Advances in the preclinical testing of cancer therapeutic hypotheses (original) (raw)
Hudson, T. J. et al. International network of cancer genome projects. Nature464, 993–998 (2010). ArticleCASPubMed Google Scholar
Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res.56, 100–104 (1996). CASPubMed Google Scholar
Miller-Moslin, K. et al. 1-amino-4-benzylphthalazines as orally bioavailable smoothened antagonists with antitumor activity. J. Med. Chem.52, 3954–3968 (2009). ArticleCASPubMed Google Scholar
Robarge, K. D. et al. GDC-0449 — a potent inhibitor of the hedgehog pathway. Bioorg. Med. Chem. Lett.19, 5576–5581 (2009). ArticleCASPubMed Google Scholar
Barrie, S. E. et al. Pharmacology of novel steroidal inhibitors of cytochrome P45017α (17 alpha-hydroxylase/C17–20 lyase). J. Steroid Biochem. Mol. Biol.50, 267–273 (1994). ArticleCASPubMed Google Scholar
Bhatnagar, A. S., Hausler, A., Schieweck, K., Lang, M. & Bowman, R. Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol.37, 1021–1027 (1990). ArticleCASPubMed Google Scholar
Plourde, P. V., Dyroff, M. & Dukes, M. Arimidex: a potent and selective fourth-generation aromatase inhibitor. Breast Cancer Res. Treat.30, 103–111 (1994). ArticleCASPubMed Google Scholar
Sasai, K. et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res.66, 4215–4222 (2006). ArticleCASPubMed Google Scholar
Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science317, 337 (2007). ArticleCASPubMed Google Scholar
Chabner, B. A. & Roberts, T. G. Jr. Chemotherapy and the war on cancer. Nature Rev. Cancer5, 65–72 (2005). ArticleCAS Google Scholar
DeVita, V. T. Jr & Chu, E. A history of cancer chemotherapy. Cancer Res.68, 8643–8653 (2008). ArticleCASPubMed Google Scholar
Gilman, A. & Philips, F. S. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science103, 409–436 (1946). ArticleCASPubMed Google Scholar
Goodman, L. S. et al. Nitrogen mustard therapy; use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA132, 126–132 (1946). ArticleCAS Google Scholar
Rutman, R. J., Cantarow, A. & Paschkis, K. E. Studies in 2-acetylaminofluorene carcinogenesis. III. The utilization of uracil-2-C14 by preneoplastic rat liver and rat hepatoma. Cancer Res.14, 119–123 (1954). CASPubMed Google Scholar
Heidelberger, C. et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature179, 663–666 (1957). ArticleCASPubMed Google Scholar
Fantini, A., Moser, L., Partridge, R. & Halliday, J. L. The effect of actinomycin D on several mouse tumors. Proc. Am. Assoc. Cancer Res.2, 108 (1956). Google Scholar
Farber, S. Carcinolytic action of antibiotics: puromycin and actinomycin D. Am. J. Pathol.31, 582 (1955). Google Scholar
Gregory, F. J., Hata, T., Pugh, L. H. & Thielen, R. The effect of actinomycin D on experimental ascitic tumors in the mouse. Cancer Res.16, 985–987 (1956). CASPubMed Google Scholar
Johnson, I. S., Armstrong, J. G., Gorman, M. & Burnett, J. P. Jr. The vinca alkaloids: a new class of oncolytic agents. Cancer Res.23, 1390–1427 (1963). CASPubMed Google Scholar
Pinkel, D. Actinomycin D in childhood cancer; a preliminary report. Pediatrics23, 342–347 (1959). ArticleCASPubMed Google Scholar
Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nature Rev. Cancer6, 813–823 (2006). ArticleCAS Google Scholar
Holbeck, S. L., Collins, J. M. & Doroshow, J. H. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther.9, 1451–1460 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bussey, K. J. et al. Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Mol. Cancer Ther.5, 853–867 (2006). ArticleCASPubMedPubMed Central Google Scholar
Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436, 117–122 (2005). ArticleCASPubMed Google Scholar
Ma, Y. et al. Predicting cancer drug response by proteomic profiling. Clin. Cancer Res.12, 4583–4589 (2006). ArticleCASPubMed Google Scholar
Ring, B. Z., Chang, S., Ring, L. W., Seitz, R. S. & Ross, D. T. Gene expression patterns within cell lines are predictive of chemosensitivity. BMC Genomics9, 74 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet.24, 227–235 (2000). ArticleCASPubMed Google Scholar
Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet.24, 236–244 (2000). ArticleCASPubMed Google Scholar
Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature439, 358–362 (2006). ArticleCASPubMed Google Scholar
Weinstein, J. N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science275, 343–349 (1997). ArticleCASPubMed Google Scholar
Bai, R. L. et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem.266, 15882–15889 (1991). ArticleCASPubMed Google Scholar
Leteurtre, F., Kohlhagen, G., Paull, K. D. & Pommier, Y. Topoisomerase II inhibition and cytotoxicity of the anthrapyrazoles DuP 937 and DuP 941 (Losoxantrone) in the National Cancer Institute preclinical antitumor drug discovery screen. J. Natl Cancer Inst.86, 1239–1244 (1994). ArticleCASPubMed Google Scholar
Solary, E. et al. Dual inhibition of topoisomerase II and tubulin polymerization by azatoxin, a novel cytotoxic agent. Biochem. Pharmacol.45, 2449–2456 (1993). ArticleCASPubMed Google Scholar
Zhao, X. et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res.65, 5561–5570 (2005). ArticleCASPubMed Google Scholar
Rodig, S. J. et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin. Cancer Res.15, 5216–5223 (2009). ArticleCASPubMedPubMed Central Google Scholar
Soda, M. et al. Identification of the transforming EML4_–_ALK fusion gene in non-small-cell lung cancer. Nature448, 561–566 (2007). ArticleCASPubMed Google Scholar
McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res.68, 3389–3395 (2008). ArticleCASPubMed Google Scholar
McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA104, 19936–19941 (2007). ArticleCASPubMedPubMed Central Google Scholar
Shaw, A. T. et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4–ALK. J. Clin. Oncol.27, 4247–4253 (2009). ArticleCASPubMedPubMed Central Google Scholar
Koivunen, J. P. et al. EML4_–_ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res.14, 4275–4283 (2008). ArticleCASPubMedPubMed Central Google Scholar
Dry, J. R. et al. Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res.70, 2264–2273 (2010). ArticleCASPubMedPubMed Central Google Scholar
Greshock, J. et al. Molecular target class is predictive of in vitro response profile. Cancer Res.70, 3677–3686 (2010). ArticleCASPubMed Google Scholar
Lin, W. M. et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res.68, 664–673 (2008). ArticleCASPubMed Google Scholar
Sos, M. L. et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J. Clin. Invest.119, 1727–1740 (2009). ArticleCASPubMedPubMed Central Google Scholar
Davies, B. R. et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol. Cancer Ther.6, 2209–2219 (2007). ArticleCASPubMed Google Scholar
Yeh, J. J. et al. KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol. Cancer Ther.8, 834–843 (2009). ArticleCASPubMedPubMed Central Google Scholar
Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med.14, 1351–1356 (2008). ArticleCASPubMed Google Scholar
Wee, S. et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res.69, 4286–4293 (2009). ArticleCASPubMed Google Scholar
Sos, M. L. et al. Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc. Natl Acad. Sci. USA106, 18351–18356 (2009). ArticleCASPubMedPubMed Central Google Scholar
Engelman, J. A. & Janne, P. A. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res.14, 2895–2899 (2008). ArticlePubMed Google Scholar
Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.352, 786–792 (2005). ArticleCASPubMed Google Scholar
Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med.2, e73 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science316, 1039–1043 (2007). ArticleCASPubMed Google Scholar
Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA104, 20007–20012 (2007). ArticleCASPubMedPubMed Central Google Scholar
Li, A. et al. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol. Cancer Res.6, 21–30 (2008). ArticleCASPubMed Google Scholar
Wakimoto, H. et al. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res.69, 3472–3481 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ellis, W. J. et al. Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin. Cancer Res.2, 1039–1048 (1996). CASPubMed Google Scholar
Klein, K. A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nature Med.3, 402–408 (1997). ArticleCASPubMed Google Scholar
Korenchuk, S. et al. VCaP, a cell-based model system of human prostate cancer. In Vivo15, 163–168 (2001). CASPubMed Google Scholar
Lee, Y. G. et al. Establishment and characterization of a new human prostatic cancer cell line: DuCaP. In Vivo15, 157–162 (2001). CASPubMed Google Scholar
Wainstein, M. A. et al. CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res.54, 6049–6052 (1994). CASPubMed Google Scholar
Rong, S. et al. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol. Cell Biol.12, 5152–5158 (1992). CASPubMedPubMed Central Google Scholar
Tian, H. et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc. Natl Acad. Sci. USA106, 4254–4259 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature455, 406–410 (2008). ArticleCASPubMed Google Scholar
Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov.5, 741–754 (2006). ArticleCAS Google Scholar
Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science324, 1457–1461 (2009). ArticleCASPubMedPubMed Central Google Scholar
Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med.2, 51ra70 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Zhou, Y. et al. Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nature Biotech.28, 71–78 (2010). ArticleCAS Google Scholar
Kinzler, K. W. & Vogelstein, B. Landscaping the cancer terrain. Science280, 1036–1037 (1998). ArticleCASPubMed Google Scholar
Kaiser, J. Cancer research. Looking for a target on every tumor. Science326, 218–220 (2009). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1031–1037 (2001). ArticleCASPubMed Google Scholar
Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature467, 596–599 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vogel, C. L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol.20, 719–726 (2002). ArticleCASPubMed Google Scholar
Fremin, C. & Meloche, S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J. Hematol. Oncol.3, 8 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Baum, M. et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet359, 2131–2139 (2002). ArticleCASPubMed Google Scholar
Danila, D. C. et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J. Clin. Oncol.28, 1496–1501 (2010). ArticleCASPubMedPubMed Central Google Scholar
Reid, A. H. et al. Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J. Clin. Oncol.28, 1489–1495 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ryan, C. J. et al. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. J. Clin. Oncol.28, 1481–1488 (2010). ArticleCASPubMedPubMed Central Google Scholar
Drew, Y. & Plummer, R. PARP inhibitors in cancer therapy: two modes of attack on the cancer cell widening the clinical applications. Drug Resist. Updat.12, 153–156 (2009). ArticleCASPubMed Google Scholar