Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med.5, 177ra138 (2013). ArticleCAS Google Scholar
Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet385, 517–528 (2015). ArticleCASPubMed Google Scholar
Jensen, M. C. et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant.16, 1245–1256 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol.24, e20–e22 (2006). ArticlePubMed Google Scholar
Till, B. G. et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood112, 2261–2271 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest.121, 1822–1826 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Scholler, J. et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med.4, 132ra153 (2012). Article Google Scholar
Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet385, 517–528 (2014). ArticleCASPubMedPubMed Central Google Scholar
Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA106, 3360–3365 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhong, X. S., Matsushita, M., Plotkin, J., Riviere, I. & Sadelain, M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther.18, 413–420 (2010). ArticleCASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2016).
Park, J. H. et al. Efficacy and safety of CD19-targeted 19-28z CAR modified T cells in adult patients with relapsed or refractory B-ALL [abstract]. J. Clin. Oncol.33 (Suppl.), 7010 (2015). Article Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov [online],[online], (2015).
Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia30, 492–500 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Turtle, C. J. et al. Immunotherapy with CD19-specific chimeric antigen receptor (CAR)-modified T cells of defined subset composition [abstract]. J. Clin. Oncol.33 (Suppl.), 3006 (2015). Article Google Scholar
Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood118, 4817–4828 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Kochenderfer, J. N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood119, 2709–2720 (2012). PubMedPubMed CentralCAS Google Scholar
Porter, D. L. et al. Randomized, phase II dose optimization study of chimeric antigen receptor modified t cells directed against CD19 (CTL019) in patients with relapsed, refractory CLL. Presented at the 55th ASH Annual Meeting and Exposition (2014).
Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med.7, 303ra139 (2015). ArticlePubMedPubMed Central Google Scholar
Kochenderfer, J. N. et al. Anti-CD19 CAR T cells administered after low-dose chemotherapy can induce remissions of chemotherapy-refractory diffuse large B-cell lymphoma. Blood124, 550 (2014). Google Scholar
Schuster, S. J. et al. Phase IIa trial of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas [abstract]. Blood124 (Suppl.), 3087 (2014). Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Sauter, C. S. et al. Phase I trial of 19-28z chimeric antigen receptor modified T cells (19-28z CAR-T) post-high dose therapy and autologous stem cell transplant (HDT-ASCT) for relapsed and refractory (rel/ref) aggressive B-cell non-Hodgkin lymphoma (B-NHL) [abstract]. J. Clin. Oncol.33 (Suppl.), 8515 (2015). Article Google Scholar
Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med.6, 224ra225 (2014). ArticleCAS Google Scholar
Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med.365, 725–733 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov.5, 1282–1295 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2014).
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2016).
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2016).
US National Library of Science. ClinicalTrials.gov[online], (2016).
US National Library of Science. ClinicalTrials.gov[online], (2016).
US National Library of Science. ClinicalTrials.gov[online], (2012).
Nitschke, L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol. Rev.230, 128–143 (2009). ArticleCASPubMed Google Scholar
Dotti, G., Gottschalk, S., Savoldo, B. & Brenner, M. K. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol. Rev.257, 107–126 (2014). ArticleCASPubMed Google Scholar
Haso, W. et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood121, 1165–1174 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Till, B. G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood119, 3940–3950 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Wang, Y. et al. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin. Immunol.155, 160–175 (2014). ArticleCASPubMed Google Scholar
Al-Shawi, R., Ashton, S. V., Underwood, C. & Simons, J. P. Expression of the Ror1 and Ror2 receptor tyrosine kinase genes during mouse development. Dev. Genes Evol.211, 161–171 (2001). ArticleCASPubMed Google Scholar
Hudecek, M. et al. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood116, 4532–4541 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Vera, J. et al. T lymphocytes redirected against the κ light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood108, 3890–3897 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Deniger, D. C. et al. Sleeping Beauty transposition of chimeric antigen receptors targeting receptor tyrosine kinase-like orphan receptor-1 (ROR1) into diverse memory T-cell populations. PLoS ONE10, e0128151 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Ellis, T. M., Simms, P. E., Slivnick, D. J., Jack, H. M. & Fisher, R. I. CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO+ T cells. J. Immunol.151, 2380–2389 (1993). CASPubMed Google Scholar
Hombach, A. et al. An anti-CD30 chimeric receptor that mediates CD3-ζ-independent T-cell activation against Hodgkin's lymphoma cells in the presence of soluble CD30. Cancer Res.58, 1116–1119 (1998). CASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
US National Library of Science. ClinicalTrials.gov[online], (2016).
Zhang, H. et al. Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. ACS Nano5, 2756–2769 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Guo, B. et al. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J. Cell. Immunother.http://dx.doi.org/10.1016/j.jocit.2014.11.001 (2015).
Carpenter, R. O. et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res.19, 2048–2060 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Feldman, E. et al. Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia17, 314–318 (2003). ArticleCASPubMed Google Scholar
Roberts, A. W. et al. A phase I study of anti-CD123 monoclonal antibody (mAb) CSL360 targeting leukemia stem cells (LSC) in AML [abstract]. J. Clin. Oncol.28 (Suppl.), e13012 (2010). Article Google Scholar
Mardiros, A. et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood122, 3138–3148 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Shi, J. et al. Identification of CD123+ myeloid dendritic cells as an early-stage immature subset with strong tumoristatic potential. Cancer Lett.270, 19–29 (2008). ArticleCASPubMed Google Scholar
Tettamanti, S. et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br. J. Haematol.161, 389–401 (2013). ArticleCASPubMed Google Scholar
Sievers, E. L. et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol.19, 3244–3254 (2001). ArticleCASPubMed Google Scholar
Hoyer, J. D., Grogg, K. L., Hanson, C. A., Gamez, J. D. & Dogan, A. CD33 detection by immunohistochemistry in paraffin-embedded tissues: a new antibody shows excellent specificity and sensitivity for cells of myelomonocytic lineage. Am. J. Clin. Pathol.129, 316–323 (2008). ArticlePubMed Google Scholar
Wang, Q. S. et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol. Ther.23, 184–191 (2015). ArticleCASPubMed Google Scholar
Kobayashi, K. et al. Lewis blood group-related antigen expression in normal gastric epithelium, intestinal metaplasia, gastric adenoma, and gastric carcinoma. Am. J. Gastroenterol.88, 919–924 (1993). CASPubMed Google Scholar
Peinert, S. et al. Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther.17, 678–686 (2010). ArticleCASPubMed Google Scholar
Schuessler, M. H. et al. Blood group and blood-group-related antigens in normal pancreas and pancreas cancer: enhanced expression of precursor type 1, Tn and sialyl-Tn in pancreas cancer. Int. J. Cancer47, 180–187 (1991). ArticleCASPubMed Google Scholar
Ritchie, D. S. et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol. Ther.21, 2122–2129 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Haffner, M. C. et al. Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum. Pathol.40, 1754–1761 (2009). ArticleCASPubMed Google Scholar
Maher, J., Brentjens, R. J., Gunset, G., Riviere, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol.20, 70–75 (2002). ArticleCASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Slovin, S. F. et al. Targeting castration resistant prostate cancer (CRPC) with autologous PSMA-directed CAR+ T cells. J. Clin. Oncol.30, TPS4700 (2012). Article Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2014).
Junghans, R. P. et al. Abstract C13: phase I trial of anti-PSMA designer T cells in advanced prostate cancer. Cancer Res.72, C13 (2012). Article Google Scholar
Hassan, R. & Ho, M. Mesothelin targeted cancer immunotherapy. Eur. J. Cancer44, 46–53 (2008). ArticleCASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Beatty, G. L. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res.2, 112–120 (2014). ArticlePubMedCAS Google Scholar
Maus, M. V. et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res.1, 26–31 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2015).
Mathew, S. et al. The gene for fibroblast activation protein α (FAP), a putative cell surface-bound serine protease expressed in cancer stroma and wound healing, maps to chromosome band 2q23. Genomics25, 335–337 (1995). ArticleCASPubMed Google Scholar
Petrausch, U. et al. Re-directed T cells for the treatment of fibroblast activation protein (FAP)-positive malignant pleural mesothelioma (FAPME-1). BMC Cancer12, 615 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Schuberth, P. C. et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J. Transl. Med.11, 187 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
Arteaga, C. L. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist7 (Suppl. 4), 31–39 (2002). ArticleCASPubMed Google Scholar
Feldkamp, M. M., Lala, P., Lau, N., Roncari, L. & Guha, A. Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery45, 1442–1453 (1999). ArticleCASPubMed Google Scholar
Thomas, M. Cetuximab: adverse event profile and recommendations for toxicity management. Clin. J. Oncol. Nurs.9, 332–338 (2005). ArticlePubMed Google Scholar
Johnson, L. A. et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci. Transl. Med.7, 275ra222 (2015). ArticleCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
Morgan, R. A. et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum. Gene Ther.23, 1043–1053 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
US National Library of Science. ClinicalTrials.gov[online], (2015).
Hammarstrom, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol.9, 67–81 (1999). ArticleCASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther.19, 620–626 (2011). ArticleCASPubMed Google Scholar
Katz, S. C. et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin. Cancer Res.21, 3149–3159 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Huszar, M. et al. Expression profile analysis in multiple human tumors identifies L1 (CD171) as a molecular marker for differential diagnosis and targeted therapy. Hum. Pathol.37, 1000–1008 (2006). ArticleCASPubMed Google Scholar
Meli, M. L. et al. Anti-neuroblastoma antibody chCE7 binds to an isoform of L1-CAM present in renal carcinoma cells. Int. J. Cancer83, 401–408 (1999). ArticleCASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2014).
Hong, H. et al. Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes. J. Immunother.37, 93–104 (2014). ArticleCASPubMed Google Scholar
Suzuki, M. & Cheung, N. K. Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin. Ther. Targets19, 349–362 (2015). ArticleCASPubMed Google Scholar
Zhang, S. et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int. J. Cancer73, 42–49 (1997). ArticleCASPubMed Google Scholar
Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood118, 6050–6056 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2016).
Gargett, T. & Brown, M. P. Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor T cells specific for tumor antigen GD2. Cytotherapy17, 487–495 (2015). ArticleCASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
US National Library of Science. ClinicalTrials.gov[online], (2015).
Baumhoer, D. et al. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am. J. Clin. Pathol.129, 899–906 (2008). ArticlePubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Press, M. F., Cordon-Cardo, C. & Slamon, D. J. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene5, 953–962 (1990). CASPubMed Google Scholar
Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science244, 707–712 (1989). ArticleCASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther.18, 843–851 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol.33, 1688–1696 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Ahmed, N. et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol. Ther.17, 1779–1787 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Zhao, Y. et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol.183, 5563–5574 (2009). ArticlePubMedCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
US National Library of Science. ClinicalTrials.gov[online], (2016).
Debinski, W., Gibo, D. M., Hulet, S. W., Connor, J. R. & Gillespie, G. Y. Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin. Cancer Res.5, 985–990 (1999). CASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2011).
Brown, C. E. et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res.21, 4062–4072 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Chinnasamy, D. et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin. Cancer Res.18, 1672–1683 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Chmielewski, M., Kopecky, C., Hombach, A. A. & Abken, H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res.71, 5697–5706 (2011). ArticleCASPubMed Google Scholar
Kerkar, S. P. et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J. Clin. Invest.121, 4746–4757 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Pegram, H. J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood119, 4133–4141 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Zhang, L. et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res.21, 2278–2288 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Chekmasova, A. A. et al. Successful eradication of established peritoneal ovarian tumors in SCID-beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin. Cancer Res.16, 3594–3606 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Koneru, M., O'Cearbhaill, R., Pendharkar, S., Spriggs, D. R. & Brentjens, R. J. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16ecto directed chimeric antigen receptors for recurrent ovarian cancer. J. Transl. Med.13, 102 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Yin, B. W. & Lloyd, K. O. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J. Biol. Chem.276, 27371–27375 (2001). ArticleCASPubMed Google Scholar
Wilkie, S. et al. Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J. Biol. Chem.285, 25538–25544 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Davies, D. M. et al. Flexible targeting of ErbB dimers that drive tumorigenesis by using genetically engineered T cells. Mol. Med.18, 565–576 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
van Schalkwyk, M. C. et al. Design of a phase I clinical trial to evaluate intratumoral delivery of ErbB-targeted chimeric antigen receptor T-cells in locally advanced or recurrent head and neck cancer. Hum. Gene Ther. Clin. Dev.24, 134–142 (2013). ArticleCASPubMed Google Scholar
Zhang, J., Basher, F. & Wu, J. D. NKG2D ligands in tumor immunity: two sides of a coin. Front. Immunol.6, 97 (2015). PubMedPubMed CentralCAS Google Scholar
Spear, P., Barber, A., Rynda-Apple, A. & Sentman, C. L. NKG2D CAR T-cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunol. Cell Biol.91, 435–440 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Zhang, T., Barber, A. & Sentman, C. L. Chimeric NKG2D modified T cells inhibit systemic T-cell lymphoma growth in a manner involving multiple cytokines and cytotoxic pathways. Cancer Res.67, 11029–11036 (2007). ArticleCASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science348, 124–128 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med.372, 2521–2532 (2015). ArticlePubMedCAS Google Scholar
Choudhury, N. & Nakamura, Y. The importance of immunopharmacogenomics in cancer treatment: patient selection and monitoring for immune checkpoint antibodies. Cancer Sci 107, 107–115 (2015). Google Scholar
John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res.19, 5636–5646 (2013). ArticleCASPubMed Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res.12, 6106–6115 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2016).
Chen, J. C., Chang, Y. W., Hong, C. C., Yu, Y. H. & Su, J. L. The role of the VEGF-C/VEGFRs axis in tumor progression and therapy. Int. J. Mol. Sci.14, 88–107 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell94, 715–725 (1998). ArticleCASPubMed Google Scholar
Chinnasamy, D. et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest.120, 3953–3968 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).
Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol.33, 540–549 (2015). ArticleCASPubMed Google Scholar
Wang, X. et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood118, 1255–1263 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
US National Library of Science. ClinicalTrials.gov[online], (2015).