Cell therapy for the treatment of coronary heart disease: a critical appraisal (original) (raw)
Velagaleti, R. S. et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation118, 2057–2062 (2008). PubMedPubMed Central Google Scholar
McMurray, J. J. & Pfeffer, M. A. Heart failure. Lancet365, 1877–1889 (2005). PubMed Google Scholar
Soonpaa, M. H., Koh, G. Y., Klug, M. G. & Field, L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science264, 98–101 (1994). CASPubMed Google Scholar
Taylor, D. A. et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med.4, 929–933 (1998). CASPubMed Google Scholar
Robey, T. E., Saiget, M. K., Reinecke, H. & Murry, C. E. Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell. Cardiol.45, 567–581 (2008). CASPubMedPubMed Central Google Scholar
Chien, K. R., Domian, I. J. & Parker, K. K. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science322, 1494–1497 (2008). CASPubMed Google Scholar
Dowell, J. D., Rubart, M., Pasumarthi, K. B., Soonpaa, M. H. & Field, L. J. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc. Res.58, 336–350 (2003). CASPubMed Google Scholar
Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell105, 829–841 (2001). CASPubMed Google Scholar
Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell116, 639–648 (2004). CASPubMed Google Scholar
Wollert, K. C. & Drexler, H. Clinical applications of stem cells for the heart. Circ. Res.96, 151–163 (2005). CASPubMed Google Scholar
Wollert, K. C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364, 141–148 (2004). PubMed Google Scholar
Meyer, G. P. et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation113, 1287–1294 (2006). ArticlePubMed Google Scholar
Meyer, G. P. et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur. Heart J.30, 2978–2984 (2009). PubMed Google Scholar
Schaefer, A. et al. Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. Eur. Heart J.27, 929–935 (2006). PubMed Google Scholar
Janssens, S. et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367, 113–121 (2006). PubMed Google Scholar
Herbots, L. et al. Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study. Eur. Heart J.30, 662–670 (2009). PubMed Google Scholar
Schächinger, V. et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355, 1210–1221 (2006). PubMed Google Scholar
Dill, T. et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am. Heart J.157, 541–547 (2009). PubMed Google Scholar
Lunde, K. et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355, 1199–1209 (2006). CASPubMed Google Scholar
Lunde, K. et al. Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells: safety, clinical outcome, and serial changes in left ventricular function during 12-months' follow-up. J. Am. Coll. Cardiol.51, 674–676 (2008). PubMed Google Scholar
Seeger, F. H., Tonn, T., Krzossok, N., Zeiher, A. M. & Dimmeler, S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur. Heart J.28, 766–772 (2007). PubMed Google Scholar
Huikuri, H. V. et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur. Heart J.29, 2723–2732 (2008). PubMed Google Scholar
Tendera, M. et al. Intracoronary infusion of bone marrow-derived selected CD34+ CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur. Heart J.30, 1313–1321 (2009). PubMed Google Scholar
van der Laan, A. et al. Bone marrow cell therapy after acute myocardial infarction: the HEBE trial in perspective, first results. Neth. Heart J.16, 436–439 (2008). CASPubMedPubMed Central Google Scholar
Piek, J. J. Intracoronary infusion of mononuclear cells after primary percutaneous coronary intervention: The HEBE trial. Presented at the AHA 2008 Scientific Sessions.
Mansour, S. et al. Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. J. Am. Coll. Cardiol.47, 1727–1730 (2006). PubMed Google Scholar
Lipinski, M. J. et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J. Am. Coll. Cardiol.50, 1761–1767 (2007). PubMed Google Scholar
Martin-Rendon, E. et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J.29, 1807–1818 (2008). CASPubMed Google Scholar
Menasché, P. et al. Myoblast transplantation for heart failure. Lancet357, 279–280 (2001). PubMed Google Scholar
Menasché, P. Skeletal myoblasts as a therapeutic agent. Prog. Cardiovasc. Dis.50, 7–17 (2007). PubMed Google Scholar
Menasché, P. et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation117, 1189–1200 (2008). PubMed Google Scholar
Menasché, P. Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation119, 2735–2740 (2009). PubMed Google Scholar
Assmus, B. et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med.355, 1222–1232 (2006). CASPubMed Google Scholar
Losordo, D. W. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation115, 3165–3172 (2007). PubMed Google Scholar
Tse, H. F. et al. Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur. Heart J.28, 2998–3005 (2007). PubMed Google Scholar
van Ramshorst, J. et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA301, 1997–2004 (2009). CASPubMed Google Scholar
Arora, R. R. et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J. Am. Coll. Cardiol.33, 1833–1840 (1999). CASPubMed Google Scholar
Leon, M. B. et al. A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J. Am. Coll. Cardiol.46, 1812–1819 (2005). PubMed Google Scholar
Reffelmann, T., Könemann, S. & Kloner, R. A. Promise of blood- and bone marrow-derived stem cell transplantation for functional cardiac repair: putting it in perspective with existing therapy. J. Am. Coll. Cardiol.53, 305–308 (2009). PubMed Google Scholar
Møller, J. E. et al. Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am. Heart J.151, 419–425 (2006). PubMed Google Scholar
Yokoyama, S. et al. A strategy of retrograde injection of bone marrow mononuclear cells into the myocardium for the treatment of ischemic heart disease. J. Mol. Cell. Cardiol.40, 24–34 (2006). CASPubMed Google Scholar
Silva, S. A. et al. Autologous bone-marrow mononuclear cell transplantation after acute myocardial infarction: comparison of two delivery techniques. Cell Transplant.18, 343–352 (2009). PubMed Google Scholar
Perin, E. C. & López, J. Methods of stem cell delivery in cardiac diseases. Nat. Clin. Pract. Cardiovasc. Med.3 (Suppl. 1), 110–113 (2006). Google Scholar
Bartunek, J. et al. Delivery of biologics in cardiovascular regenerative medicine. Clin. Pharmacol. Ther.85, 548–552 (2009). CASPubMed Google Scholar
de Silva, R. et al. X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections: validation in a swine model of myocardial infarction. Circulation114, 2342–2350 (2006). PubMedPubMed Central Google Scholar
Schächinger, V. et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J.27, 2775–2783 (2006). PubMed Google Scholar
Yousef, M. et al. The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J. Am. Coll. Cardiol.53, 2262–2269 (2009). PubMed Google Scholar
Hofmann, M. et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation111, 2198–2202 (2005). PubMed Google Scholar
Schächinger, V. et al. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation118, 1425–1432 (2008). PubMed Google Scholar
Haider, H. K. & Ashraf, M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J. Mol. Cell. Cardiol.45, 554–566 (2008). CASPubMedPubMed Central Google Scholar
Menasché, P. Skeletal myoblasts and cardiac repair. J. Mol. Cell. Cardiol.45, 545–553 (2008). PubMed Google Scholar
Kissel, C. K. et al. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J. Am. Coll. Cardiol.49, 2341–2349 (2007). PubMed Google Scholar
Spyridopoulos, I. et al. Telomere gap between granulocytes and lymphocytes is a determinant for hematopoetic progenitor cell impairment in patients with previous myocardial infarction. Arterioscler. Thromb. Vasc. Biol.28, 968–974 (2008). CASPubMed Google Scholar
Werner, N. et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med.353, 999–1007 (2005). CASPubMed Google Scholar
Dimmeler, S. & Leri, A. Aging and disease as modifiers of efficacy of cell therapy. Circ. Res.102, 1319–1330 (2008). CASPubMedPubMed Central Google Scholar
Aicher, A. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med.9, 1370–1376 (2003). CASPubMed Google Scholar
Landmesser, U. et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation110, 1933–1939 (2004). CASPubMed Google Scholar
Sasaki, K. et al. Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc. Natl Acad. Sci. USA103, 14537–14541 (2006). CASPubMedPubMed Central Google Scholar
Sorrentino, S. A. et al. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation116, 163–173 (2007). CASPubMed Google Scholar
Britten, M. B. et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation108, 2212–2218 (2003). CASPubMed Google Scholar
Assmus, B. et al. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ. Res.100, 1234–1241 (2007). CASPubMed Google Scholar
Aicher, A. et al. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation114, 2823–2830 (2006). PubMed Google Scholar
Zen, K. et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J. Mol. Cell. Cardiol.40, 799–809 (2006). CASPubMed Google Scholar
Ghanem, A. et al. Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction. J. Mol. Cell. Cardiol.47, 411–418 (2009). CASPubMed Google Scholar
Chavakis, E., Urbich, C. & Dimmeler, S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J. Mol. Cell. Cardiol.45, 514–522 (2008). CASPubMed Google Scholar
Kohno, T. et al. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc. Res.81, 565–573 (2009). CASPubMed Google Scholar
Askari, A. T. et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet362, 697–703 (2003). CASPubMed Google Scholar
Yamaguchi, J. et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation107, 1322–1328 (2003). CASPubMed Google Scholar
Tang, Y. L. et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ. Res.104, 1209–1216 (2009). CASPubMedPubMed Central Google Scholar
Chavakis, E. et al. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J. Exp. Med.201, 63–72 (2005). CASPubMedPubMed Central Google Scholar
Wu, Y. et al. Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ. Res.99, 315–322 (2006). CASPubMed Google Scholar
Chavakis, E. et al. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ. Res.100, 204–212 (2007). CASPubMed Google Scholar
Carmona, G., Chavakis, E., Koehl, U., Zeiher, A. M. & Dimmeler, S. Activation of Epac stimulates integrin-dependent homing of progenitor cells. Blood111, 2640–2646 (2008). CASPubMed Google Scholar
Spyridopoulos, I. et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation110, 3136–3142 (2004). CASPubMed Google Scholar
Li, X. et al. AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol.28, 1789–1795 (2008). PubMedPubMed Central Google Scholar
Shao, H. et al. Statin and stromal cell-derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels. Stem Cells26, 1376–1384 (2008). CASPubMed Google Scholar
Niagara, M. I., Haider, H. K., Jiang, S. & Ashraf, M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ. Res.100, 545–555 (2007). CASPubMed Google Scholar
Pasha, Z. et al. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc. Res.77, 134–142 (2008). CASPubMed Google Scholar
Bartunek, J. et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am. J. Physiol. Heart Circ. Physiol.292, H1095–1104 (2007). CASPubMed Google Scholar
Hahn, J. Y. et al. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J. Am. Coll. Cardiol.51, 933–943 (2008). CASPubMed Google Scholar
Nadeau, S. I. & Landry, J. Mechanisms of activation and regulation of the heat shock-sensitive signaling pathways. Adv. Exp. Med. Biol.594, 100–113 (2007). PubMed Google Scholar
Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.25, 1015–1024 (2007). CASPubMed Google Scholar
Maurel, A. et al. Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation80, 660–665 (2005). PubMed Google Scholar
Suzuki, K. et al. Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation102 (Suppl. 3), 216–221 (2000). Google Scholar
Penn, M. S. & Mangi, A. A. Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ. Res.102, 1471–1482 (2008). CASPubMedPubMed Central Google Scholar
Tang, Y. L. et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol.46, 1339–1350 (2005). CASPubMed Google Scholar
Li, W. et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells25, 2118–2127 (2007). CASPubMed Google Scholar
Shujia, J., Haider, H. K., Idris, N. M., Lu, G. & Ashraf, M. Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc. Res.77, 525–533 (2008). CASPubMed Google Scholar
Gnecchi, M. et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med.11, 367–368 (2005). CASPubMed Google Scholar
Roell, W. et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature450, 819–824 (2007). CASPubMed Google Scholar
Bu, L. et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature460, 113–117 (2009). CASPubMed Google Scholar
Webber, M. J. et al. Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater.6, 3–11 (2010). CASPubMed Google Scholar
Davis, M. E., Hsieh, P. C., Grodzinsky, A. J. & Lee, R. T. Custom design of the cardiac microenvironment with biomaterials. Circ. Res.97, 8–15 (2005). CASPubMedPubMed Central Google Scholar
Davis, M. E. et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl Acad. Sci. USA103, 8155–8160 (2006). CASPubMedPubMed Central Google Scholar
Yoon, Y. S. et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest.115, 326–338 (2005). CASPubMedPubMed Central Google Scholar
Aranguren, X. L. et al. Multipotent adult progenitor cells sustain function of ischemic limbs in mice. J. Clin. Invest.118, 505–514 (2008). CASPubMedPubMed Central Google Scholar
Nygren, J. M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med.10, 494–501 (2004). CASPubMed Google Scholar
Dai, W. et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation112, 214–223 (2005). PubMed Google Scholar
Wollert, K. C. & Drexler, H. Mesenchymal stem cells for myocardial infarction: promises and pitfalls. Circulation112, 151–153 (2005). PubMed Google Scholar
Noiseux, N. et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol. Ther.14, 840–850 (2006). CASPubMed Google Scholar
Field, L. J. Unraveling the mechanistic basis of mesenchymal stem cell activity in the heart. Mol. Ther.14, 755–756 (2006). CASPubMed Google Scholar
Prater, D. N., Case, J., Ingram, D. A. & Yoder, M. C. Working hypothesis to redefine endothelial progenitor cells. Leukemia21, 1141–1149 (2007). CASPubMed Google Scholar
Gnecchi, M., Zhang, Z., Ni, A. & Dzau, V. J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res.103, 1204–1219 (2008). CASPubMedPubMed Central Google Scholar
Urbich, C. et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol.39, 733–742 (2005). CASPubMed Google Scholar
Korf-Klingebiel, M. et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur. Heart J.29, 2851–2858 (2008). PubMed Google Scholar
Perez-Ilzarbe, M. et al. Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur. J. Heart Fail.10, 1065–1072 (2008). CASPubMed Google Scholar
Uemura, R., Xu, M., Ahmad, N. & Ashraf, M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res.98, 1414–1421 (2006). CASPubMed Google Scholar
Cho, H. J. et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J. Exp. Med.204, 3257–3269 (2007). CASPubMedPubMed Central Google Scholar
Kamihata, H. et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation104, 1046–1052 (2001). CASPubMed Google Scholar
Kawamoto, A. et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation107, 461–468 (2003). PubMed Google Scholar
Zeng, L. et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation115, 1866–1875 (2007). PubMed Google Scholar
Erbs, S. et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation116, 366–374 (2007). PubMed Google Scholar
Mirotsou, M. et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl Acad. Sci. USA104, 1643–1648 (2007). CASPubMedPubMed Central Google Scholar
Burchfield, J. S. et al. Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ. Res.103, 203–211 (2008). CASPubMed Google Scholar
Gilchrist, A. et al. Quantitative proteomics analysis of the secretory pathway. Cell127, 1265–1281 (2006). CASPubMed Google Scholar
Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell138, 257–270 (2009). CASPubMed Google Scholar
Smart, N. et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature445, 177–182 (2007). CASPubMed Google Scholar
Malik, D. K., Baboota, S., Ahuja, A., Hasan, S. & Ali, J. Recent advances in protein and peptide drug delivery systems. Curr. Drug Deliv.4, 141–151 (2007). CASPubMed Google Scholar
Zhang, G. et al. Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng.13, 2063–2071 (2007). CASPubMed Google Scholar
Segers, V. F. et al. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation116, 1683–1692 (2007). CASPubMed Google Scholar
Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22, 1282–1289 (2004). CASPubMed Google Scholar
Ménard, C. et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet366, 1005–1012 (2005). PubMed Google Scholar
Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature440, 1199–1203 (2006). CASPubMed Google Scholar
Conrad, S. et al. Generation of pluripotent stem cells from adult human testis. Nature456, 344–349 (2008). CASPubMed Google Scholar
Brevini, T. A. & Gandolfi, F. Parthenotes as a source of embryonic stem cells. Cell Prolif.41 (Suppl. 1), 20–30 (2008). PubMed Google Scholar
Smith, R. R. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation115, 896–908 (2007). PubMed Google Scholar
Andersen, D. C., Andersen, P., Schneider, M., Jensen, H. B. & Sheikh, S. P. Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells27, 1571–1581 (2009). PubMed Google Scholar
Wu, S. M., Chien, K. R. & Mummery, C. Origins and fates of cardiovascular progenitor cells. Cell132, 537–543 (2008). CASPubMedPubMed Central Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). CASPubMed Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). CASPubMed Google Scholar
Mauritz, C. et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation118, 507–517 (2008). PubMed Google Scholar
Nelson, T. J. et al. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation120, 408–416 (2009). PubMedPubMed Central Google Scholar
Carey, B. W. et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc. Natl Acad. Sci. USA106, 157–162 (2009). CASPubMed Google Scholar
Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458, 771–775 (2009). CASPubMedPubMed Central Google Scholar
Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol.26, 795–797 (2008). CASPubMedPubMed Central Google Scholar
Lyssiotis, C. A. et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl Acad. Sci. USA106, 8912–8917 (2009). PubMedPubMed Central Google Scholar
Kolossov, E. et al. Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J. Exp. Med.203, 2315–2327 (2006). CASPubMedPubMed Central Google Scholar
Kiuru, M., Boyer, J. L., O'Connor, T. P. & Crystal, R. G. Genetic control of wayward pluripotent stem cells and their progeny after transplantation. Cell Stem Cell4, 289–300 (2009). CASPubMedPubMed Central Google Scholar
Taylor, C. J. et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet366, 2019–2025 (2005). PubMed Google Scholar
Nakajima, F., Tokunaga, K. & Nakatsuji, N. Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells25, 983–985 (2007). CASPubMed Google Scholar