Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Jordan, E. J. et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov.7, 596–609 (2017). ArticleCASPubMedPubMed Central Google Scholar
Blanke, C. D. et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J. Clin. Oncol.26, 620–625 (2008). ArticleCASPubMed Google Scholar
Bhang, H. E. et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med.21, 440–448 (2015). ArticleCASPubMed Google Scholar
Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med.376, 2109–2121 (2017). ArticleCASPubMed Google Scholar
Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature518, 240–244 (2015). ArticleCASPubMed Google Scholar
Kwak, E. L. et al. Molecular heterogeneity and receptor coamplification drive resistance to targeted therapy in MET-amplified esophagogastric cancer. Cancer Discov.5, 1271–1281 (2015). ArticleCASPubMedPubMed Central Google Scholar
Russo, M. et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov.6, 147–153 (2016). ArticleCASPubMed Google Scholar
Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet.38, 1043–1048 (2006). ArticleCASPubMed Google Scholar
Cleaver, J. E. & Crowley, E. UV damage, DNA repair and skin carcinogenesis. Front. Biosci.7, d1024–d1043 (2002). CASPubMed Google Scholar
Roberts, S. A. & Gordenin, D. A. Hypermutation in human cancer genomes: footprints and mechanisms. Nat. Rev. Cancer14, 786–800 (2014). ArticleCASPubMedPubMed Central Google Scholar
McGranahan, N. & Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell27, 15–26 (2015). ArticleCASPubMed Google Scholar
Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature463, 184–190 (2010). ArticleCASPubMed Google Scholar
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455, 1061–1068 (2008).
Murugaesu, N. et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov.5, 821–831 (2015). ArticleCASPubMedPubMed Central Google Scholar
Findlay, J. M. et al. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat. Commun.7, 11111 (2016). ArticleCASPubMedPubMed Central Google Scholar
Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res.51, 3075–3079 (1991). CASPubMed Google Scholar
Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability — an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol.11, 220–228 (2010). ArticleCASPubMed Google Scholar
Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet.45, 977–983 (2013). ArticleCASPubMedPubMed Central Google Scholar
Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov.5, 704–712 (2015). ArticleCASPubMedPubMed Central Google Scholar
Walker, B. A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat. Commun.6, 6997 (2017). Article Google Scholar
Sieuwerts, A. M. et al. Elevated APOBEC3B correlates with poor outcomes for estrogen-receptor-positive breast cancers. Horm. Cancer5, 405–413 (2017). Article Google Scholar
Holland, A. J. & Cleveland, D. W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol.10, 478–487 (2009). ArticleCASPubMedPubMed Central Google Scholar
de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science346, 251–256 (2014). ArticleCASPubMedPubMed Central Google Scholar
Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med.22, 105–113 (2016). ArticleCASPubMed Google Scholar
Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell11, 25–36 (2007). ArticleCASPubMed Google Scholar
Hiley, C., de Bruin, E. C., McGranahan, N. & Swanton, C. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biol.15, 453 (2014). ArticlePubMedPubMed Central Google Scholar
Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet.46, 225–233 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hong, M. K. et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat. Commun.6, 6605 (2015). ArticleCASPubMed Google Scholar
Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature508, 113–117 (2014). ArticleCASPubMedPubMed Central Google Scholar
Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med.21, 751–759 (2015). ArticleCASPubMedPubMed Central Google Scholar
Hao, J. J. et al. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat. Genet.48, 1500–1507 (2016). ArticleCASPubMedPubMed Central Google Scholar
Harbst, K. et al. Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. Cancer Res.76, 4765–4774 (2016). ArticleCASPubMed Google Scholar
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.366, 883–892 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sankin, A. et al. The impact of genetic heterogeneity on biomarker development in kidney cancer assessed by multiregional sampling. Cancer Med.3, 1485–1492 (2014). ArticleCASPubMedPubMed Central Google Scholar
Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell148, 886–895 (2012). ArticleCASPubMedPubMed Central Google Scholar
Francis, J. M. et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov.4, 956–971 (2014). ArticleCASPubMedPubMed Central Google Scholar
Yu, C. et al. Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res.24, 701–712 (2014). ArticleCASPubMedPubMed Central Google Scholar
Piotrowska, Z. et al. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov.5, 713–722 (2015). ArticleCASPubMedPubMed Central Google Scholar
Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet.47, 736–745 (2015). ArticleCASPubMed Google Scholar
Cooper, C. S. et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat. Genet.47, 367–372 (2015). ArticleCASPubMedPubMed Central Google Scholar
Izumchenko, E. et al. Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nat. Commun.6, 8258 (2015). ArticlePubMed Google Scholar
Shain, A. H. et al. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med.373, 1926–1936 (2015). ArticlePubMed Google Scholar
McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet.48, 758–767 (2016). ArticleCASPubMed Google Scholar
Kemper, K. et al. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts. EMBO Mol. Med.7, 1104–1118 (2015). ArticleCASPubMedPubMed Central Google Scholar
Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov.5, 1164–1177 (2015). ArticleCASPubMedPubMed Central Google Scholar
Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science346, 1480–1486 (2014). ArticleCASPubMedPubMed Central Google Scholar
Goyal, L. et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov.7, 252–263 (2017). ArticleCASPubMed Google Scholar
Niederst, M. J. et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun.6, 6377 (2015). ArticleCASPubMed Google Scholar
Savas, P. et al. The subclonal architecture of metastatic breast cancer: results from a prospective community-based rapid autopsy program “CASCADE”. PLoS Med.13, e1002204 (2016). ArticlePubMedPubMed Central Google Scholar
Awad, M. M. et al. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med.368, 2395–2401 (2013). ArticleCASPubMed Google Scholar
Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA311, 1998–2006 (2014). ArticlePubMedPubMed Central Google Scholar
Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov.6, 1118–1133 (2016). ArticleCASPubMedPubMed Central Google Scholar
Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl Med.3, 75ra26 (2011). ArticlePubMedPubMed Central Google Scholar
Yu, H. A. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res.19, 2240–2247 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shaw, A. T. et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med.374, 54–61 (2016). ArticleCASPubMed Google Scholar
Yu, H. A. et al. Poor response to erlotinib in patients with tumors containing baseline EGFR T790M mutations found by routine clinical molecular testing. Ann. Oncol.25, 423–428 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hata, A. et al. Spatiotemporal T790M heterogeneity in individual patients with EGFR-mutant non-small-cell lung cancer after acquired resistance to EGFR-TKI. J. Thorac. Oncol.10, 1553–1559 (2015). ArticleCASPubMed Google Scholar
Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med.21, 560–562 (2015). ArticleCASPubMedPubMed Central Google Scholar
Shafee, N. et al. Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res.68, 3243–3250 (2008). ArticleCASPubMedPubMed Central Google Scholar
Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst.100, 672–679 (2008). ArticleCASPubMed Google Scholar
Raha, D. et al. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res.74, 3579–3590 (2014). ArticleCASPubMed Google Scholar
Blakely, C. M. et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep.11, 98–110 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bivona, T. G. & Doebele, R. C. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat. Med.22, 472–478 (2016). ArticleCASPubMedPubMed Central Google Scholar
Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun.7, 10690 (2016). ArticleCASPubMedPubMed Central Google Scholar
Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med.22, 262–269 (2016). ArticleCASPubMedPubMed Central Google Scholar
Oxnard, G. R. et al. Association Between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J. Clin. Oncol.34, 3375–3382 (2016). ArticleCASPubMedPubMed Central Google Scholar
Chabon, J. J. et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun.7, 11815 (2016). ArticleCASPubMedPubMed Central Google Scholar
Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature450, 1235–1239 (2007). ArticleCASPubMedPubMed Central Google Scholar
San Lucas, F. A. et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann. Oncol.27, 635–641 (2016). ArticleCASPubMed Google Scholar
Sundaresan, T. K. et al. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin. Cancer Res.22, 1103–1110 (2016). ArticleCASPubMed Google Scholar
Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature497, 108–112 (2013). ArticleCASPubMed Google Scholar
Karlovich, C. et al. Assessment of EGFR mutation status in matched plasma and tumor tissue of NSCLC patients from a phase I study of rociletinib (CO-1686). Clin. Cancer Res.22, 2386–2395 (2016). ArticleCASPubMedPubMed Central Google Scholar
Paweletz, C. P. et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin. Cancer Res.22, 915–922 (2016). ArticleCASPubMed Google Scholar
Thierry, A. R. et al. Clinical utility of circulating DNA analysis for rapid detection of actionable mutations to select metastatic colorectal patients for anti-EGFR treatment. Ann. Oncol.28, 2149–2159 (2017). ArticleCASPubMed Google Scholar
Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl Med.4, 136ra168 (2012). Article Google Scholar
Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med.20, 548–554 (2014). ArticleCASPubMedPubMed Central Google Scholar
Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature486, 532–536 (2012). ArticleCASPubMedPubMed Central Google Scholar
Diaz, L. A. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature486, 537–540 (2012). ArticleCASPubMedPubMed Central Google Scholar
Thress, K. Complete clearance of plasma EGFR mutations as a predictor of outcome on osimertinib in the AURA trial [abstract]. J. Clin. Oncol.35, 9018 (2017). Article Google Scholar
Siravegna, G. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med.21, 795–801 (2015). ArticleCASPubMedPubMed Central Google Scholar
Van Emburgh, B. O. et al. Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer. Nat. Commun.7, 13665 (2016). ArticleCASPubMedPubMed Central Google Scholar
Siena, S. et al. Dynamic molecular analysis and clinical correlates of tumor evolution within a phase 2 trial of panitumumab-based therapy in metastatic colorectal cancer. Ann. Oncol.http://dx.doi.org/10.1093/annonc/mdx504 (2017).
Bai, H. et al. Detection and clinical significance of intratumoral EGFR mutational heterogeneity in Chinese patients with advanced non-small cell lung cancer. PLoS ONE8, e54170 (2013). ArticleCASPubMedPubMed Central Google Scholar
Suda, K. et al. Heterogeneity in resistance mechanisms causes shorter duration of epidermal growth factor receptor kinase inhibitor treatment in lung cancer. Lung Cancer91, 36–40 (2016). ArticlePubMed Google Scholar
Peters, S. et al. Alectinib versus crizotinib in untreated alk-positive non-small-cell lung cancer. N. Engl. J. Med.377, 829–838 (2017). ArticleCASPubMed Google Scholar
Ramalingam, S. et al. LBA1_PR: osimertinib as first-line treatment for EGFR mutation-positive advanced NSCLC: updated efficacy and safety results from two Phase I expansion cohorts. J. Thorac. Oncol.11, S152 (2016). Article Google Scholar
Niederst, M. J. et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin. Cancer Res.21, 3924–3933 (2015). ArticleCASPubMedPubMed Central Google Scholar
Das Thakur, M. & Stuart, D. D. The evolution of melanoma resistance reveals therapeutic opportunities. Cancer Res.73, 6106–6110 (2013). ArticleCASPubMed Google Scholar
Abdel-Wahab, O. et al. Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent BRAF- and NRAS-mutant malignancies. Cancer Discov.4, 538–545 (2014). ArticlePubMedPubMed Central Google Scholar
Chmielecki, J. et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci. Transl Med.3, 90ra59 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pirazzoli, V. et al. Afatinib plus cetuximab delays resistance compared to single-agent erlotinib or afatinib in mouse models of TKI-naive EGFR L858R-induced lung adenocarcinoma. Clin. Cancer Res.22, 426–435 (2016). ArticleCASPubMed Google Scholar
Janjigian, Y. Y. et al. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov.4, 1036–1045 (2014). ArticleCASPubMedPubMed Central Google Scholar
Tricker, E. M. et al. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov.5, 960–971 (2015). ArticleCASPubMedPubMed Central Google Scholar
Hrustanovic, G. et al. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat. Med.21, 1038–1047 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. K. et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J. Clin. Oncol.35, 3065–3074 (2017). ArticleCASPubMed Google Scholar
Chaib, I. et al. Co-activation of STAT3 and YES-associated protein 1 (YAP1) pathway in EGFR-mutant NSCLC. J. Natl Cancer Inst.109, djx014 (2017). ArticlePubMedPubMed Central Google Scholar
Carson, R. et al. HDAC inhibition overcomes acute resistance to MEK inhibition in BRAF-mutant colorectal cancer by downregulation of c-FLIPL. Clin. Cancer Res.21, 3230–3240 (2015). ArticleCASPubMedPubMed Central Google Scholar
Gomez, D. R. et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol.17, 1672–1682 (2016). ArticleCASPubMedPubMed Central Google Scholar
Johanns, T. M. et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov.6, 1230–1236 (2016). ArticlePubMedPubMed Central Google Scholar
Santin, A. D. et al. Regression of chemotherapy-resistant polymerase epsilon (POLE) ultra-mutated and MSH6 hyper-mutated endometrial tumors with nivolumab. Clin. Cancer Res.22, 5682–5687 (2016). ArticleCASPubMedPubMed Central Google Scholar