Methodological challenges of genome-wide association analysis in Africa (original) (raw)
Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest.118, 1590–1605 (2008). CASPubMedPubMed Central Google Scholar
McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet.9, 356–369 (2008). ArticleCASPubMed Google Scholar
Donnelly, P. Progress and challenges in genome-wide association studies in humans. Nature456, 728–731 (2008). CASPubMed Google Scholar
Black, R. E., Morris, S. S. & Bryce, J. Where and why are 10 million children dying every year? Lancet361, 2226–2234 (2003). PubMed Google Scholar
Mathers, C. D., Boerma, T. & Ma Fat, D. Global and regional causes of death. Br. Med. Bull.92, 7–32 (2009). PubMed Google Scholar
Mayosi, B. M. et al. The burden of non-communicable diseases in South Africa. Lancet374, 934–947 (2009). PubMed Google Scholar
Tishkoff, S. A. & Williams, S. M. Genetic analysis of African populations: human evolution and complex disease. Nature Rev. Genet.3, 611–621 (2002). CASPubMed Google Scholar
Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genomics Hum. Genet.9, 403–433 (2008). This paper provides a comprehensive discussion on the implications of genetic diversity in Africa for complex disease mapping and understanding the origins of modern humans. CASPubMedPubMed Central Google Scholar
Sirugo, G. et al. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Hum. Genet.123, 557–598 (2008). PubMed Google Scholar
Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science324, 1035–1044 (2009). The most detailed genetic survey of Africans and African-Americans to date. CASPubMedPubMed Central Google Scholar
Conrad, D. F. et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nature Genet.38, 1251–1260 (2006). This article reports the extent of haplotype diversity in humans and the applicability of genome-wide studies across many populations. CASPubMed Google Scholar
Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature451, 998–1003 (2008). This paper provides a detailed exposition of genetic variation across the populations of the Human Genome Diversity Project. CASPubMed Google Scholar
DeGiorgio, M., Jakobsson, M. & Rosenberg, N. A. Out of Africa: modern human origins special feature: explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc. Natl Acad. Sci. USA106, 16057–16062 (2009). CASPubMedPubMed Central Google Scholar
Todd, J. A. et al. Identification of susceptibility loci for insulin-dependent diabetes mellitus by trans-racial gene mapping. Nature338, 587–589 (1989). An insightful study from 20 years ago that illustrates the problem of identifying causal genetic variants and the value of examining African haplotypes. CASPubMed Google Scholar
International HapMap Consortium. A haplotype map of the human genome. Nature437, 1299–1320 (2005).
Helgason, A. et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nature Genet.39, 218–225 (2007). CASPubMed Google Scholar
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science273, 1516–1517 (1996). CASPubMed Google Scholar
Clark, A. G. Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Curr. Opin. Genet. Dev.13, 296–302 (2003). CASPubMed Google Scholar
Jallow, M. et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nature Genet.41, 657–665 (2009). The first report of a genome-wide study performed in Africa, describing population structure and imputation from population-specific sequencing data. CASPubMed Google Scholar
Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature449, 851–861 (2007). CASPubMed Google Scholar
Crawford, D. C. et al. Haplotype diversity across 100 candidate genes for inflammation, lipid metabolism, and blood pressure regulation in two populations. Am. J. Hum. Genet.74, 610–622 (2004). CASPubMedPubMed Central Google Scholar
Bhangale, T. R., Rieder, M. J. & Nickerson, D. A. Estimating coverage and power for genetic association studies using near-complete variation data. Nature Genet.40, 841–843 (2008). A well-conducted resequencing study that highlights the level of ascertainment bias in existing databases for African populations in particular. CASPubMed Google Scholar
Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature456, 53–59 (2008). The first whole-genome sequence of an individual of African ancestry. CASPubMedPubMed Central Google Scholar
Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med.360, 1696–1698 (2009). CASPubMed Google Scholar
Hirschhorn, J. N. Genomewide association studies — illuminating biologic pathways. N. Engl. J. Med.360, 1699–1701 (2009). CASPubMed Google Scholar
Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science316, 889–894 (2007). CASPubMedPubMed Central Google Scholar
Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nature Genet.39, 724–726 (2007). CASPubMed Google Scholar
Wardle, J., Llewellyn, C., Sanderson, S. & Plomin, R. The FTO gene and measured food intake in children. Int. J. Obes. (Lond.)33, 42–45 (2009). CAS Google Scholar
Tanofsky-Kraff, M. et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am. J. Clin. Nutr.90, 1483–1488 (2009). CASPubMedPubMed Central Google Scholar
Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet.77, 171–190 (2005). CASPubMedPubMed Central Google Scholar
Hill, A. V. Aspects of genetic susceptibility to human infectious diseases. Annu. Rev. Genet.40, 469–486 (2006). CASPubMed Google Scholar
Fellay, J. et al. A whole-genome association study of major determinants for host control of HIV-1. Science317, 944–947 (2007). CASPubMedPubMed Central Google Scholar
Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med.295, 302–304 (1976). CASPubMed Google Scholar
Moreno, A. et al. Preclinical assessment of the receptor-binding domain of Plasmodium vivax Duffy-binding protein as a vaccine candidate in rhesus macaques. Vaccine26, 4338–4344 (2008). CASPubMedPubMed Central Google Scholar
Mackinnon, M. J., Mwangi, T. W., Snow, R. W., Marsh, K. & Williams, T. N. Heritability of malaria in Africa. PLoS Med.2, e340 (2005). PubMedPubMed Central Google Scholar
Malaria Genomic Epidemiology Network. A global network for investigating the genomic epidemiology of malaria. Nature456, 732–737 (2008).
Daar, A. S. et al. Grand challenges in chronic non-communicable diseases. Nature450, 494–496 (2007). CASPubMed Google Scholar
World Health Organization. Preventing Chronic Diseases: A Vital Investment (World Health Organization, Geneva, 2005).
Cooper, R. S., Rotimi, C. N. & Ward, R. The puzzle of hypertension in African-Americans. Sci. Am.280, 56–63 (1999). CASPubMed Google Scholar
Smith, M. W. & O'Brien, S. J. Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nature Rev. Genet.6, 623–632 (2005). CASPubMed Google Scholar
Cooper, R. et al. The prevalence of hypertension in seven populations of West African origin. Am. J. Public Health87, 160–168 (1997). CASPubMedPubMed Central Google Scholar
Cooper, R. S. et al. Prevalence of NIDDM among populations of the African diaspora. Diabetes Care20, 343–348 (1997). CASPubMed Google Scholar
Smith, M. W. et al. A high-density admixture map for disease gene discovery in African Americans. Am. J. Hum. Genet.74, 1001–1013 (2004). CASPubMedPubMed Central Google Scholar
McKeigue, P. M. Prospects for admixture mapping of complex traits. Am. J. Hum. Genet.76, 1–7 (2005). CASPubMed Google Scholar
Zhu, X. et al. Admixture mapping for hypertension loci with genome-scan markers. Nature Genet.37, 177–181 (2005). CASPubMed Google Scholar
Patterson, N. et al. Genetic structure of a unique admixed population: implications for medical research. Hum. Mol. Genet. 18 Nov 2009 (doi:10.1093/hmg/ddp505). PubMed Google Scholar
Price, A. L. et al. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet.5, e1000519 (2009). PubMedPubMed Central Google Scholar
Cheng, C. Y. et al. Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X. PLoS Genet.5, e1000490 (2009). PubMedPubMed Central Google Scholar
Reich, D. et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet.5, e1000360 (2009). A detailed investigation that used admixture mapping to identify a genomic region of interest for a common phenotype and then used association fine mapping to find a plausible causal variant. PubMedPubMed Central Google Scholar
Kaufman, J. S., Owoaje, E. E., Rotimi, C. N. & Cooper, R. S. Blood pressure change in Africa: case study from Nigeria. Hum. Biol.71, 641–657 (1999). CASPubMed Google Scholar
Adeyemo, A. et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet.5, e1000564 (2009). An important GWA study in African-Americans with replication studies in West Africa. This work sets the scene for African GWA studies of hypertension and other chronic diseases. PubMedPubMed Central Google Scholar
Rotimi, C. N. et al. A genome-wide search for type 2 diabetes susceptibility genes in West Africans: the Africa America Diabetes Mellitus (AADM) study. Diabetes53, 838–841 (2004). CASPubMed Google Scholar
Rotimi, C. N. et al. In search of susceptibility genes for type 2 diabetes in West Africa: the design and results of the first phase of the AADM study. Ann. Epidemiol.11, 51–58 (2001). CASPubMed Google Scholar
Rotimi, C. et al. Prevalence and determinants of diabetic retinopathy and cataracts in West African type 2 diabetes patients. Ethn. Dis.13, S110–S117 (2003). PubMed Google Scholar
Steinthorsdottir, V. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genet.39, 770–775 (2007). CASPubMed Google Scholar
Wang, W. Y., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nature Rev. Genet.6, 109–118 (2005). CASPubMed Google Scholar
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
Chanock, S. J. et al. Replicating genotype–phenotype associations. Nature447, 655–660 (2007). CASPubMed Google Scholar
Dudbridge, F. & Gusnanto, A. Estimation of significance thresholds for genomewide association scans. Genet. Epidemiol.32, 227–234 (2008). PubMedPubMed Central Google Scholar
Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M. J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol.32, 381–385 (2008). PubMed Google Scholar
Hoggart, C. J., Clark, T. G., De Iorio, M., Whittaker, J. C. & Balding, D. J. Genome-wide significance for dense SNP and resequencing data. Genet. Epidemiol.32, 179–185 (2008). PubMed Google Scholar
Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature447, 1087–1093 (2007). CASPubMedPubMed Central Google Scholar
Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genet.40, 638–645 (2008). CASPubMed Google Scholar
Teo, Y. Y. et al. Genome-wide comparisons of variation in linkage disequilibrium. Genome Res.19, 1849–1860 (2009). Provides a quantitative metric for assessing the extent of variation in patterns of LD between two populations. CASPubMedPubMed Central Google Scholar
Teo, Y. Y. et al. Power consequences of linkage disequilibrium variation between populations. Genet. Epidemiol.33, 128–135 (2008). Google Scholar
Lowe, C. E. et al. Large-scale genetic fine mapping and genotype–phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nature Genet.39, 1074–1082 (2007). CASPubMed Google Scholar
McKenzie, C. A. et al. Trans-ethnic fine mapping of a quantitative trait locus for circulating angiotensin I-converting enzyme (ACE). Hum. Mol. Genet.10, 1077–1084 (2001). CASPubMed Google Scholar
Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nature Genet.40, 198–203 (2008). CASPubMed Google Scholar
de Bakker, P. I. et al. Efficiency and power in genetic association studies. Nature Genet.37, 1217–1223 (2005). CASPubMed Google Scholar
Barrett, J. C. & Cardon, L. R. Evaluating coverage of genome-wide association studies. Nature Genet.38, 659–662 (2006). CASPubMed Google Scholar
Pe'er, I. et al. Evaluating and improving power in whole-genome association studies using fixed marker sets. Nature Genet.38, 663–667 (2006). CASPubMed Google Scholar
Clark, A. G., Hubisz, M. J., Bustamante, C. D., Williamson, S. H. & Nielsen, R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res.15, 1496–1502 (2005). CASPubMedPubMed Central Google Scholar
Miller, R. D. et al. High-density single-nucleotide polymorphism maps of the human genome. Genomics86, 117–126 (2005). CASPubMed Google Scholar
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007). CASPubMed Google Scholar
Wall, J. D. et al. A novel DNA sequence database for analyzing human demographic history. Genome Res.18, 1354–1361 (2008). CASPubMedPubMed Central Google Scholar
Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science319, 1100–1104 (2008). CASPubMed Google Scholar
Conrad, D. F., Andrews, T. D., Carter, N. P., Hurles, M. E. & Pritchard, J. K. A high-resolution survey of deletion polymorphism in the human genome. Nature Genet.38, 75–81 (2006). CASPubMed Google Scholar
Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 7 Oct 2009 (doi:10.1038/nature08516). PubMedPubMed Central Google Scholar
Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large genetic association studies. Nature Genet.36, 512–517 (2004). CASPubMed Google Scholar
Clayton, D. G. et al. Population structure, differential bias and genomic control in a large-scale, case–control association study. Nature Genet.37, 1243–1246 (2005). CASPubMed Google Scholar
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics55, 997–1004 (1999). CASPubMed Google Scholar
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet.38, 904–909 (2006). An invaluable approach for dealing with genetic association artefacts caused by ethnic admixture. CASPubMed Google Scholar
Ewens, W. J. & Spielman, R. S. The transmission/disequilibrium test: history, subdivision, and admixture. Am. J. Hum. Genet.57, 455–464 (1995). CASPubMedPubMed Central Google Scholar
Tishkoff, S. A. et al. Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science271, 1380–1387 (1996). CASPubMed Google Scholar
Tarazona-Santos, E. & Tishkoff, S. A. Divergent patterns of linkage disequilibrium and haplotype structure across global populations at the interleukin-13 (IL13) locus. Genes Immun.6, 53–65 (2005). CASPubMed Google Scholar
Shriner, D. et al. Transferability and fine-mapping of genome-wide associated loci for adult height across human populations. PLoS ONE4, e8398 (2009). PubMedPubMed Central Google Scholar
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature437, 376–380 (2005). CASPubMedPubMed Central Google Scholar
Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science309, 1728–1732 (2005). CASPubMed Google Scholar
Harris, T. D. et al. Single-molecule DNA sequencing of a viral genome. Science320, 106–109 (2008). CASPubMed Google Scholar
Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotech.26, 1146–1153 (2008). CAS Google Scholar
Hillier, L. W. et al. Whole-genome sequencing and variant discovery in C. elegans. Nature Methods5, 183–188 (2008). CASPubMed Google Scholar
Shendure, J. & Ji, H. Next-generation DNA sequencing. Nature Biotech.26, 1135–1145 (2008). CAS Google Scholar
Agarwal, A. et al. Hemoglobin C associated with protection from severe malaria in the Dogon of Mali, a West African population with a low prevalence of hemoglobin S. Blood96, 2358–2363 (2000). CASPubMed Google Scholar
Modiano, D. et al. Haemoglobin S and haemoglobin C: 'quick but costly' versus 'slow but gratis' genetic adaptations to Plasmodium falciparum malaria. Hum. Mol. Genet.17, 789–799 (2008). CASPubMed Google Scholar
Modiano, D. et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature414, 305–308 (2001). CASPubMed Google Scholar
Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nature Genet.39, 906–913 (2007). CASPubMed Google Scholar
Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet.81, 1084–1097 (2007). CASPubMedPubMed Central Google Scholar
Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet.3, e114 (2007). PubMedPubMed Central Google Scholar
Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet.5, e1000529 (2009). A state-of-the-art imputation method that is particularly relevant to the availability of whole-genome sequence data.
Huang, L. et al. Genotype-imputation accuracy across worldwide human populations. Am. J. Hum. Genet.84, 235–250 (2009). CASPubMedPubMed Central Google Scholar
Hanchard, N. et al. Classical sickle β-globin haplotypes exhibit a high degree of long-range haplotype similarity in African and Afro-Caribbean populations. BMC Genet.8, 52 (2007). PubMedPubMed Central Google Scholar
Chakravarti, A. et al. Nonuniform recombination within the human β-globin gene cluster. Am. J. Hum. Genet.36, 1239–1258 (1984). CASPubMedPubMed Central Google Scholar
Pagnier, J. et al. Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc. Natl Acad. Sci. USA81, 1771–1773 (1984). CASPubMedPubMed Central Google Scholar
Chebloune, Y. et al. Structural analysis of the 5′ flanking region of the β-globin gene in African sickle cell anemia patients: further evidence for three origins of the sickle cell mutation in Africa. Proc. Natl Acad. Sci. USA85, 4431–4435 (1988). CASPubMedPubMed Central Google Scholar
Rotimi, C. N. Inauguration of the African Society of Human Genetics. Nature Genet.36, 544 (2004). CASPubMed Google Scholar
Newport, M. J. & Rotimi, C. N. Reducing the global genomic inequity gap: development of an African genome project. Public Health Genomics12, 251–252 (2009). PubMed Google Scholar
Sirugo, G. et al. A national DNA bank in The Gambia, West Africa, and genomic research in developing countries. Nature Genet.36, 785–786 (2004). CASPubMed Google Scholar
Manolio, T. A. et al. New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nature Genet.39, 1045–1051 (2007). CASPubMed Google Scholar
Chokshi, D. A., Parker, M. & Kwiatkowski, D. P. Data sharing and intellectual property in a genomic epidemiology network: policies for large-scale research collaboration. Bull. World Health Organ.84, 382–387 (2006). PubMedPubMed Central Google Scholar
Kaye, J., Heeney, C., Hawkins, N., de Vries, J. & Boddington, P. Data sharing in genomics — re-shaping scientific practice. Nature Rev. Genet.10, 331–335 (2009). CASPubMed Google Scholar
Parker, M. et al. Ethical data-release in genome-wide association studies in developing countries. PLoS Med.6, e1000143 (2009). This article discusses the ethical implications of data sharing and data release in large-scale genetic studies conducted in Africa. PubMedPubMed Central Google Scholar
Chokshi, D. & Kwiatkowski, D. Ethical challenges of genomic epidemiology in developing countries. Genomics Soc. Policy1, 1–15 (2005).Article Google Scholar
Chokshi, D. A. et al. Valid consent for genomic epidemiology in developing countries. PLoS Med.4, e95 (2007). PubMedPubMed Central Google Scholar
Marshall, P. A. et al. Voluntary participation and informed consent to international genetic research. Am. J. Public Health96, 1989–1995 (2006). PubMedPubMed Central Google Scholar
Tekola, F. et al. Tailoring consent to context: designing an appropriate consent process for a biomedical study in a low income setting. PLoS Negl. Trop. Dis.3, e482 (2009). PubMedPubMed Central Google Scholar
Caulfield, T. et al. Race and ancestry in biomedical research: exploring the challenges. Genome Med.1, 8 (2009). PubMedPubMed Central Google Scholar