Potential therapeutic uses of BDNF in neurological and psychiatric disorders (original) (raw)
Levi-Montalcini, R. & Hamburger, V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool.116, 321–361 (1951). ArticleCASPubMed Google Scholar
Johnson, E. M. Jr & Tuszynski, M. H. in CNS Regeneration (eds. Kordower, J. H. & Tuszynski, M. H.) 95–144 (Academic Press, San Diego, 2008). Book Google Scholar
Barde, Y. A., Edgar, D. & Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J.1, 549–553 (1982). This landmark article presented the discovery of BDNF. ArticleCASPubMedPubMed Central Google Scholar
Mowla, S. J. et al. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem.276, 12660–12666 (2001). ArticleCASPubMed Google Scholar
Mowla, S. J. et al. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci.19, 2069–2080 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science294, 1945–1948 (2001). ArticleCASPubMed Google Scholar
Nikoletopoulou, V. et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature467, 59–63 (2010). ArticleCASPubMed Google Scholar
Rauskolb, S. et al. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J. Neurosci.30, 1739–1749 (2010). ArticleCASPubMedPubMed Central Google Scholar
Matsumoto, T. et al. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nature Neurosci.11, 131–133 (2008). ArticleCASPubMed Google Scholar
Soppet, D. et al. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell65, 895–903 (1991). ArticleCASPubMed Google Scholar
Carter, B. D. et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science272, 542–545 (1996). ArticleCASPubMed Google Scholar
Tanaka, J. et al. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science319, 1683–1687 (2008). ArticleCASPubMedPubMed Central Google Scholar
Horch, H. W. & Katz, L. C. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nature Neurosci.5, 1177–1184 (2002). ArticleCASPubMed Google Scholar
Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature381, 706–709 (1996). ArticleCASPubMed Google Scholar
Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science267, 1658–1662 (1995). ArticleCASPubMed Google Scholar
Yamada, K., Mizuno, M. & Nabeshima, T. Role for brain-derived neurotrophic factor in learning and memory. Life Sci.70, 735–744 (2002). ArticleCASPubMed Google Scholar
Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell112, 257–269 (2003). An important study that described a Val66MetBDNFgene polymorphism that is associated with memory deficits and altered hippocampal function. ArticleCASPubMed Google Scholar
Cathomas, F., Vogler, C., Euler-Sigmund, J. C., de Quervain, D. J. & Papassotiropoulos, A. Fine-mapping of the brain-derived neurotrophic factor (BDNF) gene supports an association of the Val66Met polymorphism with episodic memory. Int. J. Neuropsychopharmacol.13, 975–980 (2010). ArticleCASPubMed Google Scholar
Xu, B. et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neurosci.6, 736–742 (2003). ArticleCASPubMed Google Scholar
Cao, L. et al. Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nature Med.15, 447–454 (2009). This study used gene delivery techniques to control BDNF expression in an animal model of obesity. ArticleCASPubMed Google Scholar
Nagahara, A. H. et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nature Med.15, 331–337 (2009). This article demonstrated the therapeutic effects of BDNF in six animal models of Alzheimer's disease, ranging from mouse models to non-human primate models. ArticleCASPubMed Google Scholar
Smith, D. E., Roberts, J., Gage, F. H. & Tuszynski, M. H. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc. Natl Acad. Sci. USA96, 10893–10898 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kordower, J. H. et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science290, 767–773 (2000). ArticleCASPubMed Google Scholar
Tuszynski, M. H. et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Med.11, 551–555 (2005). A report on the first clinical trial of growth factor gene therapy in a human neurodegenerative disorder: Alzheimer's disease. ArticleCASPubMed Google Scholar
Bradley, W. G. A phase I/II study of recombinant brain-derived neurotrophic factor in patients with ALS. Ann. Neurol.38, 971 (1995). Article Google Scholar
Apfel, S. C. et al. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology51, 695–702 (1998). ArticleCASPubMed Google Scholar
Kordower, J. H. et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann. Neurol.46, 419–424 (1999). ArticleCASPubMed Google Scholar
Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.)82, 239–259 (1991). ArticleCAS Google Scholar
Kordower, J. H. et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann. Neurol.49, 202–213 (2001). ArticleCASPubMed Google Scholar
Masliah, E. et al. Synaptic and neuritic alterations during the progression of Alzheimer's disease. Neurosci. Lett.174, 67–72 (1994). ArticleCASPubMed Google Scholar
Yan, Q. et al. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience78, 431–448 (1997). ArticleCASPubMed Google Scholar
Altar, C. A. et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature389, 856–860 (1997). ArticleCASPubMed Google Scholar
Kovalchuk, Y., Hanse, E., Kafitz, K. W. & Konnerth, A. Postsynaptic induction of BDNF-mediated long-term potentiation. Science295, 1729–1734 (2002). ArticleCASPubMed Google Scholar
Connor, B. et al. Brain-derived neurotrophic factor is reduced in Alzheimer's disease. Brain Res. Mol. Brain Res.49, 71–81 (1997). ArticleCASPubMed Google Scholar
Hock, C., Heese, K., Hulette, C., Rosenberg, C. & Otten, U. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch. Neurol.57, 846–851 (2000). ArticleCASPubMed Google Scholar
Narisawa-Saito, M., Wakabayashi, K., Tsuji, S., Takahashi, H. & Nawa, H. Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer's disease. Neuroreport7, 2925–2928 (1996). ArticleCASPubMed Google Scholar
Mucke, L. et al. High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci.20, 4050–4058 (2000). ArticleCASPubMedPubMed Central Google Scholar
Burbach, G. J. et al. Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J. Neurosci.24, 2421–2430 (2004). ArticleCASPubMedPubMed Central Google Scholar
Blurton-Jones, M. et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl Acad. Sci. USA106, 13594–13599 (2009). An important paper indicating that BDNF that is secreted by transplanted embryonic stem cells exerts therapeutic effects in a mouse model of Alzheimer's disease. ArticleCASPubMedPubMed Central Google Scholar
Olanow, C. W. & Tatton, W. G. Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci.22, 123–144 (1999). ArticleCASPubMed Google Scholar
Hyman, C. et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature350, 230–232 (1991). ArticleCASPubMed Google Scholar
Mogi, M. et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci. Lett.270, 45–48 (1999). ArticleCASPubMed Google Scholar
Parain, K. et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. Neuroreport10, 557–561 (1999). ArticleCASPubMed Google Scholar
Levivier, M., Przedborski, S., Bencsics, C. & Kang, U. J. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson's disease. J. Neurosci.15, 7810–7820 (1995). ArticleCASPubMedPubMed Central Google Scholar
Frim, D. M. et al. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc. Natl Acad. Sci. USA91, 5104–5108 (1994). ArticleCASPubMedPubMed Central Google Scholar
Tsukahara, T., Takeda, M., Shimohama, S., Ohara, O. & Hashimoto, N. Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- induced parkinsonism in monkeys. Neurosurgery37, 733–741 (1995). ArticleCASPubMed Google Scholar
Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci.30, 575–621 (2007). ArticleCASPubMed Google Scholar
Zuccato, C. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science293, 493–498 (2001). ArticleCASPubMed Google Scholar
Baquet, Z. C., Gorski, J. A. & Jones, K. R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci.24, 4250–4258 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell118, 127–138 (2004). ArticleCASPubMed Google Scholar
Strand, A. D. et al. Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J. Neurosci.27, 11758–11768 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zala, D. et al. Progressive and selective striatal degeneration in primary neuronal cultures using lentiviral vector coding for a mutant huntingtin fragment. Neurobiol. Dis.20, 785–798 (2005). ArticleCASPubMed Google Scholar
Canals, J. M. et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. J. Neurosci.24, 7727–7739 (2004). ArticleCASPubMedPubMed Central Google Scholar
Simmons, D. A. et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. Proc. Natl Acad. Sci. USA106, 4906–4911 (2009). This article reported that ampakines increase BDNF expression in the brain and reduce deficits in a transgenic mouse model of Huntington's disease. ArticlePubMedPubMed Central Google Scholar
Kells, A. P., Henry, R. A. & Connor, B. AAV–BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment. Gene Ther.15, 966–977 (2008). ArticleCASPubMed Google Scholar
Kaplan, D. R. & Miller, F. D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol.10, 381–391 (2000). ArticleCASPubMed Google Scholar
Tuszynski, M. H., Mafong, E. & Meyer, S. BDNF and NT-4/5 prevent injury-induced motor neuron degeneration in the adult central nervous system. Neuroscience71, 761–771 (1996). ArticleCASPubMed Google Scholar
Giehl, K. M. & Tetzlaff, W. BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur. J. Neurosci.8, 1167–1175 (1996). ArticleCASPubMed Google Scholar
Mitsumoto, H. et al. Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science265, 1107–1110 (1994). ArticleCASPubMed Google Scholar
[No authors listed.] A controlled trial of recombinant methionyl human BDNF in ALS: the BDNF study group (Phase III). Neurology52, 1427–1433 (1999). This was a major report on a Phase III multicentre trial of BDNF protein administration in a neurodegenerative disease: ALS.
Beck, M. et al. Autonomic dysfunction in ALS: a preliminary study on the effects of intrathecal BDNF. Amyotroph. Lateral Scler. Other Motor Neuron Disord.6, 100–103 (2005). ArticleCASPubMed Google Scholar
Ochs, G. et al. A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord.1, 201–206 (2000). ArticleCASPubMed Google Scholar
Ankeny, D. P. et al. Pegylated brain-derived neurotrophic factor shows improved distribution into the spinal cord and stimulates locomotor activity and morphological changes after injury. Exp. Neurol.170, 85–100 (2001). ArticleCASPubMed Google Scholar
Pardridge, W. M., Wu, D. & Sakane, T. Combined use of carboxyl-directed protein pegylation and vector-mediated blood–brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm. Res.15, 576–582 (1998). ArticleCASPubMed Google Scholar
Ferrer, I. et al. Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol.101, 229–238 (2001). CASPubMed Google Scholar
Muller, H. D. et al. Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke39, 1012–1021 (2008). ArticleCASPubMed Google Scholar
Larsson, E., Nanobashvili, A., Kokaia, Z. & Lindvall, O. Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats. J. Cereb. Blood Flow Metab.19, 1220–1228 (1999). ArticleCASPubMed Google Scholar
Gordon, T., Sulaiman, O. & Boyd, J. G. Experimental strategies to promote functional recovery after peripheral nerve injuries. J. Peripher. Nerv. Syst.8, 236–250 (2003). ArticlePubMed Google Scholar
Tobias, C. A. et al. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp. Neurol.184, 97–113 (2003). ArticleCASPubMed Google Scholar
Blesch, A. & Tuszynski, M. H. Transient growth factor delivery sustains regenerated axons after spinal cord injury. J. Neurosci.27, 10535–10545 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lu, P., Blesch, A. & Tuszynski, M. H. Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J. Comp. Neurol.436, 456–470 (2001). ArticleCASPubMed Google Scholar
Stokols, S. & Tuszynski, M. H. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials27, 443–451 (2006). ArticleCASPubMed Google Scholar
Blesch, A. & Tuszynski, M. H. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci.32, 41–47 (2009). ArticleCASPubMed Google Scholar
Alto, L. T. et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nature Neurosci.12, 1106–1113 (2009). ArticleCASPubMed Google Scholar
Hollis, E. R., Jamshidi, P., Low, K., Blesch, A. & Tuszynski, M. H. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc. Natl Acad. Sci. USA106, 7215–7220 (2009). ArticlePubMedPubMed Central Google Scholar
Plunet, W. T. et al. Dietary restriction started after spinal cord injury improves functional recovery. Exp. Neurol.213, 28–35 (2008). ArticlePubMed Google Scholar
Ying, Z. et al. BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats. Neuroscience155, 1070–1078 (2008). ArticleCASPubMed Google Scholar
Schumacher, J. et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol. Psychiatry58, 307–314 (2005). ArticleCASPubMed Google Scholar
Post, R. M. Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. J. Psychiatr. Res.41, 979–990 (2007). ArticlePubMed Google Scholar
Kato, M. & Serretti, A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol. Psychiatry15, 473–500 (2010). ArticleCASPubMed Google Scholar
Campbell, S., Marriott, M., Nahmias, C. & MacQueen, G. M. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am. J. Psychiatry161, 598–607 (2004). ArticlePubMed Google Scholar
Dwivedi, Y. et al. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch. Gen. Psychiatry60, 804–815 (2003). ArticleCASPubMed Google Scholar
Brunoni, A. R., Lopes, M. & Fregni, F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int. J. Neuropsychopharmacol.11, 1169–1180 (2008). ArticleCASPubMed Google Scholar
Vermetten, E., Vythilingam, M., Southwick, S. M., Charney, D. S. & Bremner, J. D. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol. Psychiatry54, 693–702 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sen, S., Duman, R. & Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol. Psychiatry64, 527–532 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, E. et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry54, 70–75 (2003). ArticleCASPubMed Google Scholar
Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F. & Young, L. T. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry50, 260–265 (2001). ArticleCASPubMed Google Scholar
Cotman, C. W. & Berchtold, N. C. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci.25, 295–301 (2002). ArticleCASPubMed Google Scholar
Neeper, S. A., Gomez-Pinilla, F., Choi, J. & Cotman, C. W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res.726, 49–56 (1996). ArticleCASPubMed Google Scholar
Fuss, J. et al. Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis. Hippocampus20, 364–376 (2010). PubMed Google Scholar
Shimizu, E., Hashimoto, K. & Iyo, M. Ethnic difference of the BDNF 196G/A (val166met) polymorphism frequencies: the possibility to explain ethnic mental traits. Am. J. Med. Genet. B Neuropsychiatr. Genet.126B, 122–123 (2004). ArticlePubMed Google Scholar
Dempster, E. et al. Association between BDNF val66 met genotype and episodic memory. Am. J. Med. Genet. B Neuropsychiatr. Genet.134B, 73–75 (2005). ArticlePubMed Google Scholar
Hariri, A. R. et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci.23, 6690–6694 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pezawas, L. et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci.24, 10099–10102 (2004). ArticleCASPubMedPubMed Central Google Scholar
Erickson, K. I. et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J. Neurosci.30, 5368–5375 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rybakowski, J. K. BDNF gene: functional Val66Met polymorphism in mood disorders and schizophrenia. Pharmacogenomics9, 1589–1593 (2008). ArticleCASPubMed Google Scholar
Sugiyama, N., Kanba, S. & Arita, J. Temporal changes in the expression of brain-derived neurotrophic factor mRNA in the ventromedial nucleus of the hypothalamus of the developing rat brain. Brain Res. Mol. Brain Res.115, 69–77 (2003). ArticleCASPubMed Google Scholar
Pelleymounter, M. A., Cullen, M. J. & Wellman, C. L. Characteristics of BDNF-induced weight loss. Exp. Neurol.131, 229–238 (1995). ArticleCASPubMed Google Scholar
Fox, E. A. & Byerly, M. S. A mechanism underlying mature-onset obesity: evidence from the hyperphagic phenotype of brain-derived neurotrophic factor mutants. Am. J. Physiol. Regul. Integr. Comp. Physiol.286, R994–R1004 (2004). ArticleCASPubMed Google Scholar
Rios, M. et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol.15, 1748–1757 (2001). ArticleCASPubMed Google Scholar
Gray, J. et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes55, 3366–3371 (2006). ArticleCASPubMed Google Scholar
Yeo, G. S. et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neurosci.7, 1187–1189 (2004). ArticleCASPubMed Google Scholar
Tonra, J. R. et al. Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Leprdb/leprdb mice. Diabetes48, 588–594 (1999). ArticleCASPubMed Google Scholar
Ono, M. et al. Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice. Metabolism49, 129–133 (2000). ArticleCASPubMed Google Scholar
Fujinami, A. et al. Serum brain-derived neurotrophic factor in patients with type 2 diabetes mellitus: relationship to glucose metabolism and biomarkers of insulin resistance. Clin. Biochem.41, 812–817 (2008). ArticleCASPubMed Google Scholar
Winkler, J. et al. Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann. Neurol.41, 82–93 (1997). ArticleCASPubMed Google Scholar
Williams, L. R. Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp. Neurol.113, 31–37 (1991). ArticleCASPubMed Google Scholar
Eriksdotter Jonhagen, M. et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord.9, 246–257 (1998). ArticleCASPubMed Google Scholar
Isaacson, L. G., Saffran, B. N. & Crutcher, K. A. Intracerebral NGF infusion induces hyperinnervation of cerebral blood vessels. Neurobiol. Aging11, 51–55 (1990). ArticleCASPubMed Google Scholar
Nutt, J. G. et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology60, 69–73 (2003). ArticleCASPubMed Google Scholar
Lang, A. E. et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol.59, 459–466 (2006). ArticleCASPubMed Google Scholar
Hovland, D. N. Jr et al. Six-month continuous intraputamenal infusion toxicity study of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF in rhesus monkeys. Toxicol. Pathol.35, 1013–1029 (2007). ArticleCASPubMed Google Scholar
Gasmi, M. et al. Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson's disease. Mol. Ther.15, 62–68 (2007). ArticleCASPubMed Google Scholar
Feigin, A. et al. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson's disease. Proc. Natl Acad. Sci. USA104, 19559–19564 (2007). ArticlePubMedPubMed Central Google Scholar
Marks, W. J. Jr et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial. Lancet Neurol.7, 400–408 (2008). This article reported the results of gene delivery of the growth factor neurturin in a clinical trial of Parkinson's disease. ArticlePubMed Google Scholar
Worgall, S. et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum. Gene Ther.19, 463–474 (2008). ArticleCASPubMed Google Scholar
Marks, W. J. Jr et al. Gene delivery of AAV2–neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol.9, 1164–1172 (2010). ArticleCASPubMed Google Scholar
Herzog, C. D. et al. Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support cere-120 for Parkinson's disease. Neurosurgery64, 602–613 (2009). ArticlePubMed Google Scholar
Fiandaca, M. S. et al. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage47 (Suppl. 2), 27–35 (2009). Article Google Scholar
Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science302, 890–893 (2003). ArticleCASPubMed Google Scholar
Roth, T. L., Lubin, F. D., Funk, A. J. & Sweatt, J. D. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry65, 760–769 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lubin, F. D., Roth, T. L. & Sweatt, J. D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci.28, 10576–10586 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ma, D. K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science323, 1074–1077 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neurosci.9, 519–525 (2006). ArticleCASPubMed Google Scholar
Young, W. Review of lithium effects on brain and blood. 18, 951–975 Cell Transplant. (2009). ArticlePubMed Google Scholar
Drzyzga, L. R., Marcinowska, A. & Obuchowicz, E. Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res. Bull.79, 248–257 (2009). ArticleCASPubMed Google Scholar
Quiroz, J. A., Machado-Vieira, R., Zarate, C. A. Jr & Manji, H. K. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology62, 50–60 (2010). ArticleCASPubMedPubMed Central Google Scholar
Leyhe, T. et al. Increase of BDNF serum concentration in lithium treated patients with early Alzheimer's disease. J. Alzheimers Dis.16, 649–656 (2009). ArticleCASPubMed Google Scholar
Adessi, C. & Soto, C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr. Med. Chem.9, 963–978 (2002). ArticleCASPubMed Google Scholar
O'Leary, P. D. & Hughes, R. A. Design of potent peptide mimetics of brain-derived neurotrophic factor. J. Biol. Chem.278, 25738–25744 (2003). ArticleCASPubMed Google Scholar
Longo, F. M. et al. Small molecule neurotrophin receptor ligands: novel strategies for targeting Alzheimer's disease mechanisms. Curr. Alzheimer Res.4, 503–506 (2007). ArticleCASPubMed Google Scholar
Price, R. D., Milne, S. A., Sharkey, J. & Matsuoka, N. Advances in small molecules promoting neurotrophic function. Pharmacol. Ther.115, 292–306 (2007). ArticleCASPubMed Google Scholar
Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci.20, 2580–2590 (2004). ArticlePubMed Google Scholar
Lee, J., Duan, W., Long, J. M., Ingram, D. K. & Mattson, M. P. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J. Mol. Neurosci.15, 99–108 (2000). ArticleCASPubMed Google Scholar
Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K. & Gomez-Pinilla, F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience112, 803–814 (2002). ArticleCASPubMed Google Scholar
Maswood, N. et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc. Natl Acad. Sci. USA101, 18171–18176 (2004). ArticleCASPubMedPubMed Central Google Scholar
Duan, W. & Mattson, M. P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res.57, 195–206 (1999). ArticleCASPubMed Google Scholar
Duan, W., Guo, Z., Jiang, H., Ware, M. & Mattson, M. P. Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology144, 2446–2453 (2003). ArticleCASPubMed Google Scholar
Pang, T. Y., Stam, N. C., Nithianantharajah, J., Howard, M. L. & Hannan, A. J. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice. Neuroscience141, 569–584 (2006). ArticleCASPubMed Google Scholar
Nichol, K., Deeny, S. P., Seif, J., Camaclang, K. & Cotman, C. W. Exercise improves cognition and hippocampal plasticity in APOE ɛ4 mice. Alzheimers Dement.5, 287–294 (2009). ArticleCASPubMedPubMed Central Google Scholar
Goverdhana, S. et al. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol. Ther.12, 189–211 (2005). ArticleCASPubMed Google Scholar
Su, X. et al. Real-time MR imaging with gadoteridol predicts distribution of transgenes after convection-enhanced delivery of AAV2 vectors. Mol. Ther.18, 1490–1495 (2010). ArticleCASPubMedPubMed Central Google Scholar
Massa, S. M. et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest.120, 1774–1785 (2010). A recent study that revealed the potential effects of small peptide mimetics of BDNF in neurodegenerative disease models. ArticleCASPubMedPubMed Central Google Scholar
Yan, Q. et al. Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J. Comp. Neurol.378, 135–157 (1997). ArticleCASPubMed Google Scholar
Lu, B., Buck, C. R., Dreyfus, C. F. & Black, I. B. Expression of NGF and NGF receptor mRNAs in the developing brain: evidence for local delivery and action of NGF. Exp. Neurol.104, 191–199 (1989). ArticleCASPubMed Google Scholar
Koshimizu, H., Hazama, S., Hara, T., Ogura, A. & Kojima, M. Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. Neurosci. Lett.473, 229–232 (2010). ArticleCASPubMed Google Scholar
Armanini, M. P., McMahon, S. B., Sutherland, J., Shelton, D. L. & Phillips, H. S. Truncated and catalytic isoforms of trkB are co-expressed in neurons of rat and mouse CNS. Eur. J. Neurosci.7, 1403–1409 (1995). ArticleCASPubMed Google Scholar
Ohira, K. et al. Truncated TrkB-T1 regulates the morphology of neocortical layer I astrocytes in adult rat brain slices. Eur. J. Neurosci.25, 406–416 (2007). ArticlePubMed Google Scholar
Huang, E. J. & Reichardt, L. F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem.72, 609–642 (2003). ArticleCASPubMed Google Scholar
Zheng, J. et al. Clathrin-dependent endocytosis is required for TrkB-dependent Akt-mediated neuronal protection and dendritic growth. J. Biol. Chem.283, 13280–13288 (2008). ArticleCASPubMed Google Scholar
Howe, C. L., Valletta, J. S., Rusnak, A. S. & Mobley, W. C. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras–MAPK pathway. Neuron32, 801–814 (2001). ArticleCASPubMed Google Scholar
Kafitz, K. W., Rose, C. R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature401, 918–921 (1999). ArticleCASPubMed Google Scholar
Blum, R., Kafitz, K. W. & Konnerth, A. Neurotrophin-evoked depolarization requires the sodium channel NaV1.9. Nature419, 687–693 (2002). ArticleCASPubMed Google Scholar
Tuszynski, M. H. Growth factor gene delivery: animal models to clinical trials. Dev. Neurobiol.67, 1204–1215 (2007). ArticleCASPubMed Google Scholar
Hadaczek, P. et al. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2–hAADC. Mol. Ther.18, 1458–1461 (2010). ArticleCASPubMedPubMed Central Google Scholar
Forsayeth, J. R. et al. A dose-ranging study of AAV–hAADC therapy in Parkinsonian monkeys. Mol. Ther.14, 571–577 (2006). ArticleCASPubMed Google Scholar
Sanftner, L. M. et al. AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp. Neurol.194, 476–483 (2005). ArticleCASPubMed Google Scholar
Tenenbaum, L. et al. Recombinant AAV-mediated gene delivery to the central nervous system. J. Gene Med.6 (Suppl. 1), 212–222 (2004). ArticleCAS Google Scholar
Graham, L. D. Ecdysone-controlled expression of transgenes. Expert Opin. Biol. Ther.2, 525–535 (2002). ArticleCASPubMed Google Scholar
Blesch, A. et al. Regulated lentiviral NGF gene transfer controls rescue of medial septal cholinergic neurons. Mol. Ther.11, 916–925 (2005). ArticleCASPubMed Google Scholar