Human laminopathies: nuclei gone genetically awry (original) (raw)
Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nature Rev. Mol. Cell Biol.6, 21–31 (2005). ArticleCAS Google Scholar
Lin, F. & Worman, H. J. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem.268, 16321–16326 (1993). ArticleCASPubMed Google Scholar
Wydner, K. L., McNeil, J. A., Lin, F., Worman, H. J. & Lawrence, J. B. Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization. Genomics32, 474–478 (1996). ArticleCASPubMed Google Scholar
Hutchinson, C. J. Lamins: building blocks or regulators of gene expression. Nature Rev. Mol. Cell Biol.3, 848–858 (2002). ArticleCAS Google Scholar
Burke, B., Mounkes, L. C. & Stewart, C. L. The nuclear envelope in muscular dystrophy and cardiovascular diseases. Traffic2, 675–683 (2001). ArticleCASPubMed Google Scholar
Beck, L. A., Hosick, T. J. & Sinensky, M. Isoprenylation is required for the processing of the lamin A precursor. J. Cell Biol.110, 1489–1499 (1990). The first demonstration that farnesylation is required for the processing of prelamin A to lamin A. ArticleCASPubMed Google Scholar
Boyartchuk, V. L., Ashby, M. N. & Rine, J. Modulation of ras and a-factor function by carboxyl-terminal proteolysis. Science275, 1796–1800 (1997). ArticleCASPubMed Google Scholar
Bergo, M. O. et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl Acad. Sci. USA99, 13049–13054 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem.273, 15030–15034 (1998). ArticleCASPubMed Google Scholar
Hennekes, H. & Nigg, E. A. The role of isoprenylation in membrane attachment of nuclear lamins. J. Cell Sci.107, 1019–1029 (1994). ArticleCASPubMed Google Scholar
Vergnes, L., Peterfy, M., Bergo, M. O., Young, S. G. & Reue, K. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl Acad. Sci. USA101, 10428–10433 (2004). ArticleCASPubMedPubMed Central Google Scholar
Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P. & Csoka, A. B. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells24, 177–185 (2006). ArticleCASPubMed Google Scholar
Baker, P. B., Baba, N. & Boesel, C. P. Cardiovascular abnormalities in progeria. Case report and review of the literature. Arch. Pathol. Lab. Med.105, 384–386 (1981). CASPubMed Google Scholar
Hutchinson, J. Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages in a boy whose mother had been almost totally bald from alopecia areata from the age of six. Medicochir. Trans.69, 473–477 (1886). CAS Google Scholar
Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature423, 293–298 (2003). The seminal paper that identified and characterized the G608GLMNAmutation as the cause of approximately 90% of HGPS cases. This paper described the 50-amino-acid preterminal deletion and noted the presence of blebbed nuclei in HGPS. ArticleCASPubMed Google Scholar
De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson–Gilford progeria. Science300, 2055 (2003). ArticleCASPubMed Google Scholar
D'Apice, M. R., Tenconi, R., Mammi, I., van den Ende, J. & Novelli, G. Paternal origin of LMNA mutations in Hutchinson–Gilford progeria syndrome. Clin. Genet.65, 52–54 (2004). ArticleCASPubMed Google Scholar
Capell, B. C. et al. Inhibiting the farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA102, 12879–12884 (2005). Demonstrated thein vitroefficacy of the clinical candidate FTI lonafarnib to prevent the nuclear blebbing that is seen in human HGPS fibroblasts, as well as providing evidence to suggest that progerin is not alternatively geranylgeranylated when farnesylation is inhibited. ArticleCAS Google Scholar
Yang, S. H. et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson–Gilford progeria syndrome mutation. Proc. Natl Acad. Sci. USA102, 10291–10296 (2005). ArticleCASPubMedPubMed Central Google Scholar
Toth, J. I. et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc. Natl Acad. Sci. USA102, 12873–12878 (2005). ArticleCASPubMedPubMed Central Google Scholar
Glynn, M. W. & Glover, T. W. Incomplete processing of mutant lamin A in Hutchinson–Gilford progeria syndrome leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum. Mol. Genet.14, 2959–2969 (2005). ArticleCASPubMed Google Scholar
Mallampalli, M. P., Huyer, G., Bendale, P., Gelb, M. H. & Michaelis, S. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA102, 14416–14421 (2005). ArticleCASPubMedPubMed Central Google Scholar
Reddel, C. J. & Weiss, A. S. Lamin A expression levels are unperturbed at the normal and mutant alleles but display partial splice site selection in Hutchinson–Gilford progeria syndrome. J. Med. Genet.41, 715–717 (2004). ArticleCASPubMedPubMed Central Google Scholar
Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA101, 8963–8968 (2004). The first description of the passage-dependent nuclear blebbing, loss of peripheral heterochromatin and nuclear pore clustering that is seen in HGPS cells. ArticleCASPubMedPubMed Central Google Scholar
Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nature Med.11, 440–445 (2005). The first demonstration of the reversal of the nuclear phenotype of HGPS using a modified oligonucleotide that is targeted to the activated lamin A cryptic splice site used in HGPS. ArticleCASPubMed Google Scholar
Csoka, A. B. et al. Genome-scale expression profiling of Hutchinson–Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell4, 235–243 (2004). ArticleCAS Google Scholar
Delbarre, E. et al. The truncated prelamin A in Hutchinson–Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers. Hum. Mol. Genet.15, 1113–1122 (2006). ArticleCASPubMed Google Scholar
Paradisi, M. et al. Dermal fibroblasts in Hutchinson–Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress. BMC Cell Biol.6, 27 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Shumaker, D. K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl Acad. Sci. USA103, 8703–8708 (2006). The first paper to show that, prior to nuclear blebbing, HGPS cells undergo broad and dramatic epigenetic changes that might contribute to the rapid premature ageing that is seen in HGPS patients. ArticleCASPubMedPubMed Central Google Scholar
McClintock, D., Gordon, L. B. & Djabali, K. Hutchinson–Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody. Proc. Natl Acad. Sci. USA103, 2154–2159 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yu, C. E. et al. Positional cloning of the Werner's syndrome gene. Science272, 258–262 (1996). ArticleCASPubMed Google Scholar
Caux, F. et al. A new clinical condition linked to a novel condition in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J. Clin. Endocrinol. Metab.88, 1006–1013 (2003). ArticleCASPubMed Google Scholar
Bione, S. et al. Identification of a novel X-linked gene responsible for Emery–Dreifuss muscular dystrophy. Nature Genet.8, 323–327 (1994). ArticleCASPubMed Google Scholar
Bonne, G. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nature Genet.21, 285–288 (1999). ArticleCASPubMed Google Scholar
Raffaele di Barletta, M. et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery–Dreifuss muscular dystrophy. Am. J. Hum. Genet.66, 1407–1412 (2000). ArticleCASPubMedPubMed Central Google Scholar
Manilal, S. et al. Mutations in Emery–Dreifuss muscular dystrophy and their effects on emerin protein expression. Hum. Mol. Genet.7, 855–864 (1998). ArticleCASPubMed Google Scholar
Yates, J. R. & Wehnert, M. The Emery–Dreifuss muscular dystrophy mutation database. Neuromuscul. Disord.9, 199 (1999). ArticleCASPubMed Google Scholar
Brown, C. A et al. Novel and recurrent mutations in lamin A/C in patients with Emery–Dreifuss muscular dystrophy. Am. J. Hum. Genet.102, 359–367 (2001). ArticleCAS Google Scholar
Muchir, A. et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum. Mol. Genet.9, 1453–1459 (2000). ArticleCASPubMed Google Scholar
Jacob, K. N. & Garg, A. Laminopathies: multisystem dystrophy syndromes. Mol. Genet. Metab.87, 289–302 (2006). ArticleCASPubMed Google Scholar
Todorova, A. et al. A synonymous codon change in the LMNA gene alters mRNA splicing and causes limb girdle muscular dystrophy type 1B. J. Med. Genet.40, e115 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fatkin, D. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med.341, 1715–1724 (1999). ArticleCASPubMed Google Scholar
Brodsky, G. L. et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation101, 473–476 (2000). ArticleCASPubMed Google Scholar
De Sandre-Giovannoli, A. et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot–Marie–Tooth disorder type 2) and mouse. Am. J. Hum. Genet.70, 726–736 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tazir, M. et al. Phenotype variability in autosomal recessive axonal Charcot–Marie–Tooth disease due to the R298C mutation in lamin A/C. Brain127, 154–163 (2003). ArticlePubMed Google Scholar
Cao, H. & Hegele, R. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet.9, 109–112 (2000). ArticleCASPubMed Google Scholar
Shackleton, S. et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nature Genet.24, 153–156 (2000). ArticleCASPubMed Google Scholar
Speckman, R. A. et al. Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am. J. Hum. Genet.66, 1192–1198 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dhe-Paganon, S., Werner, E. D., Chi, Y. & Shoelson, S. E. Structure of the globular tail of nuclear lamin. J. Biol. Chem.277, 17381–17384 (2002). ArticleCASPubMed Google Scholar
Krimm, I. et al. The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure10, 811–823 (2002). ArticleCASPubMed Google Scholar
Novelli, G. et al. Mandibuloacral dysplasia is caused by a mutation in _LMNA_-encoding lamin A/C. Am. J. Hum. Genet.71, 426–431 (2002). ArticleCASPubMedPubMed Central Google Scholar
Agarwal, A. K., Fryns, J. P., Auchus, R. J. & Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet.12, 1995–2001 (2003). ArticleCASPubMed Google Scholar
Filesi, I. et al. Alterations of nuclear envelope and chromatin organization in mandibuloacral dysplasia, a rare form of laminopathy. Physiol. Genomics23, 150–158 (2005). ArticleCASPubMed Google Scholar
Navarro, C. L. et al. Lamin A and ZMPSTE24 (FACE1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet.13, 2493–2503 (2004). ArticleCASPubMed Google Scholar
Navarro, C. L. et al. Loss of ZMPSTE24 (FACE1) causes autosomal recessive restrictive dermopathy and accumulation of lamin A precursors. Hum. Mol. Genet.14, 1503–1513 (2005). ArticleCASPubMed Google Scholar
Moulson, C. L. et al. Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J. Invest. Dermatol.125, 913–919 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kirschner, J. et al. p.S143F mutation in lamin A/C: a new phenotype combining myopathy and progeria. Ann. Neurol.57, 148–151 (2004). ArticleCAS Google Scholar
Goizet, C. et al. A new mutation of the lamin A/C gene leading to autosomal dominant axonal neuropathy, muscular dystrophy, cardiac disease, and leuconychia. J. Med. Genet.41, e29 (2004). ArticleCASPubMedPubMed Central Google Scholar
Van Esch, H., Agarwal, A. K., Debeer, P., Fryns, J. P. & Garg, A. A homozygous mutation in the lamin A/C gene associated with a novel syndrome of arthropathy, tendinous calcinosis, and progeroid features. J. Clin. Endocrinol. Metab.91, 517–521 (2006). ArticleCASPubMed Google Scholar
Young, J. et al. Type A insulin resistance syndrome revealing a novel lamin A mutation. Diabetes54, 1873–1878 (2005). ArticleCASPubMed Google Scholar
Hegele, R. A. et al. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am. J. Hum. Genet.79, 383–389 (2006). ArticleCASPubMedPubMed Central Google Scholar
Padiath, Q. S. et al. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nature Genet.38, 1114–1123 (2006). The first demonstration that mutations inLMNB1can cause human disease. ArticleCASPubMed Google Scholar
Waterham, H. R. et al. Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3β-hydroxysterol delta14-reductase deficiency due to mutations in the lamin B receptor gene. Am. J. Hum. Genet.72, 1013–1017 (2003). ArticleCASPubMedPubMed Central Google Scholar
Oosterwijk, J. C. et al. Congenital abnormalities reported in Pelger-Huet homozygosity as compared to Greenberg/HEM dysplasia: highly variable expression of allelic phenotypes. J. Med. Genet.40, 937–941 (2003). ArticleCASPubMedPubMed Central Google Scholar
Benedetti, S. & Merlini, L. Laminopathies: from the heart of the cell to the clinics. Curr. Opin. Neurol.17, 553–560 (2004). ArticleCASPubMed Google Scholar
Ostlund, C. & Worman, H. J. Nuclear envelope proteins and neuromuscular disease. Muscle Nerve27, 393–406 (2003). ArticleCASPubMed Google Scholar
Dahl, K. N., Kahn, S. M., Wilson, K. L. & Discher, D. E. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci.117, 4779–4786 (2004). ArticleCASPubMed Google Scholar
Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol.147, 913–920 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest.113, 370–378 (2004). Demonstrated the mechanical role of A-type lamins in nuclear stability, and how perturbing an abnormal lamina with mechanical strain can affect downstream transcription. ArticleCASPubMedPubMed Central Google Scholar
Broers, J. L. et al. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet.13, 2567–2580 (2004). ArticleCASPubMed Google Scholar
Nikolova, V. et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest.113, 357–369 (2004). ArticleCASPubMedPubMed Central Google Scholar
Taniura, H., Glass, C. & Gerace, L. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J. Cell Biol.131, 33–44 (1995). ArticleCASPubMed Google Scholar
Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genet.38, 1005–1014 (2006). Provided the firstin vivoevidence for the dynamic role of the lamina in genomic organization and expression. ArticleCASPubMed Google Scholar
Capanni, C. et al. Failure of lamin A/C to functionally assemble in R482L mutated familial partial lipodystrophy fibroblasts: altered intermolecular interaction with emerin and implications for gene transcription. Exp. Cell Res.291, 122–134 (2003). ArticleCASPubMed Google Scholar
Spann, T. P., Moir, R. D., Goldman, A. E., Stick, R. & Goldman, R. Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J. Cell Biol.136, 1201–1212 (1997). ArticleCASPubMedPubMed Central Google Scholar
Jagatheesan, G. et al. Colocalization of intranuclear lamin foci with RNA splicing factors. J. Cell Sci.112, 4651–4661 (1999). ArticleCASPubMed Google Scholar
Lloyd, D. J., Trembath, R. C. & Shackleton, S. A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum. Mol. Genet.11, 769–777 (2002). ArticleCASPubMed Google Scholar
Broers, J. L., Hutchinson, C. J. & Ramaekers, F. C. Laminopathies. J. Pathol.204, 478–488 (2004). ArticleCASPubMed Google Scholar
Bengtsson, L. & Wilson, K. L. Barrier-to-autointegration factor phosphorylation on Ser-4 regulates emerin binding to lamin A in vitro and emerin localization in vivo. Mol. Biol. Cell17, 1154–1163 (2006). ArticleCASPubMedPubMed Central Google Scholar
Melcon, G. et al. Loss of emerin at the nuclear envelope disrupts the Rb/E2F and MyoD pathways during muscle regeneration. Hum. Mol. Genet.15, 637–651 (2006). ArticleCASPubMed Google Scholar
Flemington, E. K., Speck, S. H. & Kaelin, W. G. E2F1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl Acad. Sci. USA90, 6914–6918 (1993). ArticleCASPubMedPubMed Central Google Scholar
Johnson, B. R. et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. Proc. Natl Acad. Sci. USA101, 19677–19682 (2004). Google Scholar
Frock, R. L. et al. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev.20, 486–500 (2006). ArticleCASPubMedPubMed Central Google Scholar
Van Berlo, J. H. et al. A-type lamins are essential for TGFβ1 induced PP2A to dephosphorylate transcription factors. Hum. Mol. Genet.14, 2839–2849 (2005). ArticleCASPubMed Google Scholar
Mounkes, L. C., Kozlov, S., Hernandez, L., Sullivan, T. & Stewart, C. L. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature423, 298–301 (2003). ArticleCASPubMed Google Scholar
Boguslavsky, R. L., Stewart, C. L. & Worman, H. J. Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet.15, 653–663 (2006). ArticleCASPubMed Google Scholar
Capanni, C. et al. Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum. Mol. Genet.14, 1489–1502 (2005). ArticleCASPubMed Google Scholar
Tsai, M. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science311, 1187–1893 (2006). The first proof of the role of the lamina in mitosis, in particular the essential role of lamin B in the formation of the mitotic matrix that assists in spindle assembly. ArticleCAS Google Scholar
Zastrow, M. S., Flaherty, D. B., Benian, G. M. & Wilson, K. L. Nuclear titin interacts with A- and B-type lamins in vitro and in vivo. J. Cell Sci.119, 239–249 (2006). ArticleCASPubMed Google Scholar
Scaffidi, P., Gordon, L. & Misteli, T. The cell nucleus and aging: tantalizing clues and hopeful promises. PLoS Biol.3, 1855–1859 (2006). Google Scholar
Pendas, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nature Genet.31, 94–99 (2002). ArticleCASPubMed Google Scholar
Liu, B. et al. Genomic instability in laminopathy-based premature aging. Nature Med.11, 780–785 (2005). Demonstrated the potential relationship between DNA damage, chromosomal aberrations, genome instability and premature ageing in both a HGPS mouse model and HGPS fibroblasts. ArticleCASPubMed Google Scholar
Varela, I. et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature437, 564–566 (2005). ArticleCASPubMed Google Scholar
Fong, L. G. et al. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in _Zmpste24_-deficient mice. Proc. Natl Acad. Sci. USA101, 18111–18116 (2004). Providedin vivoproof that reducing the level of farnesylated prelamin A by half can dramatically ameliorate a severe phenotype in a progeria mouse model. ArticleCASPubMedPubMed Central Google Scholar
Basso, A. D., Kirschmeier, P. & Bishop, W. R. Farnesyl transferase inhibitors. J. Lipid Res.47, 15–31 (2006). ArticleCASPubMed Google Scholar
Fong, L. G. et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science311, 1621–1623 (2006). The firstin vivodemonstration of the efficacy of farnesyltransferase inhibitors in a progeria mouse model. ArticleCASPubMed Google Scholar
Yang, S. H. et al. A farnesyltransferase inhibitor improves disease phenotype in mice with a Hutchinson–Gilford progeria syndrome mutation. J. Clin. Invest.116, 2115–2121 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sebti, S. M. & Der, C. J. Searching for the elusive targets of farnesyltransferase inhibitors. Nature Rev. Cancer3, 945–951 (2003). ArticleCAS Google Scholar
Efuet, E. T. & Keyomarsi, K. Farnesyl and geranylgeranyl transferase inhibitors induce G1 arrest by targeting the proteasome. Cancer Res.66, 1040–1051 (2006). ArticleCASPubMed Google Scholar
Doll, R. J., Kirschmeier, P. & Bishop, W. R. Farneyltransferase inhibitors as anticancer agents: critical crossroads. Curr. Opin. Drug Discov. Devel.7, 478–486 (2004). CASPubMed Google Scholar
Winter-Vann, A. M. & Casey, P. J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Rev. Cancer5, 405–412 (2005). ArticleCAS Google Scholar
Demierre, M., Higgins, P. D. R., Gruber, S. B., Hawk, E. & Lippman, S. M. Statins and cancer prevention. Nature Rev. Cancer5, 930–942 (2005). ArticleCAS Google Scholar
Columbaro, M. et al. Rescue of heterochromatin organization in Hutchinson–Gilford progeria by drug treatment. Cell. Mol. Life Sci.62, 2669–2678 (2005). ArticleCASPubMedPubMed Central Google Scholar
Huang, S. et al. Correction of cellular phenotypes of Hutchinson–Gilford progeria cells by RNA interference. Hum. Genet.118, 444–450 (2005). ArticleCASPubMed Google Scholar
Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature441, 111–114 (2006). ArticleCASPubMed Google Scholar
Sazani, P. & Kole, R. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J. Clin. Invest.112, 481–486 (2003). ArticleCASPubMedPubMed Central Google Scholar
Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science312, 1059–1063 (2006). The first evidence for nuclear phenotypic similarities between aged fibroblasts and HGPS fibroblasts. Also showed that normal cells use the same cryptic splice site that is used in HGPS and produce small amounts of the mutant progerin protein. ArticleCASPubMedPubMed Central Google Scholar
Haithcock, E. et al. Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA102, 16690–16695 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hegele, R. A. & Pollex, R. L. Genetic and physiological insights into the metabolic syndrome. Am. J. Physiol. Regul. Integr. Comp. Physiol.289, R663–R669 (2005). ArticleCASPubMed Google Scholar
Stehbens, W. E., Wakefield, S. J., Gilbert-Barness, E., Olson, R. E. & Ackerman, J. Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc. Pathol.8, 29–39 (1999). ArticleCASPubMed Google Scholar
Stehbens, W. E., Delahunt, B., Shozawa, T. & Gilbert-Barness, E. Smooth muscle cell depletion and collagen types in progeric arteries. Cardiovasc. Pathol.10, 133–136 (2001). ArticleCASPubMed Google Scholar
Varga, R. et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA103, 3250–3255 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gordon, L. B., Harten, I. A., Patti, M. E. & Lichtenstein, A. H. Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson–Gilford Progeria Syndrome. J. Pediatr.146, 336–341 (2005). ArticleCASPubMed Google Scholar
Mounkes, L. C., Kozlov, S. V., Rottman, J. N. & Stewart, C. L. Expression of an _LMNA_-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. Hum. Mol. Genet.14, 2167–2180 (2005). ArticleCASPubMed Google Scholar
Arimura, T., et al. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum. Mol. Genet.14, 155–169 (2005). ArticleCASPubMed Google Scholar
Mason, J. C. et al. Statins and their role in vascular protection. Clin. Sci. (Lond.)105, 251–266 (2003). ArticleCAS Google Scholar