Scribendi Publishers, Pennsylvania, 2001). Google Scholar
Ruiz i Altaba, A. Gli proteins and Hedgehog signaling: development and cancer. Trends Genet.15, 418–425 (1999). ArticleCASPubMed Google Scholar
Corcoran, R. B. & Scott, M. P. A mouse model for medulloblastoma and basal cell nevus syndrome. J. Neurooncol.53, 307–318 (2001). ArticleCASPubMed Google Scholar
Wechsler-Reya, R. & Scott, M. P. The developmental biology of brain tumors. Annu. Rev. Neurosci.24, 385–428 (2001). ArticleCASPubMed Google Scholar
Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev.15, 3059–3087 (2001). ArticleCASPubMed Google Scholar
Ruiz i Altaba, A., Palma, V. & Dahmane, N. Hedgehog–Gli signaling and the growth of the brain. Nature Rev. Neurosci.3, 24–33 (2002). ArticleCAS Google Scholar
Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell4, 199–207 (1999). ArticleCASPubMed Google Scholar
Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell3, 565–577 (1999). ArticleCASPubMed Google Scholar
Chin, L. et al. Essential role for oncogenic Ras in tumor maintenance. Nature400, 468–472 (1999). ArticleCASPubMed Google Scholar
Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a Kras transgene in the presence and absence of tumor suppressor genes. Genes Dev.15, 3249–3262 (2001).References7–10and12show that the initiating event is required for tumour maintenance. ArticleCASPubMedPubMed Central Google Scholar
Dahmane, N. et al. The Shh–Gli pathway modulates the normal and abnormal growth of the dorsal brain. Development128, 5201–5212 (2001).Demonstration of a common mechanism for the growth of the neocortex, tectum and cerebellum, and the role of Shh–Gli in various brain tumours, including gliomas. ArticleCASPubMed Google Scholar
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic Kras. Genes Dev.15, 3243–3248 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pathi, S. et al. Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech. Dev.106, 107–117 (2001). ArticleCASPubMed Google Scholar
Ruiz i Altaba, A. The works of GLI and the power of hedgehog. Nature Cell Biol.1, E147–E148 (1999). ArticleCASPubMed Google Scholar
Aza-Blanc, P., Ramirez-Weber, F.-A., Laget, M.-P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by hedgehog targets cubitus interuptus protein to the nucleus and converts it to a repressor. Cell89, 1043–1053 (1997).Original discovery of repressor function in the Gli family. ArticleCASPubMed Google Scholar
Aza-Blanc, P., Lin, H. Y., Ruiz i Altaba, A. & Kornberg, T. B. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development127, 4293–4301 (2000).Analysis of the vertebrate Gli proteins in transgenic flies confirms the existence of distinct functions for the Gli proteins, and shows that these can have different targets. ArticlePubMed Google Scholar
Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature383, 407–413 (1996).Knockout ofShhin mice. CASPubMed Google Scholar
Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet.14, 357–360 (1996). CASPubMed Google Scholar
Park, H. L. et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development127, 1593–1605 (2000).Evidence of Gli1 redundancy in mice. ArticleCASPubMed Google Scholar
von Mering, C. & Basler, K. Distinct regulated activities of human Gli proteins in Drosophila. Curr. Biol.9, 1319–1322 (1999). ArticleCASPubMed Google Scholar
Ruiz i Altaba, A. Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development125, 2203–2212 (1998). ArticlePubMed Google Scholar
Brewster, R, Lee J. & Ruiz i Altaba, A. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature393, 579–583 (1998). ArticleCASPubMed Google Scholar
Brewster, R., Mullor, J. L. & Ruiz i Altaba, A. Gli2 functions in Fgf signaling during antero-posterior patterning. Development127, 4395–4405 (2000).Evidence for the regulation of Gli2 and Gli3 by Fgf signalling and their participation in non-hedgehog-dependent events. ArticlePubMed Google Scholar
Miao, N. et al. Sonic hedgehog promotes the survival of specific CNS neuron populations and protects these cells from toxic insult in vitro. J. Neurosci. 17, 5891–5899 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ahlgren, S. C. & Bronner-Fraser, M. Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death. Curr. Biol.9, 1304–1314 (1999). ArticleCASPubMed Google Scholar
Cobourne, M. T., Hardcastle, Z. & Sharpe, P. T. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J. Dent. Res.80, 1974–1979 (2001). ArticleCASPubMed Google Scholar
Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet.1, 20–29 (2000). ArticleCASPubMed Google Scholar
Dahmane, N. & Ruiz i Altaba, A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development126, 3089–3100 (1999). ArticlePubMed Google Scholar
Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron22, 103–114 (1999). ArticleCASPubMed Google Scholar
Wallace, V. A. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr. Biol.9, 445–448 (1999).References28–30discuss the role of Shh in the cerebellar cortex, providing a basis for the action of Purkinje neurons on granule-cell precursors and for the development of medulloblastoma. ArticleCASPubMed Google Scholar
Mullor, J. L., Dahmane, N., Sun, T. & Ruiz i Altaba, A. Wnt signals are targets and mediators of Gli function. Curr. Biol.11, 769–773 (2001).Study of Gli function in mesoderm development and discovery of vertebrate Wnt proteins as targets of Gli proteins. ArticleCASPubMed Google Scholar
Kenney, A. M. & Rowitch, D. H. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol. Cell Biol.20, 9055–9067 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yoon, J. W. et al. Gene expression profiling leads to identification of GLI1 binding elements in target genes and a role for multiple downstream pathways in GLI1 induced cell transformation. J. Biol. Chem.277, 5548–5555 (2002). ArticleCASPubMed Google Scholar
Rowitch, D. H. et al. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci.19, 8954–8965 (1999).Study of the effects ofShhmisexpression on spinal-cord precursors. ArticleCASPubMedPubMed Central Google Scholar
Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T. M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell87, 661–673 (1996). ArticleCASPubMed Google Scholar
Barnes, E. A., Kong, M., Ollendorff, V. & Donoghue, D. J. Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J.20, 2214–2223 (2001). ArticleCASPubMedPubMed Central Google Scholar
Johnson, R. L. et al. Human homolog of Patched, a candidate gene for basal cell nevus syndrome. Science272, 1668–1671 (1996). ArticleCASPubMed Google Scholar
Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85, 841–851 (1996).References39and40identifyPTCHas the gene that is mutated in Gorlin's or basal-cell nevus syndrome. ArticleCASPubMed Google Scholar
Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science277, 1109–1113 (1997).Mouse model for medulloblastoma showing that these tumours develop in mice that lack a copy ofPtc, much like humans with Gorlin's syndrome. ArticleCASPubMed Google Scholar
Hahn, H. et al. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin's syndrome. Nature Med.4, 619–622 (1998).Demonstration of the development of muscle tumours inPtc+/−mice and the effects of radiation. ArticleCASPubMed Google Scholar
Wetmore, C., Eberhart, D. E. & Curran, T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res. 61, 513–516 (2001).Demonstration that medulloblastomas arise with high frequency inPtcheterozygotes that lack p53. CASPubMed Google Scholar
Oro, A. E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science276, 817–821 (1997).Development of BCCs in the skin of mouse embryos that misexpressShh. ArticleCASPubMed Google Scholar
Fan, H., Oro, A. E., Scott, M. P. & Khavari, P. A. Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nature Med.3, 788–792 (1997). ArticleCASPubMed Google Scholar
Aszterbaum, M. et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nature Med.5, 1285–1291 (1999).Study of the effects of radiation on the development of BCCs inPtc+/−mice, establishing a model for environmental mutagens and skin cancer. ArticleCASPubMed Google Scholar
Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature389, 876–881 (1997).First evidence for a role of the Gli proteins and the Shh pathway in sporadic BCCs. ArticleCASPubMed Google Scholar
Nilsson, M. et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing Gli1. Proc. Natl Acad. Sci. USA97, 3438–3443 (2000).Development of BCCs in mice that misexpressGli1in the skin. ArticleCASPubMedPubMed Central Google Scholar
Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genet.24, 216–217 (2000).Development of basal-cell carcinomas in mice through the misexpression of Gli2 in the epidermis. ArticleCASPubMed Google Scholar
Gailani, M. R. et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genet.14, 78–81 (1996). ArticleCASPubMed Google Scholar
Unden, A. B., Zaphiropoulos, P. G., Bruce, K., Toftgard, R. & Stahle-Backdahl, M. Human patched (PTCH) mRNA is overexpressed consistently in tumor cells of both familial and sporadic basal cell carcinoma. Cancer Res.57, 2336–2340 (1997). CASPubMed Google Scholar
Kalhassy, M. et al. Patched (PTCH)-associated preferential expression of smoothened (SMOH) in human basal cell carcinoma of the skin. Cancer Res.57, 4731–4735 (1997). Google Scholar
Wolter, M., Reifenberger, J., Sommer, C., Ruzicka, T. & Reifenberger, G. Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res.57, 2581–2585 (1997). CASPubMed Google Scholar
Xie, J. et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res.57, 2369–2372 (1997). CASPubMed Google Scholar
Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature391, 90–92 (1998).Shows the potency of activatedSmomutants in instigating the Shh pathway. ArticleCASPubMed Google Scholar
Reifenberger, J. et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res.58, 1798–1803 (1998). CASPubMed Google Scholar
Ghali, L., Wong, S. T., Green, J., Tidman, N. & Quinn, A. G. Gli1 protein is expressed in basal cell carcinomas, outer root sheath keratinocytes and a subpopulation of mesenchymal cells in normal human skin. J. Invest. Dermatol.113, 595–599 (1999). ArticleCASPubMed Google Scholar
Bonifas, J. M. et al. Activation of expression of hedgehog target genes in basal cell carcinomas. J. Invest. Dermatol.116, 739–742 (2001). ArticleCASPubMed Google Scholar
Stein, U. et al. GLI gene expression in bone and soft tissue sarcomas of adult patients correlates with tumor grade. Cancer Res.59, 1890–1895 (1999). CASPubMed Google Scholar
Kimonis, V. E. et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am. J. Med. Genet.69, 299–308 (1997). ArticleCASPubMed Google Scholar
Callahan, C. A. & Oro, A. E. Monstrous attempts at adnexogenesis: regulating hair follicle progenitors through Sonic hedgehog signaling. Curr. Opin. Genet. Dev.11, 541–546 (2001). ArticleCASPubMed Google Scholar
St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol.8, 1058–1068 (1998). ArticleCASPubMed Google Scholar
Chiang, C. et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol.205, 1–9 (1999). ArticleCASPubMed Google Scholar
Sato, N., Leopold, P. L. & Crystal, R. G. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J. Clin. Invest.104, 855–864 (1999). ArticleCASPubMedPubMed Central Google Scholar
Karlsson, L., Bondjers, C. & Betsholtz, C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development126, 2611–2621 (1999). ArticleCASPubMed Google Scholar
Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T.-T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell102, 451–461 (2000).Study of the potential of stem cells in the bulge region of the hair follicle. ArticleCASPubMed Google Scholar
Fuchs, E., Merrill, B. J., Jamora, C. & DasGupta, R. At the roots of a never-ending cycle. Dev. Cell1, 13–25 (2001). ArticleCASPubMed Google Scholar
Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev.14, 994–1004 (2000).Unexpected development of medulloblastomas from lack ofTrp53andRbin granule-cell precursors. ArticleCASPubMedPubMed Central Google Scholar
Gao, W. O., Heintz, N. & Hatten, M. E. Cerebellar granule cell neurogenesis is regulated by cell–cell interactions. Neuron6, 705–715 (1991). ArticleCASPubMed Google Scholar
Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res.57, 842–845 (1997). CASPubMed Google Scholar
Pietsch, T. et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res.57, 2085–2088 (1997). CASPubMed Google Scholar
Vortmeyer, A. O. et al. Deletion analysis of the adenomatous polyposis coli and PTCH gene loci in patients with sporadic and nevoid basal cell carcinoma syndrome-associated medulloblastoma. Cancer85, 2662–2667 (1999). ArticleCASPubMed Google Scholar
Zurawel, R. H. et al. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosom. Cancer27, 44–51 (2000). ArticleCASPubMed Google Scholar
Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumor outcome based on gene expression. Nature415, 436–442 (2002). ArticleCASPubMed Google Scholar
Holland, E. C. Gliomagenesis: genetic alterations and mouse models. Nature Rev. Genet.2, 120–129 (2001). ArticleCASPubMed Google Scholar
Maher, E. A. et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev.15, 1311–1333 (2001). ArticleCASPubMed Google Scholar
Kleihues, P. & Cavenee, W. K. Tumors of the Nervous System (International Agency for Research on Cancer, Lyon, 1997). Google Scholar
Nishikawa, R. et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc. Natl Acad. Sci. USA91, 7727–7731 (1994). ArticleCASPubMedPubMed Central Google Scholar
Uhrbom, L., Hesselager, G., Nister, M. & Westermark, B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res.58, 5275–5279 (1998).Ability of Pdgf signalling to induce brain tumorigenesis. CASPubMed Google Scholar
Holland, E. C. et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet.25, 55–57 (2000). ArticleCASPubMed Google Scholar
Dai, C. et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev.15, 1913–1925 (2001).Study of the ability of the Pdgf pathway to initiate gliomagenesis in mice. ArticleCASPubMedPubMed Central Google Scholar
Ding, H. et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res.61, 3826–3836 (2001). CASPubMed Google Scholar
Kinzler, K. W. et al. Identification of an amplified, highly expressed gene in a human glioma. Science236, 70–73 (1987).Original isolation and identification of Gli1. ArticleCASPubMed Google Scholar
Salgaller, M., Pearl, D. & Stephens, R. In situ hybridization with single-stranded RNA probes to demonstrate infrequently elevated Gli mRNA and no increased Ras mRNA levels in meningiomas and astrocytomas. Cancer Lett.57, 243–253 (1991). ArticleCASPubMed Google Scholar
Xiao, H., Goldthwait, D. A. & Mapstone, T. A search for Gli expression in tumors of the central nervous system. Pediatr. Neurosurg.20, 178–182 (1994). ArticleCASPubMed Google Scholar
Millen, K. J., Hui, C.-C. & Joyner, A. L. A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. Development121, 3935–3945 (1995). ArticleCASPubMed Google Scholar
Incardona, J. P., Gaffield, W., Kapur, R. P. & Roelink, H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development125, 3553–3562 (1998). ArticleCASPubMed Google Scholar
Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science280, 1603–1607 (1998).References87and88discuss the site of action of cyclopamine in the inhibition of Shh signalling. ArticleCASPubMed Google Scholar
Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature406, 1005–1009 (2000).Detailed study of the effects of cyclopamine on the Shh receptor complex. ArticleCASPubMed Google Scholar
Van Tuyl, M. & Post, M. From fruitflies to mammals: mechanisms of signaling via the Sonic hedgehog pathway in lung development. Resp. Res.1, 30–35 (2001). Article Google Scholar
Miller, L. A., Wert, S. E. & Whitsett, J. A. Immunolocalization of sonic hedgehog (shh) in developing mouse lung. J. Histochem. Cytochem.49, 1593–1604 (2001). ArticleCASPubMed Google Scholar
Podlasek, C. A., Barnett, D. H., Clemens, J. Q., Bak, P. M. & Bushman, W. Prostate development requires Sonic hedgehog expressed by the urogenital sinus epithelium. Dev. Biol.209, 28–39 (1999). ArticleCASPubMed Google Scholar
Abate-Shen, C. & Shen, M. M. Molecular genetics of prostate cancer. Genes Dev.14, 2410–2434 (2000). ArticleCASPubMed Google Scholar
Levanat, S., Pavelic, B., Crnic, I., Oreskovic, S. & Manojlovic, S. Involvement of PTCH gene in various noninflammatory cysts. J. Mol. Med.78, 140–146 (2000). ArticleCASPubMed Google Scholar
Kwan, H. et al. Transgenes expressing the Wnt1 and Wnt2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol. Cell. Biol.12, 147–154 (1992). CASPubMedPubMed Central Google Scholar
Shackleford, G. M., MacArthur, C. A., Kwan, H. C. & Varmus, H. E. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt1 transgenic mice by insertional activation of Wnt2/Fgf3 and Hst/Fgf4. Proc. Natl Acad. Sci. USA90, 740–744 (1993). ArticleCASPubMedPubMed Central Google Scholar
Lewis, M. T. Hedgehog signalling in mouse mammary gland development and neoplasia. J. Mammary Gland Biol. Neoplasia6, 53–66 (2001). ArticleCASPubMed Google Scholar
Wetmore, C., Eberhart, D. E. & Curran, T. The normal patched allele is expressed in medulloblastomas from mice with heterozygous germ-line mutation of patched. Cancer Res.60, 2239–2246 (2000). CASPubMed Google Scholar
Krishnan, V. et al. Mediation of Sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase. Science278, 1947–1950 (1997). ArticleCASPubMed Google Scholar
Apidianakis, Y., Grbavec, D., Stifani, S. & Delidakis, C. Groucho mediates a Ci-independent mechanism of hedgehog repression in the anterior wing pouch. Development128, 4361–4370 (2001). ArticleCASPubMed Google Scholar
Ruppert, J. M., Vogelstein, B. & Kinzler, K. W. The zinc finger protein GLI transforms primary cells in cooperation with adenovirus E1A. Mol. Cell. Biol.11, 1724–1728 (1991). CASPubMedPubMed Central Google Scholar
Kato, M. et al. Identification of sonic hedgehog-responsive genes using cDNA microarray. Biochem. Biophys. Res. Commun.289, 472–478 (2001). ArticleCASPubMed Google Scholar
Bergstein, I. When is precancerous actually postcancerous? Mol. Carcinog.29, 129–133 (2000). ArticleCASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med.3, 730–737 (1997). ArticleCASPubMed Google Scholar
Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol.2, 172–180 (2001).Study of the role of the Shh pathway in the haematopoietic system. ArticleCAS Google Scholar
Detmer, K., Walker, A. N., Jenkins, T. M., Steele, T. A. & Dannawi, H. Erythroid differentiation in vitro is blocked by cyclopamine, an inhibitor of hedgehog signaling. Blood Cells Mol. Dis.26, 360–372 (2000). ArticleCASPubMed Google Scholar
Biernat, W. et al. Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous component soft gliosarcomas suggest a common origin from glial cells. J. Neuropathol. Exp. Neurol.54, 651–656 (1995). ArticleCASPubMed Google Scholar
Boerman, R. H. et al. The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. J. Neuropathol. Exp. Neurol.55, 973–981 (1996). ArticleCASPubMed Google Scholar
Mueller, W. et al. Clonal analysis in glioblastoma with epithelial differentiation. Brain Pathol.11, 39–43 (2001). ArticleCASPubMed Google Scholar
Reis, R. M., Konu-Lebleblicioglu, D., Lopes, J. M., Kleihues, P. & Ohgaki, H. Genetic profile of gliosarcomas. Am. J. Pathol.156, 425–432 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dassule, H. R., Lewis, P., Bei, M., Maas, R. & McMahon, A. P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development127, 4775–4785 (2000). ArticleCASPubMed Google Scholar
Mintz, B. & Fleischman, R. A. Teratocarcinomas and other neoplasms as developmental defects in gene expression. Adv. Cancer Res. 34, 211–278 (1981). ArticleCASPubMed Google Scholar
Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol.2, 76–83 (2000).Study of the role of Snail family genes in cell shape and position changes in development and cancer. ArticleCASPubMed Google Scholar
Lu, Q. R. et al. Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc. Natl Acad. Sci. USA98, 10851–10856 (2001). ArticleCASPubMedPubMed Central Google Scholar
Morin, P. J. et al. Activation of β-catenin–TCF signaling in colon cancer by mutations in β-catenin or APC. Science275, 1787–1790 (1997). ArticleCASPubMed Google Scholar
Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–TCF complex in APC−/− colon carcinoma. Science275, 1784–1787 (1997). ArticleCASPubMed Google Scholar
Alvarez-Buylla, A., Garcia-Verdugo, J. M. & Tramontin, A. D. A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci.2, 287–293 (2001). ArticleCAS Google Scholar
Brockes, J. P. Amphibian limb regeneration: rebuilding a complex structure. Science276, 81–87 (1997). ArticleCASPubMed Google Scholar
Kalyani, A., Hobson, K. & Rao, M. S. Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev. Biol.186, 202–223 (1997). ArticleCASPubMed Google Scholar
Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science294, 2186–2189 (2001).Genetic analysis of PTEN function, revealing an unsuspected role in the control of progenitor-cell numbers. ArticleCASPubMed Google Scholar
MacDonald, T. J. et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nature Genet.29, 143–152 (2001). ArticleCASPubMed Google Scholar
Uhrbom, L., Hesselager, G., Ostman, A., Nister, M. & Westermark, B. Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells. Int. J. Cancer85, 398–406 (2000). ArticleCASPubMed Google Scholar
Trojan, J., Johnson, T. R., Rudin, S. D., Ilan, J. & Tykocinski, M. L. Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor 1 RNA. Science259, 94–97 (1993). ArticleCASPubMed Google Scholar
Hahn, H. et al. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J. Biol. Chem.275, 28341–28344 (2000).Identification of the Igf signalling pathway as a target of Shh–Gli function. CASPubMed Google Scholar
Koch, A. et al. Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int. J. Cancer93, 445–449 (2001). ArticleCASPubMed Google Scholar
Ellisen, L. W. et al. TAN1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell66, 649–661 (1991). ArticleCASPubMed Google Scholar
Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med.183, 2283–2291 (1996). ArticleCASPubMed Google Scholar
Karanu, F. N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med.192, 1365–1372 (2000). ArticleCASPubMedPubMed Central Google Scholar
Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med.6, 1278–1281 (2000). ArticleCASPubMed Google Scholar
Gaiano, N., Nye, J. S. & Fishell, G. Radial glia identity is promoted by Notch 1 signaling in the murine forebrain. Neuron26, 395–404 (2000). ArticleCASPubMed Google Scholar
Solecki, D. J., Liu, X. L., Tomoda, T., Fang, Y. & Hatten, M. E. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron31, 557–568 (2001).Involvement of Notch signalling in the process of granule-neuron precursor proliferation. An interesting potential link with Shh signalling. ArticleCASPubMed Google Scholar