Condensin and cohesin: more than chromosome compactor and glue (original) (raw)

References

  1. Cobbe, N. & Heck, M. M. SMCs in the world of chromosome biology — from prokaryotes to higher eukaryotes. J. Struct. Biol. 129, 123–143 (2000).
    CAS PubMed Google Scholar
  2. Hirano, T. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 16, 399–414 (2002).
    Article CAS PubMed Google Scholar
  3. Jessberger, R. The many functions of SMC proteins in chromosome dynamics. Nature Rev. Mol. Cell Biol. 3, 767–778 (2002).
    CAS Google Scholar
  4. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).
    CAS PubMed Google Scholar
  5. Lee, J. Y. & Orr-Weaver, T. L. The molecular basis of sister-chromatid cohesion. Annu. Rev. Cell Dev. Biol. 17, 753–777 (2001).
    CAS PubMed Google Scholar
  6. Hirano, T. Chromosome cohesion, condensation, and separation. Annu. Rev. Biochem. 69, 115–144 (2000).
    CAS PubMed Google Scholar
  7. Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).
    CAS PubMed PubMed Central Google Scholar
  8. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997). References 7 and 8 describe the initial genetic screens that identified subunits of cohesin and provided the first description of their function.
    CAS PubMed Google Scholar
  9. Toth, A. et al. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320–333 (1999).
    CAS PubMed PubMed Central Google Scholar
  10. Tomonaga, T. et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev. 14, 2757–2770 (2000).
    CAS PubMed PubMed Central Google Scholar
  11. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999). This paper identifies the cohesin subunit that is proteolytically cleaved at anaphase and provides a mechanistic explanation for the release of cohesion and separation of sister chromatids.
    CAS PubMed Google Scholar
  12. Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).
    CAS PubMed Google Scholar
  13. Rogers, E., Bishop, J. D., Waddle, J. A., Schumacher, J. M. & Lin, R. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol. 157, 219–229 (2002).
    CAS PubMed PubMed Central Google Scholar
  14. Saka, Y. et al. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J. 13, 4938–4952 (1994).
    CAS PubMed PubMed Central Google Scholar
  15. Hirano, T. & Mitchison, T. J. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79, 449–458 (1994).
    CAS PubMed Google Scholar
  16. Hirano, T., Kobayashi, R. & Hirano, M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511–521 (1997). References 15 and 16 show that SMC proteins are required for chromosome condensation and the biochemical identification of the condensin complex.
    CAS PubMed Google Scholar
  17. Strunnikov, A. V., Hogan, E. & Koshland, D. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev. 9, 587–599 (1995).
    CAS PubMed Google Scholar
  18. Freeman, L., Aragon-Alcaide, L. & Strunnikov, A. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J. Cell Biol. 149, 811–824 (2000).
    CAS PubMed PubMed Central Google Scholar
  19. Lavoie, B. D., Tuffo, K. M., Oh, S., Koshland, D. & Holm, C. Mitotic chromosome condensation requires Brn1p, the yeast homologue of Barren. Mol. Biol. Cell 11, 1293–1304 (2000).
    CAS PubMed PubMed Central Google Scholar
  20. Ouspenski, I. I., Cabello, O. A. & Brinkley, B. R. Chromosome condensation factor Brn1p is required for chromatid separation in mitosis. Mol. Biol. Cell 11, 1305–1313 (2000).
    CAS PubMed PubMed Central Google Scholar
  21. Steffensen, S. et al. A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Curr. Biol. 11, 295–307 (2001).
    CAS PubMed Google Scholar
  22. Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R. & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729–742 (2002). Along with reference 80, this paper indicates that condensin subunit homologues in C. elegans might localize to the centromere and have a role in building and orientating the centromere towards the spindle poles during chromosome condensation. It also shows that in mitosis, MIX-1 associates with an SMC homologue that is not involved in dosage compensation.
    CAS PubMed PubMed Central Google Scholar
  23. Bhat, M. A., Philp, A. V., Glover, D. M. & Bellen, H. J. Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with Topoisomerase II. Cell 87, 1103–1114 (1996).
    PubMed Google Scholar
  24. Sutani, T. et al. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev. 13, 2271–2283 (1999).
    CAS PubMed PubMed Central Google Scholar
  25. Meyer, B. J. Sex in the worm: counting and compensating X-chromosome dose. Trends Genet. 16, 247–253 (2000).
    CAS PubMed Google Scholar
  26. Lieb, J. D., Albrecht, M. R., Chuang, P. T. & Meyer, B. J. MIX-1: an essential component of the C. elegans mitotic machinery executes X chromosome dosage compensation. Cell 92, 265–277 (1998).
    CAS PubMed Google Scholar
  27. Chuang, P. T., Albertson, D. G. & Meyer, B. J. DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79, 459–474 (1994). In the search for proteins that mediate the repression of X-linked genes during C. elegans dosage compensation (references 26 and 27), homologues of condensin SMC subunits were identified. This established the first connection between condensin and gene regulation.
    CAS PubMed Google Scholar
  28. Lieb, J. D., Capowski, E. E., Meneely, P. & Meyer, B. J. DPY-26, a link between dosage compensation and meiotic chromosome segregation in the nematode. Science 274, 1732–1736 (1996).
    CAS PubMed Google Scholar
  29. Albrecht, M. R. Analysis of dosage compensation and chromosome segregation in Caenorhabditis elegans. Thesis, Univ. California, Berkeley (1998).
  30. Hodgkin, J. X chromosome dosage and gene expression in Caenorhabditis elegans: two unusual dumpy genes. Mol. Gen. Genet. 192, 452–458 (1983).
    Google Scholar
  31. Plenefisch, J. D., DeLong, L. & Meyer, B. J. Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics 121, 57–76 (1989).
    CAS PubMed PubMed Central Google Scholar
  32. Chu, D. S. et al. A molecular link between gene-specific and chromosome-wide transcriptional repression. Genes Dev. 16, 796–805 (2002).
    CAS PubMed PubMed Central Google Scholar
  33. Martinez-Balbas, M. A., Dey, A., Rabindran, S. K., Ozato, K. & Wu, C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83, 29–38 (1995).
    CAS PubMed Google Scholar
  34. West, A. G., Gaszner, M. & Felsenfeld, G. Insulators: many functions, many mechanisms. Genes Dev. 16, 271–288 (2002).
    PubMed Google Scholar
  35. Bi, X. & Broach, J. R. Chromosomal boundaries in S. cerevisiae. Curr. Opin. Genet. Dev. 11, 199–204 (2001).
    CAS PubMed Google Scholar
  36. Li, Y. C., Cheng, T. H. & Gartenberg, M. R. Establishment of transcriptional silencing in the absence of DNA replication. Science 291, 650–653 (2001).
    CAS PubMed Google Scholar
  37. Kirchmaier, A. L. & Rine, J. DNA replication-independent silencing in S. cerevisiae. Science 291, 646–650 (2001).
    CAS PubMed Google Scholar
  38. Lau, A., Blitzblau, H. & Bell, S. P. Cell-cycle control of the establishment of mating-type silencing in S. cerevisiae. Genes Dev. 16, 2935–2945 (2002). References 38, 43, 44, 50 and 51 provide intriguing suggestions for new roles of cohesin or condensin subunits in aspects of gene regulation, including silencing, chromatin insulator function and enhancer–promoter communication.
    CAS PubMed PubMed Central Google Scholar
  39. Laloraya, S., Guacci, V. & Koshland, D. Chromosomal addresses of the cohesin component Mcd1p. J. Cell Biol. 151, 1047–1056 (2000).
    CAS PubMed PubMed Central Google Scholar
  40. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol. 4, 89–93 (2002).
    CAS PubMed Google Scholar
  41. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001). References 40 and 41 show that fission yeast centromeric heterochromatin proteins are required for recruiting cohesin to the centromere and for sister-chromatid cohesion at centromeres but not chromosome arms.
    CAS PubMed Google Scholar
  42. Blat, Y. & Kleckner, N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249–259 (1999).
    CAS PubMed Google Scholar
  43. Donze, D., Adams, C. R., Rine, J. & Kamakaka, R. T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13, 698–708 (1999).
    CAS PubMed PubMed Central Google Scholar
  44. Bhalla, N., Biggins, S. & Murray, A. W. Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol. Biol. Cell 13, 632–645 (2002).
    CAS PubMed PubMed Central Google Scholar
  45. Simon, J. A. & Tamkun, J. W. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr. Opin. Genet. Dev. 12, 210–218 (2002).
    CAS PubMed Google Scholar
  46. Gyurkovics, H., Gausz, J., Kummer, J. & Karch, F. A new homeotic mutation in the Drosophila bithorax complex removes a boundary separating two domains of regulation. EMBO J. 9, 2579–2585 (1990).
    CAS PubMed PubMed Central Google Scholar
  47. Hagstrom, K., Muller, M. & Schedl, P. Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex. Genes Dev. 10, 3202–3215 (1996).
    CAS PubMed Google Scholar
  48. Zhou, J., Barolo, S., Szymanski, P. & Levine, M. The Fab-7 element of the bithorax complex attenuates enhancer–promoter interactions in the Drosophila embryo. Genes Dev. 10, 3195–3201 (1996).
    CAS PubMed Google Scholar
  49. Mihaly, J., Hogga, I., Gausz, J., Gyurkovics, H. & Karch, F. In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development 124, 1809–1820 (1997).
    CAS PubMed Google Scholar
  50. Lupo, R., Breiling, A., Bianchi, M. E. & Orlando, V. Drosophila chromosome condensation proteins Topoisomerase II and Barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Mol. Cell 7, 127–136 (2001).
    CAS PubMed Google Scholar
  51. Rollins, R. A., Morcillo, P. & Dorsett, D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152, 577–593 (1999).
    CAS PubMed PubMed Central Google Scholar
  52. Lehmann, A. R. et al. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell Biol. 15, 7067–7080 (1995).
    CAS PubMed PubMed Central Google Scholar
  53. Fousteri, M. I. & Lehmann, A. R. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 19, 1691–1702 (2000).
    CAS PubMed PubMed Central Google Scholar
  54. Fujioka, Y., Kimata, Y., Nomaguchi, K., Watanabe, K. & Kohno, K. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5–SMC6 complex involved in DNA repair. J. Biol. Chem. 277, 21585–21591 (2002).
    CAS PubMed Google Scholar
  55. Nasim, A. & Smith, B. P. Genetic control of radiation sensitivity in Schizosaccharomyces pombe. Genetics 79, 573–582 (1975).
    CAS PubMed PubMed Central Google Scholar
  56. Verkade, H. M., Bugg, S. J., Lindsay, H. D., Carr, A. M. & O'Connell, M. J. Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol. Biol. Cell 10, 2905–2918 (1999).
    CAS PubMed PubMed Central Google Scholar
  57. Jessberger, R., Riwar, B., Baechtold, H. & Akhmedov, A. T. SMC proteins constitute two subunits of the mammalian recombination complex RC-1. EMBO J. 15, 4061–4068 (1996).
    CAS PubMed PubMed Central Google Scholar
  58. Birkenbihl, R. P. & Subramani, S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20, 6605–6611 (1992).
    CAS PubMed PubMed Central Google Scholar
  59. Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).
    CAS PubMed Google Scholar
  60. Sjogren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).
    CAS PubMed Google Scholar
  61. Yazdi, P. T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571–582 (2002).
    CAS PubMed PubMed Central Google Scholar
  62. Kim, S. T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560–570 (2002).
    CAS PubMed PubMed Central Google Scholar
  63. Aono, N., Sutani, T., Tomonaga, T., Mochida, S. & Yanagida, M. Cnd2 has dual roles in mitotic condensation and interphase. Nature 417, 197–202 (2002). References 61–63 provide evidence that cohesin and condensin subunits are involved in DNA repair and the DNA-damage checkpoint.
    CAS PubMed Google Scholar
  64. Tanaka, T., Cosma, M. P., Wirth, K. & Nasmyth, K. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98, 847–858 (1999).
    CAS PubMed Google Scholar
  65. Van Hooser, A. A. et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 114, 3529–3542 (2001).
    CAS PubMed Google Scholar
  66. Berger, S. L. Molecular biology: the histone modification circus. Science 292, 64–65 (2001).
    CAS PubMed Google Scholar
  67. Toyoda, Y. et al. Requirement of chromatid cohesion proteins rad21/scc1 and mis4/scc2 for normal spindle-kinetochore interaction in fission yeast. Curr. Biol. 12, 347–358 (2002).
    CAS PubMed Google Scholar
  68. Zheng, L., Chen, Y. & Lee, W. H. Hec1p, an evolutionarily conserved coiled-coil protein, modulates chromosome segregation through interaction with SMC proteins. Mol. Cell Biol. 19, 5417–5428 (1999).
    CAS PubMed PubMed Central Google Scholar
  69. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492–499 (2000). Along with references 59 and 70, this shows that cohesin is required for the bi-polar attachment of sister chromatids to microtubules from opposite poles. Accordingly, reference 67 finds that mutations in cohesin subunits trigger the spindle checkpoint.
    CAS PubMed Google Scholar
  70. He, X., Asthana, S. & Sorger, P. K. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101, 763–775 (2000).
    CAS PubMed Google Scholar
  71. Janke, C., Ortiz, J., Tanaka, T. U., Lechner, J. & Schiebel, E. Four new subunits of the Dam1–Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21, 181–193 (2002).
    CAS PubMed PubMed Central Google Scholar
  72. Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore–spindle pole connections. Cell 108, 317–329 (2002).
    CAS PubMed Google Scholar
  73. Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).
    CAS PubMed PubMed Central Google Scholar
  74. Morishita, J. et al. Bir1/Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair. Genes Cells 6, 743–763 (2001).
    CAS PubMed Google Scholar
  75. Vass, S. et al. Depletion of drad21/scc1 in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr. Biol. 13, 208–218 (2003).
    CAS PubMed Google Scholar
  76. Millband, D. N., Campbell, L. & Hardwick, K. G. The awesome power of multiple model systems: interpreting the complex nature of spindle checkpoint signaling. Trends Cell Biol. 12, 205–209 (2002).
    CAS PubMed Google Scholar
  77. Gregson, H. C. et al. A potential role for human cohesin in mitotic spindle aster assembly. J. Biol. Chem. 276, 47575–47582 (2001).
    CAS PubMed Google Scholar
  78. Skibbens, R. V., Corson, L. B., Koshland, D. & Hieter, P. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13, 307–319 (1999).
    CAS PubMed PubMed Central Google Scholar
  79. Hanna, J. S., Kroll, E. S., Lundblad, V. & Spencer, F. A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell Biol. 21, 3144–3158 (2001).
    CAS PubMed PubMed Central Google Scholar
  80. Stear, J. H. & Roth, M. B. Characterization of HCP-6, a C. elegans protein required to prevent chromosome twisting and merotelic attachment. Genes Dev. 16, 1498–1508 (2002).
    CAS PubMed PubMed Central Google Scholar
  81. Wignall, S. M., Deehan, R., Maresca, T. J. & Heald, R. The condensin complex is required for proper spindle assembly and chromosome segregation in Xenopus egg extracts. J. Cell Biol. (in the press).
  82. Lavoie, B. D., Hogan, E. & Koshland, D. In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensin and cohesin. J. Cell Biol. 156, 805–815 (2002).
    CAS PubMed PubMed Central Google Scholar
  83. Peters, J. M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).
    CAS PubMed Google Scholar
  84. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).
    CAS PubMed Google Scholar
  85. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).
    CAS PubMed PubMed Central Google Scholar
  86. Losada, A., Yokochi, T., Kobayashi, R. & Hirano, T. Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J. Cell Biol. 150, 405–416 (2000).
    CAS PubMed PubMed Central Google Scholar
  87. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151, 749–762 (2000).
    CAS PubMed PubMed Central Google Scholar
  88. Chan, R. C. et al. Chromosome cohesion is regulated by C. elegans TIM-1, a paralog of the clock protein TIMELESS. Nature (in the press).
  89. Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1101 (1998).
    CAS PubMed Google Scholar
  90. Watanabe, Y., Yokobayashi, S., Yamamoto, M. & Nurse, P. Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409, 359–363 (2001).
    CAS PubMed Google Scholar
  91. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).
    CAS PubMed Google Scholar
  92. Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16, 3004–3016 (2002).
    CAS PubMed PubMed Central Google Scholar
  93. Megee, P. C. & Koshland, D. A functional assay for centromere-associated sister chromatid cohesion. Science 285, 254–257 (1999).
    CAS PubMed Google Scholar
  94. Losada, A. & Hirano, T. Biology in pictures: new light on sticky sisters. Curr. Biol. 10, 615 (2000).
    Google Scholar
  95. Klein, F. et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103 (1999).
    CAS PubMed Google Scholar
  96. Buonomo, S. B. et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103, 387–398 (2000).
    CAS PubMed Google Scholar
  97. Pasierbek, P. et al. A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev. 15, 1349–1360 (2001).
    CAS PubMed PubMed Central Google Scholar
  98. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).
    CAS PubMed Google Scholar
  99. Kimura, K., Rybenkov, V. V., Crisona, N. J., Hirano, T. & Cozzarelli, N. R. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98, 239–248 (1999).
    CAS PubMed Google Scholar
  100. Kimura, K., Cuvier, O. & Hirano, T. Chromosome condensation by a human condensin complex in Xenopus egg extracts. J. Biol. Chem. 276, 5417–5420 (2001).
    CAS PubMed Google Scholar
  101. Losada, A. & Hirano, T. Intermolecular DNA interactions stimulated by the cohesin complex in vitro: implications for sister chromatid cohesion. Curr. Biol. 11, 268–272 (2001).
    CAS PubMed Google Scholar
  102. Anderson, D. E., Losada, A., Erickson, H. P. & Hirano, T. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156, 419–424 (2002).
    CAS PubMed PubMed Central Google Scholar
  103. Yoshimura, S. H. et al. Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr. Biol. 12, 508–513 (2002).
    CAS PubMed Google Scholar
  104. Bazett-Jones, D. P., Kimura, K. & Hirano, T. Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging. Mol. Cell 9, 1183–1190 (2002).
    CAS PubMed Google Scholar
  105. Swedlow, J. R. & Hirano, T. The making of the mitotic chromosome: modern insights into classical questions. Mol. Cell 11, 557–569 (2003).
    CAS PubMed Google Scholar
  106. Haering, C. H., Lowe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773–788 (2002). References 102, 103 and 105 probe the molecular mechanisms of condensin and cohesin action. A common feature might be the ability to use the coiled-coil arms of the SMC proteins to enclose two DNA segments, either from the same sister chromatid (condensin) or from different sister chromatids (cohesin).
    CAS PubMed Google Scholar
  107. Saitoh, N., Goldberg, I. G., Wood, E. R. & Earnshaw, W. C. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J. Cell Biol. 127, 303–318 (1994).
    CAS PubMed Google Scholar
  108. Cubizolles, F. et al. pEg7, a new Xenopus protein required for mitotic chromosome condensation in egg extracts. J. Cell Biol. 143, 1437–1446 (1998).
    CAS PubMed PubMed Central Google Scholar
  109. Kaitna, S., Pasierbek, P., Jantsch, M., Loidl, J. & Glotzer, M. The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr. Biol. 12, 798–812 (2002).
    CAS PubMed Google Scholar

Download references