EvoD/Vo: the origins of BMP signalling in the neuroectoderm (original) (raw)
Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature452, 745–749 (2008). ArticleCASPubMed Google Scholar
Valentine, J. W. On The Origin of Phyla (University of Chicago Press, Chicago, 2004). Google Scholar
De Robertis, E. M. & Kuroda, H. Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol.20, 285–308 (2004). ArticleCASPubMedPubMed Central Google Scholar
O'Connor, M. B., Umulis, D., Othmer, H. G. & Blair, S. S. Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development133, 183–193 (2006). ArticleCASPubMed Google Scholar
Mizutani, C. M., Meyer, N., Roelink, H. & Bier, E. Threshold-dependent BMP-mediated repression: a model for a conserved mechanism that patterns the neuroectoderm. PLoS Biology4, e313 (2006). Shows that BMPs act in a dose-dependent fashion to repress the expression of neural genes in dorsal and lateral regions of theD. melanogasterembryo; it also proposes that this might be a conserved mechanism for neural patterning. ArticleCASPubMedPubMed Central Google Scholar
Denes, A. S. et al. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell129, 277–288 (2007). Reveals remarkable similarities in the D/V organization of cell markers and cell types in the CNS of annelid worms and vertebrates. ArticleCASPubMed Google Scholar
Geoffroy St-Hilaire, E. Considérations générales sur la vertèbre (Translation: General considerations on vertebrates). Mém. Mus. Hist. Nat.9, 89–119 (1822). In this paper, St-Hilaire suggests that the D/V axis in invertebrates is inverted with respect to that of vertebrates. Google Scholar
Bier, E. Anti-neural-inhibition: a conserved mechanism for neural induction. Cell89, 681–684 (1997). ArticleCASPubMed Google Scholar
De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature380, 37–40 (1996). ArticleCASPubMed Google Scholar
Ferguson, E. L. Conservation of dorsal–ventral patterning in arthropods and chordates. Curr. Opin. Genet. Dev.6, 424–431 (1996). ArticleCASPubMed Google Scholar
Arendt, D. & Nubler-Jung, K. Inversion of dorsoventral axis? Nature371, 26 (1994). Resuscitates the argument of St-Hilaire (reference 8) and A. Dohrn (reference 97) regarding a common origins of the D/V axis in vertebrates and invertebrates. ArticleCASPubMed Google Scholar
Francois, V. & Bier, E. Xenopus chordin and Drosophila short gastrulation genes encode homologous proteins functioning in dorsal–ventral axis formation. Cell80, 19–20 (1995). ArticleCASPubMed Google Scholar
Francois, V., Solloway, M., O'Neill, J. W., Emery, J. & Bier, E. Dorsal–ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev.8, 2602–2616 (1994). ArticleCASPubMed Google Scholar
Holley, S. A. et al. A conserved system for dorsal–ventral patterning in insects and vertebrates involving sog and chordin. Nature376, 249–253 (1995). ArticleCASPubMed Google Scholar
Schmidt, J., Francois, V., Bier, E. & Kimelman, D. Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal–ventral patterning. Development121, 4319–4328 (1995). CASPubMed Google Scholar
Schmierer, B. & Hill, C. S. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nature Rev. Mol. Cell Biol.8, 970–982 (2007). ArticleCAS Google Scholar
Cornell, R. A. & Ohlen, T. V. vnd/Nkx, ind/Gsh, and msh/Msx: conserved regulators of dorsoventral neural patterning? Curr. Opin. Neurobiol.10, 63–71 (2000). ArticleCASPubMed Google Scholar
Yu, K. et al. Cysteine repeat domains and adjacent sequences determine distinct BMP modulatory activities of the Drosophila Sog protein. Genetics166, 1323–1336 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yu, K. et al. Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. Development127, 2143–2154 (2000). CASPubMed Google Scholar
De Robertis, E. M. Spemann's organizer and self-regulation in amphibian embryos. Nature Rev. Mol. Cell Biol.7, 296–302 (2006). ArticleCAS Google Scholar
Biehs, B., Francois, V. & Bier, E. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev.10, 2922–2934 (1996). Shows that the BMP antagonist SOG prevents BMPs from repressing neural gene expression inD. melanogaster. ArticleCASPubMed Google Scholar
Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of Chordin to BMP-4. Cell86, 589–598 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lamb, T. M. et al. Neural induction by the secreted polypeptide noggin. Science262, 713–718 (1993). ArticleCASPubMed Google Scholar
Smith, W. C., McKendry, R., Ribisi, S. Jr & Harland, R. M. A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell82, 37–46 (1995). ArticleCASPubMed Google Scholar
Jazwinska, A., Rushlow, C. & Roth, S. The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. Development126, 3323–3334 (1999). CASPubMed Google Scholar
Arora, K. et al. The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell81, 781–790 (1995). ArticleCASPubMed Google Scholar
Grieder, N. C., Nellen, D., Burke, R., Basler, K. & Affolter, M. schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell81, 791–800 (1995). ArticleCASPubMed Google Scholar
Staehling-Hampton, K., Laughon, A. S. & Hoffmann, F. M. A Drosophila protein related to the human zinc finger transcription factor PRDII/MBPI/HIV-EP1 is required for Dpp signaling. Development121, 3393–3403 (1995). CASPubMed Google Scholar
Muller, B., Hartmann, B., Pyrowolakis, G., Affolter, M. & Basler, K. Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient. Cell113, 221–233 (2003). ArticleCASPubMed Google Scholar
Pyrowolakis, G., Hartmann, B., Muller, B., Basler, K. & Affolter, M. A simple molecular complex mediates widespread BMP-induced repression during Drosophila development. Dev. Cell7, 229–240 (2004). ArticleCASPubMed Google Scholar
Stathopoulos, A. & Levine, M. Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo. Dev. Biol.280, 482–493 (2005). ArticleCASPubMed Google Scholar
Affolter, M. & Basler, K. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nature Rev. Genet.8, 663–674 (2007). ArticleCASPubMed Google Scholar
Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell101, 435–445 (2000). ArticleCASPubMed Google Scholar
Chu, H., Parras, C., White, K. & Jimenez, F. Formation and specification of ventral neuroblasts is controlled by vnd in Drosophila neurogenesis. Genes Dev.12, 3613–3624 (1998). ArticleCASPubMedPubMed Central Google Scholar
Isshiki, T., Takeichi, M. & Nose, A. The role of the msh homeobox gene during Drosophila neurogenesis: implication for the dorsoventral specification of the neuroectoderm. Development124, 3099–3109 (1997). CASPubMed Google Scholar
Jimenez, F. et al. vnd, a gene required for early neurogenesis of Drosophila, encodes a homeodomain protein. EMBO J.14, 3487–3495 (1995). ArticleCASPubMedPubMed Central Google Scholar
McDonald, J. A. et al. Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. Genes Dev.12, 3603–3612 (1998). ArticleCASPubMedPubMed Central Google Scholar
Skeath, J. B., Panganiban, G. F. & Carroll, S. B. The ventral nervous system defective gene controls proneural gene expression at two distinct steps during neuroblast formation in Drosophila. Development120, 1517–1524 (1994). CASPubMed Google Scholar
Weiss, J. B. et al. Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev.12, 3591–3602 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cowden, J. & Levine, M. Ventral dominance governs sequential patterns of gene expression across the dorsal–ventral axis of the neuroectoderm in the Drosophila embryo. Dev. Biol.262, 335–349 (2003). Provides evidence that neural identity genes act in a hierarchical repressive cascade in which more ventrally expressed transcription factors repress the expression of more dorsal genes. ArticleCASPubMed Google Scholar
Barth, K. A. et al. Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development126, 4977–4987 (1999). Shows that BMPs can act over long distances to pattern the D/V axis of the zebrafish neural tube and that high-level signalling in the epidermis can inhibit expression of dorsal markers such as Msx genes. CASPubMed Google Scholar
LaBonne, C. & Bronner-Fraser, M. Neural crest induction in Xenopus: evidence for a two-signal model. Development125, 2403–2414 (1998). CASPubMed Google Scholar
Lee, K. J. & Jessell, T. M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci.22, 261–294 (1999). ArticleCASPubMed Google Scholar
Marchant, L., Linker, C., Ruiz, P., Guerrero, N. & Mayor, R. The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev. Biol.198, 319–329 (1998). ArticleCASPubMed Google Scholar
Neave, B., Holder, N. & Patient, R. A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in the zebrafish. Mech. Dev.62, 183–195 (1997). ArticleCASPubMed Google Scholar
Nguyen, V. H. et al. Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development127, 1209–1220 (2000). CASPubMed Google Scholar
Timmer, J. R., Wang, C. & Niswander, L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development129, 2459–2472 (2002). CASPubMed Google Scholar
Tribulo, C., Aybar, M. J., Nguyen, V. H., Mullins, M. C. & Mayor, R. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development130, 6441–6452 (2003). ArticleCASPubMed Google Scholar
Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development124, 3177–3184 (1997). CASPubMed Google Scholar
Furuta, Y., Piston, D. W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development124, 2203–2212 (1997). CASPubMed Google Scholar
Golden, J. A. et al. Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly. Proc. Natl Acad. Sci. USA96, 2439–2444 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hartley, K. O., Hardcastle, Z., Friday, R. V., Amaya, E. & Papalopulu, N. Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation. Dev. Biol.238, 168–184 (2001). ArticleCASPubMed Google Scholar
Pierani, A., Brenner-Morton, S., Chiang, C. & Jessell, T. M. A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell97, 903–915 (1999). ArticleCASPubMed Google Scholar
Nederbragt, A. J., van Loon, A. E. & Dictus, W. J. Evolutionary biology: hedgehog crosses the snail's midline. Nature417, 811–812 (2002). ArticleCASPubMed Google Scholar
Markstein, M. et al. A regulatory code for neurogenic gene expression in the Drosophila embryo. Development131, 2387–2394 (2004). ArticleCASPubMed Google Scholar
Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M. & Levine, M. Whole-genome analysis of dorsal–ventral patterning in the Drosophila embryo. Cell111, 687–701 (2002). ArticleCASPubMed Google Scholar
Gomez-Skarmeta, J. L., Campuzano, S. & Modolell, J. Half a century of neural prepatterning: the story of a few bristles and many genes. Nature Rev. Neurosci.4, 587–598 (2003). ArticleCAS Google Scholar
Ruiz i Altaba, A., Nguyen, V. & Palma, V. The emergent design of the neural tube: prepattern, SHH morphogen and GLI code. Curr. Opin. Genet. Dev.13, 513–521 (2003). ArticleCASPubMed Google Scholar
Bai, C. B., Stephen, D. & Joyner, A. L. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev. Cell6, 103–115 (2004). ArticleCASPubMed Google Scholar
Lei, Q., Zelman, A. K., Kuang, E., Li, S. & Matise, M. P. Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord. Development131, 3593–3604 (2004). ArticleCASPubMed Google Scholar
Litingtung, Y. & Chiang, C. Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nature Neurosci.3, 979–985 (2000). ArticleCASPubMed Google Scholar
Persson, M. et al. Dorsal–ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev.16, 2865–2878 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wijgerde, M., McMahon, J. A., Rule, M. & McMahon, A. P. A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes Dev.16, 2849–2864 (2002). ArticleCASPubMedPubMed Central Google Scholar
Liem, K. F. Jr, Jessell, T. M. & Briscoe, J. Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development127, 4855–4866 (2000). Shows that the BMP antagonist CHD, which is secreted by the ventrally located notochord, acts in concert with SHH to promote ventral cell fates, revealing the long-range action of dorsally produced BMPs. CASPubMed Google Scholar
McMahon, J. A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev.12, 1438–1452 (1998). ArticleCASPubMedPubMed Central Google Scholar
Conway Morris, S. Early metazoan evolution: reconciling paleontology and molecular biology. Am. Zool.38, 867–877 (1998). Article Google Scholar
Conway-Morris, S. The Cambrian 'explosion' of metazoans and molecular biology: would Darwin be satisfied? Int. J. Dev. Biol.47, 505–515 (2003). PubMed Google Scholar
Samuel, G., Miller, D. & Saint, R. Conservation of a DPP/BMP signaling pathway in the nonbilateral cnidarian Acropora millepora. Evol. Dev.3, 241–250 (2001). ArticleCASPubMed Google Scholar
Reber-Muller, S. et al. BMP2/4 and BMP5–8 in jellyfish development and transdifferentiation. Int. J. Dev. Biol.50, 377–384 (2006). ArticleCASPubMed Google Scholar
Rentzsch, F. et al. Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev. Biol.296, 375–387 (2006). ArticleCASPubMed Google Scholar
Finnerty, J. R., Pang, K., Burton, P., Paulson, D. & Martindale, M. Q. Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone. Science304, 1335–1337 (2004). ArticleCASPubMed Google Scholar
Lowe, C. J. et al. Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol.4, e291 (2006). Examines the expression and function of BMPs in hemichordate embryos; it finds that although BMPs and SOG/CHD are expressed in opposing domains along the D/V axis, BMPs do not repress the formation of diffusely distributed neurons in the nearly rotationally symmetrical ectoderm. ArticleCASPubMedPubMed Central Google Scholar
Akiyama-Oda, Y. & Oda, H. Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development133, 2347–2357 (2006). ArticleCASPubMed Google Scholar
van der Zee, M., Stockhammer, O., von Levetzow, C., Nunes da Fonseca, R. & Roth, S. Sog/Chordin is required for ventral-to-dorsal Dpp/BMP transport and head formation in a short germ insect. Proc. Natl Acad. Sci. USA103, 16307–16312 (2006). ArticleCASPubMedPubMed Central Google Scholar
Arendt, D., Denes, A. S., Jekely, G. & Tessmar-Raible, K. The evolution of nervous system centralization. Philos. Trans. R. Soc. Lond., B, Biol. Sci.363, 1523–1528 (2008). Article Google Scholar
Raible, F. & Arendt, D. Metazoan evolution: some animals are more equal than others. Curr. Biol.14, R106–R108 (2004). ArticleCASPubMed Google Scholar
Lohmann, I. & McGinnis, W. Hox genes: it's all a matter of context. Curr. Biol.12, R514–R516 (2002). ArticleCASPubMed Google Scholar
Pearson, J. C., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body patterning. Nature Rev. Genet.6, 893–904 (2005). A review of the role of Hox genes in patterning the A/P axis. It suggests that they act by defining abstract positional codes. ArticleCASPubMed Google Scholar
Wu, M. N. & Bellen, H. J. Genetic dissection of synaptic transmission in Drosophila. Curr. Opin. Neurobiol.7, 624–630 (1997). ArticleCASPubMed Google Scholar
Bier, E. Drosophila, the golden bug, emerges as a tool in human genetics. Nature Rev. Genet.6, 9–23 (2005). ArticleCASPubMed Google Scholar
Lawrence, P. A., Ashburner, M. & Johnston, P. An attempt to hybridize Drosophila species using pole cell transplantation. Genetics134, 1145–1148 (1993). CASPubMedPubMed Central Google Scholar
Dohrn, A. Der Ursprung der Wirbelthiere und das Princip des Functionwecshels (Translation: The Origin of Vertebrates and the Principle of Successions of Functions) (Wilhelm Engelman, Leipzig, 1875). Dohrn re-examines the relationship between the D/V axes of vertebrate and invertebrate embryos and suggests that the invertebrate body plan is the ancestral state and that a new ventral oral opening might have formed during this evolutionary process. Google Scholar
Chang, T., Mazotta, J., Dumstrei, K., Dumitrescu, A. & Hartenstein, V. Dpp and Hh signaling in the Drosophila embryonic eye field. Development128, 4691–4704 (2001). CASPubMed Google Scholar
Holland, N. D. Early central nervous system evolution: an era of skin brains? Nature Rev. Neurosci.4, 617–627 (2003). ArticleCAS Google Scholar
Lowe, C. J. Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii. Philos. Trans. R. Soc. Lond., B, Biol. Sci.363, 1569–1578 (2008). Article Google Scholar
Mizutani, C. M. & Bier, E. in The New Encyclopedia of Neuroscience (ed. L. Squire) (Elsevier, 2008) (in the press). Google Scholar
Arora, K., Levine, M. S. & O'Connor, M. B. The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo. Genes Dev.8, 2588–2601 (1994). ArticleCASPubMed Google Scholar
Padgett, R. W., St Johnston, R. D. & Gelbart, W. M. A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature325, 81–84 (1987). ArticleCASPubMed Google Scholar
Wharton, K. A., Thomsen, G. H. & Gelbart, W. M. Drosophila 60A gene, another transforming growth factor beta family member, is closely related to human bone morphogenetic proteins. Proc. Natl Acad. Sci. USA88, 9214–9218 (1991). ArticleCASPubMedPubMed Central Google Scholar
Shimmi, O., Umulis, D., Othmer, H. & O'Connor, M. B. Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell120, 873–886 (2005). ArticleCASPubMedPubMed Central Google Scholar
Brummel, T. J. et al. Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell78, 251–261 (1994). ArticleCASPubMed Google Scholar
Letsou, A. et al. Drosophila Dpp signaling is mediated by the punt gene product: a dual ligand-binding type II receptor of the TGF beta receptor family. Cell80, 899–908 (1995). ArticleCASPubMed Google Scholar
Penton, A. et al. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a Decapentaplegic receptor. Cell78, 239–250 (1994). ArticleCASPubMed Google Scholar
Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics139, 1347–1358 (1995). CASPubMedPubMed Central Google Scholar
Raftery, L. A., Twombly, V., Wharton, K. & Gelbart, W. M. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics139, 241–254 (1995). CASPubMedPubMed Central Google Scholar
Winter, S. E. & Campbell, G. Repression of Dpp targets in the Drosophila wing by Brinker. Development131, 6071–6081 (2004). ArticleCASPubMed Google Scholar
Rushlow, C., Colosimo, P. F., Lin, M. C., Xu, M. & Kirov, N. Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev.15, 340–351 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kirkpatrick, H., Johnson, K. & Laughon, A. Repression of dpp targets by binding of brinker to mad sites. J. Biol. Chem.276, 18216–18222 (2001). ArticleCASPubMed Google Scholar
Sutherland, D. J., Li, M., Liu, X. Q., Stefancsik, R. & Raftery, L. A. Stepwise formation of a SMAD activity gradient during dorsal–ventral patterning of the Drosophila embryo. Development130, 5705–5716 (2003). ArticleCASPubMed Google Scholar
Srinivasan, S., Rashka, K. E. & Bier, E. Creation of a Sog morphogen gradient in the Drosophila embryo. Dev. Cell2, 91–101 (2002). ArticleCASPubMed Google Scholar
Shimell, M. J., Ferguson, E. L., Childs, S. R. & O'Connor, M. B. The Drosophila dorsal–ventral patterning gene tolloid is related to human bone morphogenetic protein 1. Cell67, 469–481 (1991). ArticleCASPubMed Google Scholar
Marques, G. et al. Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell91, 417–426 (1997). ArticleCASPubMed Google Scholar
Mason, E. D., Konrad, K. D., Webb, C. D. & Marsh, J. L. Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev.8, 1489–1501 (1994). ArticleCASPubMed Google Scholar
Oelgeschlager, M., Larrain, J., Geissert, D. & De Robertis, E. M. The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature405, 757–763 (2000). ArticleCASPubMedPubMed Central Google Scholar
Oelgeschlager, M. et al. The pro-BMP activity of Twisted gastrulation is independent of BMP binding. Development130, 4047–4056 (2003). ArticleCASPubMed Google Scholar
Ross, J. J. et al. Twisted gastrulation is a conserved extracellular BMP antagonist. Nature410, 479–483 (2001). ArticleCASPubMed Google Scholar
Scott, I. C. et al. Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling. Nature410, 475–478 (2001). ArticleCASPubMed Google Scholar
Ashe, H. L. & Levine, M. Local inhibition and long-range enhancement of Dpp signal transduction by Sog. Nature398, 427–431 (1999). ArticleCASPubMed Google Scholar
Eldar, A. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature419, 304–308 (2002). ArticleCASPubMed Google Scholar
Wang, Y. C. & Ferguson, E. L. Spatial bistability of Dpp-receptor interactions during Drosophila dorsal–ventral patterning. Nature434, 229–234 (2005). ArticleCASPubMed Google Scholar
Piccolo, S. et al. Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell91, 407–416 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chang, C. et al. Twisted gastrulation can function as a BMP antagonist. Nature410, 483–487 (2001). ArticleCASPubMed Google Scholar
Larrain, J. et al. Proteolytic cleavage of Chordin as a switch for the dual activities of Twisted gastrulation in BMP signaling. Development128, 4439–4447 (2001). CASPubMed Google Scholar
Blitz, I. L., Shimmi, O., Wunnenberg-Stapleton, K., O'Connor, M. B. & Cho, K. W. Is chordin a long-range- or short-range-acting factor? Roles for BMP1-related metalloproteases in chordin and BMP4 autofeedback loop regulation. Dev. Biol.223, 120–138 (2000). ArticleCASPubMed Google Scholar
Hammerschmidt, M., Serbedzija, G. N. & McMahon, A. P. Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev.10, 2452–2461 (1996). ArticleCASPubMed Google Scholar
Ben-Zvi, D., Shilo, B. Z., Fainsod, A. & Barkai, N. Scaling of the BMP activation gradient in Xenopus embryos. Nature453 1205–1211 (2008). ArticleCASPubMed Google Scholar
Stathopoulos, A. & Levine, M. Whole-genome expression profiles identify gene batteries in Drosophila. Dev. Cell3, 464–465 (2002). ArticleCASPubMed Google Scholar
von Ohlen, T. & Doe, C. Q. Convergence of dorsal, dpp, and egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal–ventral columns. Dev. Biol.224, 362–372 (2000). ArticleCASPubMed Google Scholar
Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science305, 846 (2004). ArticleCASPubMed Google Scholar
Schmidt, J. E., von Dassow, G. & Kimelman, D. Regulation of dorsal–ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development122, 1711–1721 (1996). CASPubMed Google Scholar
Schmidt, J. E., Suzuki, A., Ueno, N. & Kimelman, D. Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. Dev. Biol.169, 37–50 (1995). ArticleCASPubMed Google Scholar