Novel therapeutic approaches for heart failure by normalizing calcium cycling (original) (raw)
Hunt, S. A. et al. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. J. Am. Coll. Cardiol.38, 2101–2113 (2001). ArticleCASPubMed Google Scholar
Pieske, B., Maier, L. S., Bers, D. M. & Hasenfuss, G. Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ. Res.85, 38–46 (1999). ArticleCASPubMed Google Scholar
Fill, M. & Copello, J. A. Ryanodine receptor calcium release channels. Physiol. Rev.82, 893–922 (2002). ArticleCASPubMed Google Scholar
Wehrens, X. H. & Marks, A. R. Altered function and regulation of cardiac ryanodine receptors in cardiac disease. Trends Biochem. Sci.28, 671–678 (2003). ArticleCASPubMed Google Scholar
Sipido, K. R., Carmeliet, E. & Van de Werf, F. T-type Ca2+ current as a trigger for Ca2+ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. J. Physiol.508, 439–451 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sipido, K. R., Maes, M. & Van de Werf, F. Low efficiency of Ca2+ entry through the Na+-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na+–Ca2+ exchange. Circ. Res.81, 1034–1044 (1997). ArticleCASPubMed Google Scholar
Fabiato, A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol.245, C1–C14 (1983). A landmark paper that provided the first description and characterization of the excitation–contraction coupling process in cardiac myocytes. ArticleCASPubMed Google Scholar
Koss, K. L., Grupp, I. L. & Kranias, E. G. The relative phospholamban and SERCA2 ratio: a critical determinant of myocardial contractility. Basic Res. Cardiol.92 (Suppl. 1), 17–24 (1997). ArticleCASPubMed Google Scholar
Jones, L. R., Simmerman, H. K., Wilson, W. W., Gurd, F. R. & Wegener, A. D. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J. Biol. Chem.260, 7721–7730 (1985). CASPubMed Google Scholar
Bers, D. M. & Bridge, J. H. Relaxation of rabbit ventricular muscle by Na–Ca exchange and sarcoplasmic reticulum calcium pump. Ryanodine and voltage sensitivity. Circ. Res.65, 334–342 (1989). ArticleCASPubMed Google Scholar
Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell101, 365–376 (2000). The first report on PKA-hyperphosphorylation of the cardiac ryanodine receptors (RyR2) as a cause of abnormal Ca2+cycling and impaired contractility in human heart failure. ArticleCASPubMed Google Scholar
Wehrens, X. H., Lehnart, S. E., Reiken, S. R. & Marks, A. R. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ. Res.94, e61–e70 (2004). ArticleCASPubMed Google Scholar
Braz, J. C. et al. PKC-α regulates cardiac contractility and propensity toward heart failure. Nature Med.10, 248–254 (2004). A demonstration of the role of PKC-α as a nodal integrator of cardiac contractility by sensing intracellular Ca2+and signal transduction events. Altered PKC-α signalling can profoundly affect the propensity toward heart failure. ArticleCASPubMed Google Scholar
Rockman, H. A., Koch, W. J. & Lefkowitz, R. J. Seven-transmembrane-spanning receptors and heart function. Nature415, 206–212 (2002). ArticleCASPubMed Google Scholar
Gomez, A. M. et al. Defective excitation–contraction coupling in experimental cardiac hypertrophy and heart failure. Science276, 800–806 (1997). ArticleCASPubMed Google Scholar
Dzhura, I., Wu, Y., Colbran, R. J., Balser, J. R. & Anderson, M. E. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nature Cell Biol.2, 173–177 (2000). ArticleCASPubMed Google Scholar
DeSantiago, J., Maier, L. S. & Bers, D. M. Frequency-dependent acceleration of relaxation in the heart depends on CaMKII, but not phospholamban. J. Mol. Cell. Cardiol.34, 975–984 (2002). ArticleCASPubMed Google Scholar
Maier, L. S. et al. Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ. Res.92, 904–911 (2003). ArticleCASPubMed Google Scholar
Wu, Y., MacMillan, L. B., McNeill, R. B., Colbran, R. J. & Anderson, M. E. CaM kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am. J. Physiol.276, H2168–H2178 (1999). CASPubMed Google Scholar
Napolitano, R., Vittone, L., Mundina, C., Chiappe de Cingolani, G. & Mattiazzi, A. Phosphorylation of phospholamban in the intact heart. A study on the physiological role of the Ca2+-calmodulin-dependent protein kinase system. J. Mol. Cell. Cardiol.24, 387–396 (1992). ArticleCASPubMed Google Scholar
Hagemann, D. et al. Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. J. Biol. Chem.275, 22532–22536 (2000). ArticleCASPubMed Google Scholar
Hagemann, D. & Xiao, R. P. Dual site phospholamban phosphorylation and its physiological relevance in the heart. Trends Cardiovasc. Med.12, 51–56 (2002). ArticleCASPubMed Google Scholar
Dempsey, E. C. et al. Protein kinase C isozymes and the regulation of diverse cell responses. Am. J. Physiol. Lung Cell. Mol. Physiol.279, L429–L438 (2000). ArticleCASPubMed Google Scholar
Wang, J., Liu, X., Arneja, A. S. & Dhalla, N. S. Alterations in protein kinase A and protein kinase C levels in heart failure due to genetic cardiomyopathy. Can. J. Cardiol.15, 683–690 (1999). CASPubMed Google Scholar
Sugden, P. H. & Bogoyevitch, M. A. Intracellular signalling through protein kinases in the heart. Cardiovasc. Res.30, 478–492 (1995). ArticleCASPubMed Google Scholar
Pass, J. M. et al. Enhanced PKCβ II translocation and PKC-β II-RACK1 interactions in PKCε-induced heart failure: a role for RACK1. Am. J. Physiol. Heart Circ. Physiol.281, H2500–H2510 (2001). ArticleCASPubMed Google Scholar
Tunwell, R. E. et al. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem. J.318, 477–487 (1996). ArticleCASPubMedPubMed Central Google Scholar
Otsu, K. et al. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J. Biol. Chem.265, 13472–13483 (1990). A report of the molecular cloning of the cardiac ryanodine receptor from rabbit heart, showing that the RyR2 isoform contains almost 5,000 amino acids and has 67% sequence similarity to the skeletal muscle isoform RyR1. CASPubMed Google Scholar
Chu, A., Sumbilla, C., Inesi, G., Jay, S. D. & Campbell, K. P. Specific association of calmodulin-dependent protein kinase and related substrates with the junctional sarcoplasmic reticulum of skeletal muscle. Biochemistry29, 5899–5905 (1990). ArticleCASPubMed Google Scholar
Brillantes, A.–M. B. et al. FKBP12 Optimizes function of the cloned expressed calcium release channel (ryanodine receptor). Biophys. J.66, A19 (1994). Google Scholar
Marx, S. O. et al. Phosphorylation-dependent regulation of ryanodine receptors. A novel role for leucine/isoleucine zippers. J. Cell. Biol.153, 699–708 (2001). Demonstration that the ryanodine receptor is a macromolecular complex, and that protein kinase A and protein phosphatases PP1 and PP2 are targeted to RyR2 via specific adaptor proteins through leucine/ isoleucine zipper motifs. ArticleCASPubMedPubMed Central Google Scholar
Currie, S., Loughrey, C. M., Craig, M. A. & Smith, G. L. Calcium/calmodulin-dependent protein kinase IIδ associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochem. J.377, 357–366 (2004). ArticleCASPubMedPubMed Central Google Scholar
Meyers, M. B. et al. Association of sorcin with the cardiac ryanodine receptor. J. Biol. Chem.270, 26411–26418 (1995). ArticleCASPubMed Google Scholar
Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y. M. & Jones, L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem.272, 23389–23397 (1997). Study establishing the binding of several proteins in the sarcoplasmic reticulum to the luminal side of the ryanodine receptor. ArticleCASPubMed Google Scholar
Flucher, B. E. et al. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. J. Cell. Biol.123, 1161–1174 (1993). ArticleCASPubMed Google Scholar
Collins, J., Tarcsafalvi, A. & Ikemoto, N. Identification of a region of calsequestrin that binds to the junctional face membrane of sarcoplasmic reticulum. Biochem. Biophys. Res. Commun.167, 189–193 (1990). ArticleCASPubMed Google Scholar
Viatchenko-Karpinski, S. et al. Abnormal calcium signaling and sudden cardiac death associated with mutation of calsequestrin. Circ. Res.94, 471–477 (2004). ArticleCASPubMed Google Scholar
Wehrens, X. H. et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell113, 829–840 (2003). ArticleCASPubMed Google Scholar
Marx, S. O., Ondrias, K. & Marks, A. R. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science281, 818–821 (1998). ArticleCASPubMed Google Scholar
Gaburjakova, M. et al. FKBP12 binding modulates ryanodine receptor channel gating. J. Biol. Chem.276, 16931–16935 (2001). ArticleCASPubMed Google Scholar
Hain, J., Onoue, H., Mayrleitner, M., Fleischer, S. & Schindler, H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J. Biol. Chem.270, 2074–2081 (1995). ArticleCASPubMed Google Scholar
Valdivia, H. H., Kaplan, J. H., Ellis-Davies, G. C. & Lederer, W. J. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science267, 1997–2000 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lokuta, A. J., Rogers, T. B., Lederer, W. J. & Valdivia, H. H. Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism. J. Phys.487, 609–622 (1995). CAS Google Scholar
Sonnleitner, A., Fleischer, S. & Schindler, H. Gating of the skeletal calcium release channel by ATP is inhibited by protein phosphatase 1 but not by Mg2+. Cell Calcium21, 283–290 (1997). ArticleCASPubMed Google Scholar
Terentyev, D., Viatchenko-Karpinski, S., Gyorke, I., Terentyeva, R. & Gyorke, S. Protein phosphatases decrease sarcoplasmic reticulum calcium content by stimulating calcium release in cardiac myocytes. J. Physiol.552, 109–118 (2003). ArticleCASPubMedPubMed Central Google Scholar
Beuckelmann, D., Nabauer, M. & Erdmann, E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation85, 1046–1055 (1992). An important paper providing more insight into abnormalities in Ca2+cycling in myocytes isolated from patients with heart failure. ArticleCASPubMed Google Scholar
Beuckelmann, D. J., Nabauer, M., Kruger, C. & Erdmann, E. Altered diastolic Ca handling in human ventricular myocytes from patients with terminal heart failure. Am. Heart J.129, 684–689 (1995). ArticleCASPubMed Google Scholar
Kluger, J., Cody, R. J. & Laragh, J. H. The contributions of sympathetic tone and the renin–angiotensin system to severe chronic congestive heart failure: response to specific inhibitors (prazosin and captopril). Am. J. Cardiol.49, 1667–1674 (1982). ArticleCASPubMed Google Scholar
Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med.311, 819–823 (1984). ArticleCASPubMed Google Scholar
Daaka, Y., Luttrell, L. M. & Lefkowitz, R. J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature390, 88–91 (1997). ArticleCASPubMed Google Scholar
Ungerer, M., Bohm, M., Elce, J. S., Erdmann, E. & Lohse, M. J. Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in failing human heart. Circulation87, 454–463 (1993). ArticleCASPubMed Google Scholar
Chen, X. et al. L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ. Res.91, 517–524 (2002). ArticleCASPubMed Google Scholar
Wei, S. K. et al. Protein kinase A hyperphosphorylation increases basal current but decreases β-adrenergic responsiveness of the sarcolemmal Na+–Ca2+ exchanger in failing pig myocytes. Circ. Res.92, 897–903 (2003). ArticleCASPubMed Google Scholar
Brillantes, A., Allen, P. & Marks, A. Molecular cloning of the human cardiac calcium release channel cDNA: expression studies in end-stage human heart Failure. Circulation84 (Suppl. II), 442 (1991). Google Scholar
Dipla, K., Mattiello, J. A., Margulies, K. B., Jeevanandam, V. & Houser, S. R. The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ. Res.84, 435–444 (1999). ArticleCASPubMed Google Scholar
Lowes, B. D. et al. Myocardial gene expression in dilated cardiomyopathy treated with β-blocking agents. N. Engl. J. Med.346, 1357–1365 (2002). ArticleCASPubMed Google Scholar
Reiken, S. et al. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J. Biol. Chem.278, 444–453 (2003). ArticleCASPubMed Google Scholar
Yano, M. et al. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca2+ leak through ryanodine receptor in heart failure. Circulation102, 2131–2136 (2000). ArticleCASPubMed Google Scholar
MERIT-HF. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet353, 2001–2007 (1999).
Packer, M. et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U. S. Carvedilol Heart Failure Study Group. N. Engl. J. Med.334, 1349–1355 (1996). Landmark randomized controlled clinical trail showing that β-adrenoceptor blockers decrease mortality in patients with heart failure. ArticleCASPubMed Google Scholar
CIBIS-II. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet353, 9–13 (1999).
Reiken, S. et al. Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation107, 2459–2466 (2003). ArticleCASPubMed Google Scholar
Reiken, S. et al. β-adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation104, 2843–2848 (2001). ArticleCASPubMed Google Scholar
Doi, M. et al. Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation105, 1374–1379 (2002). ArticleCASPubMed Google Scholar
Masson, S., Chimenti, S. & Salio, M. CHF-1024, a DA2/α2 agonist, blunts norepinephrine excretion and cardiac fibrosis in pressure overload. Cardiovasc. Drug Ther.15, 131–138 (2001). ArticleCAS Google Scholar
Bayes, M., Rabasseda, X. & Prous, J. R. Gateways to clinical trials. Methods Find. Exp. Clin. Pharmacol.25, 565–597 (2003). CASPubMed Google Scholar
Freedman, N. J. et al. Phosphorylation and desensitization of the human β1-adrenergic receptor. Involvement of G-protein-coupled receptor kinases and cAMP-dependent protein kinase. J. Biol. Chem.270, 17953–17961 (1995). ArticleCASPubMed Google Scholar
Harding, V. B., Jones, L. R., Lefkowitz, R. J., Koch, W. J. & Rockman, H. A. Cardiac β-ARK1 inhibition prolongs survival and augments beta-blocker therapy in a mouse model of severe heart failure. Proc. Natl Acad. Sci. USA98, 5809–5814 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rockman, H. A. et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl Acad. Sci. USA95, 7000–7005 (1998). Experimental study demonstrating the important role of β-adrenoceptor kinase inhibitors as modifiers of β-adrenoceptor signalling in the development of heart failure. ArticleCASPubMedPubMed Central Google Scholar
Gullestad, L. et al. Effect of metoprolol CR/XL on exercise tolerance in chronic heart failure — a substudy to the MERIT-HF trial. Eur. J. Heart Fail.3, 463–468 (2001). ArticleCASPubMed Google Scholar
White, M. et al. Role of β-adrenergic receptor downregulation in the peak exercise response in patients with heart failure due to idiopathic dilated cardiomyopathy. Am. J. Cardiol.76, 1271–1276 (1995). ArticleCASPubMed Google Scholar
Wehrens, X. H. et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science304, 292–296 (2004). ArticleCASPubMed Google Scholar
Kohno, M. et al. A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am. J. Physiol. Heart Circ. Physiol.284, H1035–H1042 (2003). ArticleCASPubMed Google Scholar
Yano, M. et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation107, 477–484 (2003). ArticleCASPubMed Google Scholar
Minamisawa, S. et al. Chronic phospholamban–sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell99, 313–322 (1999). ArticleCASPubMed Google Scholar
Meyer, M. & Dillmann, W. H. Sarcoplasmic reticulum Ca2+-ATPase overexpression by adenovirus mediated gene transfer and in transgenic mice. Cardiovasc. Res.37, 360–366 (1998). ArticleCASPubMed Google Scholar
Ohizumi, Y., Sasaki, N. & Shibusawa, K. Stimulation of sarcoplasmic reticulum Ca2+-ATPase by gingerol analogous. Biol. Pharm. Bull.19, 1377–1379 (1996). ArticleCASPubMed Google Scholar
Berrebi-Bertrand, I., Lahouratete, P. & Lahouratete, V. Mechanisms of action of sarcoplasmic reticulum calcium-uptake activators: discrimination between sarcoplasmic reticulum Ca2+-ATPase and phospholamban interaction. Eur. J. Biochem.247, 801–809 (1997). ArticleCASPubMed Google Scholar
Volders, P. G. et al. Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. Cardiovasc. Res.34, 348–359 (1997). ArticleCASPubMed Google Scholar
Hoshijima, M. et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nature Med.8, 864–871 (2002). ArticleCASPubMed Google Scholar
Iwanaga, Y. et al. Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J. Clin. Invest.113, 727–736 (2004). ArticleCASPubMedPubMed Central Google Scholar
del Monte, F., Harding, S. E., Dec, G. W., Gwathmey, J. K. & Hajjar, R. J. Targeting phospholamban by gene transfer in human heart failure. Circulation105, 904–907 (2002). ArticleCASPubMedPubMed Central Google Scholar
Haghighi, K. et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest.111, 869–876 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bowling, N. et al. Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation99, 384–391 (1999). ArticleCASPubMed Google Scholar
Wang, J., Liu, X., Sentex, E., Takeda, N. & Dhalla, N. S. Increased expression of protein kinase C isoforms in heart failure due to myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.284, H2277–H2287 (2003). ArticleCASPubMed Google Scholar
Hahn, H. S. et al. Protein kinase Cα negatively regulates systolic and diastolic function in pathological hypertrophy. Circ. Res.93, 1111–1119 (2003). ArticleCASPubMed Google Scholar
Vlahos, C. J., McDowell, S. A. & Clerk, A. Kinases as therapeutic targets for heart failure. Nature Rev. Drug Discov.2, 99–113 (2003). ArticleCAS Google Scholar
Mattiello, J. A., Margulies, K. B., Jeevanandam, V. & Houser, S. R. Contribution of reverse-mode sodium–calcium exchange to contractions in failing human left ventricular myocytes. Cardiovasc. Res.37, 424–431 (1998). ArticleCASPubMed Google Scholar
Iwamoto, T., Watano, T. & Shigekawa, M. A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J. Biol. Chem.271, 22391–22397 (1996). ArticleCASPubMed Google Scholar
Hobai, I. A. & O'Rourke, B. Enhanced Ca2+-activated Na+–Ca2+ exchange activity in canine pacing-induced heart failure. Circ. Res.87, 690–698 (2000). ArticleCASPubMed Google Scholar
Shigekawa, M. & Iwamoto, T. Cardiac Na+–Ca2+ exchange: molecular and pharmacological aspects. Circ. Res.88, 864–876 (2001). ArticleCASPubMed Google Scholar
Prestle, J. et al. Overexpression of FK506-binding protein FKBP12.6 in cardiomyocytes reduces ryanodine receptor-mediated Ca2+ leak from the sarcoplasmic reticulum and increases contractility. Circ. Res.88, 188–194 (2001). ArticleCASPubMed Google Scholar
Miyamoto, M. I. et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl Acad. Sci. USA97, 793–798 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ennis, I. L., Li, R. A., Murphy, A. M., Marban, E. & Nuss, H. B. Dual gene therapy with SERCA1 and Kir2.1 abbreviates excitation without suppressing contractility. J. Clin. Invest.109, 393–400 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ji, Y., Loukianov, E., Loukianova, T., Jones, L. R. & Periasamy, M. SERCA1a can functionally substitute for SERCA2a in the heart. Am. J. Physiol.276, H89–H97 (1999). CASPubMed Google Scholar
Magee, W. P. et al. Differing cardioprotective efficacy of the Na+/Ca2+ exchanger inhibitors SEA0400 and KB-R7943. Am. J. Physiol. Heart Circ. Physiol.284, H903–H910 (2003). ArticleCASPubMed Google Scholar
Wehrens, X. H., Vos, M. A., Doevendans, P. A. & Wellens, H. J. Novel insights in the congenital long QT syndrome. Ann. Intern. Med.137, 981–992 (2002). ArticleCASPubMed Google Scholar
Marks, A. R., Priori, S., Memmi, M., Kontula, K. & Laitinen, P. J. Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J. Cell. Physiol.190, 1–6 (2002). ArticleCASPubMed Google Scholar
Leenhardt, A. et al. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation91, 1512–1519 (1995). ArticleCASPubMed Google Scholar
Laitinen, P. J. et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation103, 485–490 (2001). ArticleCASPubMed Google Scholar
Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation103, 196–200 (2001). ArticleCASPubMed Google Scholar
Fisher, J. D., Krikler, D. & Hallidie-Smith, K. A. Familial polymorphic ventricular arrhythmias: a quarter century of successful medical treatment based on serial exercise-pharmacologic testing. J. Am. Coll. Cardiol.34, 2015–2022 (1999). ArticleCASPubMed Google Scholar
Swan, H. et al. Arrhythmic disorder mapped to chromosome 1q42–q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J. Am. Coll. Cardiol.34, 2035–2042 (1999). ArticleCASPubMed Google Scholar
George, C. H., Higgs, G. V. & Lai, F. A. Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes. Circ. Res.93, 531–540 (2003). ArticleCASPubMed Google Scholar
Jiang, D., Xiao, B., Zhang, L. & Chen, S. R. Enhanced basal activity of a cardiac Ca2+ release channel (ryanodine receptor) mutant associated with ventricular tachycardia and sudden death. Circ. Res.91, 218–225 (2002). ArticleCASPubMed Google Scholar
Kaneko, N. New 1,4-benzothiazepine derivative, K201, demonstrates cardioprotective effects against sudden cardiac cell death and intracellular calcium blocking action. Drug Dev. Res.33, 429–438 (1994). ArticleCAS Google Scholar
Kaneko, N., Ago, H., Matsuda, R., Inagaki, E. & Miyano, M. Crystal structure of annexin V with its ligand K-201 as a calcium channel activity inhibitor. J. Mol. Biol.274, 16–20 (1997). ArticleCASPubMed Google Scholar
Kawabata, H., Ryomoto, T. & Ishikawa, K. Effect of a novel cardioprotective agent, JTV-519, on metabolism, contraction and relaxation in the ischemia-reperfused rabbit heart. Jpn Circ. J.64, 772–776 (2000). ArticleCASPubMed Google Scholar
Inagaki, K., Kihara, Y., Izumi, T. & Sasayama, S. The cardioprotective effects of a new 1,4-benzothiazepine derivative, JTV519, on ischemia/reperfusion-induced Ca2+ overload in isolated rat hearts. Cardiovasc. Drugs Ther.14, 489–495 (2000). ArticleCASPubMed Google Scholar
Inagaki, K. et al. Anti-ischemic effect of a novel cardioprotective agent, JTV519, is mediated through specific activation of delta-isoform of protein kinase C in rat ventricular myocardium. Circulation101, 797–804 (2000). ArticleCASPubMed Google Scholar
Ito, K. et al. JTV-519, a novel cardioprotective agent, improves the contractile recovery after ischaemia-reperfusion in coronary perfused guinea-pig ventricular muscles. Br. J. Pharmacol.130, 767–76 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nakaya, H., Furusawa, Y., Ogura, T., Tamagawa, M. & Uemura, H. Inhibitory effects of JTV-519, a novel cardioprotective drug, on potassium currents and experimental atrial fibrillation in guinea-pig hearts. Br. J. Pharmacol.131, 1363–1372 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kumagai, K., Nakashima, H., Gondo, N. & Saku, K. Antiarrhythmic effects of JTV-519, a novel cardioprotective drug, on atrial fibrillation/flutter in a canine sterile pericarditis model. J. Cardiovasc. Electrophysiol.14, 880–884 (2003). ArticlePubMed Google Scholar
Schlotthauer, K. & Bers, D. M. Sarcoplasmic reticulum Ca2+ release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ. Res.87, 774–780 (2000). ArticleCASPubMed Google Scholar