Thieffry, D., Huerta, A. M., Perez-Rueda, E. & Collado-Vides, J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays20, 433–440 (1998). ArticleCASPubMed Google Scholar
Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet.31, 64–68 (2002). ArticleCASPubMed Google Scholar
Milo, R. et al. Network motifs: simple building blocks of complex networks. Science298, 824–827 (2002). ArticleCASPubMed Google Scholar
Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol.2, e328 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mangan, S., Zaslaver, A. & Alon, U. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol.334, 197–204 (2003). ArticleCASPubMed Google Scholar
Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science298, 799–804 (2002). ArticleCASPubMed Google Scholar
Saddic, L. A. et al. The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development133, 1673–1682 (2006). ArticleCASPubMed Google Scholar
Swiers, G., Patient, R. & Loose, M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev. Biol.294, 525–540 (2006). ArticleCASPubMed Google Scholar
Iranfar, N., Fuller, D. & Loomis, W. F. Transcriptional regulation of post-aggregation genes in Dictyostelium by a feed-forward loop involving GBF and LagC. Dev. Biol.290, 460–469 (2006). ArticleCASPubMed Google Scholar
Milo, R. et al. Superfamilies of designed and evolved networks. Science303, 1538–1542 (2004). ArticleCASPubMed Google Scholar
Rosenfeld, N., Elowitz, M. B. & Alon, U. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol.323, 785–793 (2002). ArticleCASPubMed Google Scholar
Savageau, M. A. Comparison of classical and autogenous systems of regulation in inducible operons. Nature252, 546–549 (1974). ArticleCASPubMed Google Scholar
Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature405, 590–593 (2000). ArticleCASPubMed Google Scholar
Camas, F. M., Blazquez, J. & Poyatos, J. F. Autogenous and nonautogenous control of response in a genetic network. Proc. Natl Acad. Sci. USA103, 12718–12723 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods3, 623–628 (2006). ArticleCASPubMed Google Scholar
Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet.6, 451–464 (2005). ArticleCASPubMed Google Scholar
Dublanche, Y., Michalodimitrakis, K., Kummerer, N., Foglierini, M. & Serrano, L. Noise in transcription negative feedback loops: simulation and experimental analysis. Mol. Syst. Biol.2, 41 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kalir, S., Mangan, S. & Alon, U. The coherent feed-forward loop with a SUM input function prolongs flagella production in Escherichia coli. Mol. Syst. Biol.1, 2005.0006 (2005). ArticleCASPubMedPubMed Central Google Scholar
Maeda, Y. T. & Sano, M. Regulatory dynamics of synthetic gene networks with positive feedback. J. Mol. Biol.359, 1107–1124 (2006). ArticleCASPubMed Google Scholar
Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J.20, 2528–2535 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol.6, 125–134 (2003). ArticleCASPubMed Google Scholar
Yuh, C. H., Bolouri, H. & Davidson, E. H. Genomic _cis_-regulatory logic: experimental and computational analysis of a sea urchin gene. Science279, 1896–1902 (1998). ArticleCASPubMed Google Scholar
Buchler, N. E., Gerland, U. & Hwa, T. On schemes of combinatorial transcription logic. Proc. Natl Acad. Sci. USA100, 5136–5141 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kalir, S. & Alon, U. Using a quantitative blueprint to reprogram the dynamics of the flagella gene network. Cell117, 713–720 (2004). ArticleCASPubMed Google Scholar
Setty, Y., Mayo, A. E., Surette, M. G. & Alon, U. Detailed map of a _cis_-regulatory input function. Proc. Natl Acad. Sci. USA100, 7702–7707 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ma, H. W. et al. An extended regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic A cids Res.32, 6643–6649 (2004). ArticleCAS Google Scholar
Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA100, 11980–11985 (2003). ArticleCASPubMedPubMed Central Google Scholar
Basu, S., Mehreja, R., Thiberge, S., Chen, M. T. & Weiss, R. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl Acad. Sci. USA101, 6355–6360 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mangan, S., Zaslaver, A. & Alon, U. The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J. Mol. Biol.356, 1073–1081 (2006). ArticleCASPubMed Google Scholar
Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nature Genet.38, S20–S24 (2006). ArticleCASPubMed Google Scholar
O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435, 839–843 (2005). ArticleCASPubMed Google Scholar
Johnston, R. J. Jr. et al. An unusual Zn-finger/FH2 domain protein controls a left/right asymmetric neuronal fate decision in C. elegans. Development133, 3317–3328 (2006). ArticleCASPubMed Google Scholar
Ghosh, B., Karmakar, R. & Bose, I. Noise characteristics of feed forward loops. Phys. Biol.2, 36–45 (2005). ArticleCASPubMed Google Scholar
Wall, M. E., Dunlop, M. J. & Hlavacek, W. S. Multiple functions of a feed-forward-loop gene circuit. J. Mol. Biol.349, 501–514 (2005). ArticleCASPubMed Google Scholar
Hayot, F. & Jayaprakash, C. A feedforward loop motif in transcriptional regulation: induction and repression. J. Theor. Biol.234, 133–143 (2005). ArticleCASPubMed Google Scholar
Ishihara, S., Fujimoto, K. & Shibata, T. Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes. Genes Cells10, 1025–1038 (2005). ArticleCASPubMed Google Scholar
Kashtan, N., Itzkovitz, S., Milo, R. & Alon, U. Topological generalizations of network motifs. Phys. Rev. E70, 031909 (2004). ArticleCAS Google Scholar
Dobrin, R., Beg, Q. K., Barabasi, A. L. & Oltvai, Z. N. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics5, 10 (2004). ArticlePubMedPubMed Central Google Scholar
Ronen, M., Rosenberg, R., Shraiman, B. I. & Alon, U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl Acad. Sci. USA99, 10555–10560 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zaslaver, A. et al. Just-in-time transcription program in metabolic pathways. Nature Genet.36, 486–491 (2004). ArticleCASPubMed Google Scholar
Kalir, S. et al. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science292, 2080–2083 (2001). ArticleCASPubMed Google Scholar
Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science290, 2144–2148 (2000). ArticleCASPubMed Google Scholar
McAdams, H. H. & Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science301, 1874–1877 (2003). ArticleCASPubMed Google Scholar
Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell9, 3273–3297 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ingram, P. J., Stumpf, M. P., Stark, J. Network motifs: structure does not determine function. BMC Genomics5, 108 (2006). ArticleCAS Google Scholar
Pilpel, Y., Sudarsanam, P. & Church, G. M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet.29, 153–159 (2001). ArticleCASPubMed Google Scholar
Rosenfeld, N. & Alon, U. Response delays and the structure of transcription networks. J. Mol. Biol.329, 645–654 (2003). ArticleCASPubMed Google Scholar
Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M. & Teichmann, S. A. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol.14, 283–291 (2004). ArticleCASPubMed Google Scholar
Yu, H., Luscombe, N. M., Qian, J. & Gerstein, M. Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet.19, 422–427 (2003). ArticleCASPubMed Google Scholar
Luscombe, N. M. et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature431, 308–312 (2004). ArticleCASPubMed Google Scholar
Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet.39, 503–512 (2007). ArticleCASPubMed Google Scholar
Davidson, E. H. et al. A genomic regulatory network for development. Science295, 1669–1678 (2002). ArticleCASPubMed Google Scholar
Longabaugh, W. J., Davidson, E. H. & Bolouri, H. Computational representation of developmental genetic regulatory networks. Dev. Biol.283, 1–16 (2005). ArticleCASPubMed Google Scholar
Johnston, R. J. Jr, Chang, S., Etchberger, J. F., Ortiz, C. O. & Hobert, O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl Acad. Sci. USA102, 12449–12454 (2005). ArticleCASPubMedPubMed Central Google Scholar
Xiong, W. & Ferrell, J. E. Jr. A positive-feedback-based bistable 'memory module' that governs a cell fate decision. Nature426, 460–465 (2003). ArticleCASPubMed Google Scholar
Brandman, O., Ferrell, J. E. Jr, Li, R. & Meyer, T. Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science310, 496–498 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature403, 339–342 (2000). ArticleCASPubMed Google Scholar
Bolouri, H. & Davidson, E. H. Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc. Natl Acad. Sci. USA100, 9371–9376 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA102, 3581–3586 (2005). ArticleCASPubMedPubMed Central Google Scholar
Conant, G. C. & Wagner, A. Convergent evolution of gene circuits. Nature Genet.34, 264–266 (2003). ArticleCASPubMed Google Scholar
Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature436, 588–592 (2005). ArticleCASPubMed Google Scholar
Ihmels, J. et al. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science309, 938–940 (2005). ArticleCASPubMed Google Scholar
Madan Babu, M., Teichmann, S. A. & Aravind, L. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J. Mol. Biol.358, 614–633 (2006). ArticleCASPubMed Google Scholar
Dekel, E., Mangan, S. & Alon, U. Environmental selection of the feed-forward loop circuit in gene-regulation networks. Phys. Biol.2, 81–88 (2005). ArticleCASPubMed Google Scholar
Prill, R. J., Iglesias, P. A. & Levchenko, A. Dynamic properties of network motifs contribute to biological network organization. PLoS Biol.3, e343 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kashtan, N., Itzkovitz, S., Milo, R. & Alon, U. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics20, 1746–1758 (2004). ArticleCASPubMed Google Scholar
Yeger-Lotem, E. et al. Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc. Natl Acad. Sci. USA101, 5934–5939 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. V. et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol.4, 6 (2005). ArticleCASPubMedPubMed Central Google Scholar
Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature403, 335–338 (2000). ArticleCASPubMed Google Scholar
Lahav, G. et al. Dynamics of the p53–Mdm2 feedback loop in individual cells. Nature Genet.36, 147–150 (2004). ArticleCASPubMed Google Scholar
Friedman, N., Vardi, S., Ronen, M., Alon, U. & Stavans, J. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol.3, e238 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB–NF-κB signaling module: temporal control and selective gene activation. Science298, 1241–1245 (2002). ArticleCASPubMed Google Scholar
Nelson, D. E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science306, 704–708 (2004). ArticleCASPubMed Google Scholar
Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol.15, 221–231 (2003). ArticleCASPubMed Google Scholar
Tyson, J. J., Csikasz-Nagy, A. & Novak, B. The dynamics of cell cycle regulation. Bioessays24, 1095–1109 (2002). ArticleCASPubMed Google Scholar
Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol.5, 346–351 (2003). ArticleCASPubMed Google Scholar
Suel, G. M., Garcia-Ojalvo, J., Liberman, L. M. & Elowitz, M. B. An excitable gene regulatory circuit induces transient cellular differentiation. Nature440, 545–550 (2006). ArticleCASPubMed Google Scholar
Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nature438, 679–684 (2005). ArticleCASPubMed Google Scholar
Itzkovitz, S. et al. Coarse-graining and self-dissimilarity of complex networks. Phys. Rev. E71, 016127 (2005). ArticleCAS Google Scholar
Ma'ayan, A. et al. Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science309, 1078–1083 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hertz, J., Krogh, A. & Palmer, R. G. Introduction to the Theory of Neural Computation (Perseus Books, Boulder, 1991). Google Scholar
Bray, D. Protein molecules as computational elements in living cells. Nature376, 307–312 (1995). ArticleCASPubMed Google Scholar
Lund, R. D. Synaptic patterns of the superficial layers of the superior colliculus of the rat. J. Comp. Neurol.135, 179–208 (1969). ArticleCASPubMed Google Scholar
White, E. L. Cortical Circuits (Birkhauser, Boston, 1989). Book Google Scholar
White, J., Southgate, E., Thomson, J. & Brenner, S. The nervous system of Caenorhabditis elegans. Philos.Trans. R. Soc. London B Biol. Sci.314, 1 (1986). ArticleCASPubMed Google Scholar
Itzkovitz, S. & Alon, U. Subgraphs and network motifs in geometric networks. Phys. Rev. E71, 026117 (2005). ArticleCAS Google Scholar
Sakata, S., Komatsu, Y. & Yamamori, T. Local design principles of mammalian cortical networks. Neurosci. Res.51, 309–315 (2005). ArticlePubMed Google Scholar
Song, S., Sjostrom, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol.3, e68 (2005). ArticleCASPubMedPubMed Central Google Scholar