Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature458, 362–366 (2009). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nature Struct. Mol. Biol.16, 847–852 (2009). ArticleCAS Google Scholar
Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem.67, 545–579 (1998). ArticleCASPubMed Google Scholar
Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev.15, 2343–2360 (2001). ArticleCASPubMed Google Scholar
Talbert, P. B. & Henikoff, S. Histone variants — ancient wrap artists of the epigenome. Nature Rev. Mol. Cell Biol.11, 264–275 (2010). ArticleCAS Google Scholar
Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature446, 572–576 (2007). ArticleCASPubMed Google Scholar
Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science309, 626–630 (2005). This was the first high-resolution genome-wide study of nucleosome distribution. It indicated that conserved DNA sequences contribute to the stereotypic nucleosome arrangement found at most yeast promoters. ArticleCASPubMed Google Scholar
Wu, C., Bingham, P. M., Livak, K. J., Holmgren, R. & Elgin, S. C. The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence. Cell16, 797–806 (1979). This was the first demonstration that DNase I sensitivity and chromatin structure at gene promoters dynamically respond to transcriptional regulation. ArticleCASPubMed Google Scholar
Wu, C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature286, 854–860 (1980). ArticleCASPubMed Google Scholar
Mito, Y., Henikoff, J. G. & Henikoff, S. Histone replacement marks the boundaries of _cis_-regulatory domains. Science315, 1408–1411 (2007). ArticleCASPubMed Google Scholar
Nagy, P. L., Cleary, M. L., Brown, P. O. & Lieb, J. D. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc. Natl Acad. Sci. USA100, 6364–6369 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sabo, P. J. et al. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc. Natl Acad. Sci. USA101, 4537–4542 (2004). ArticleCASPubMedPubMed Central Google Scholar
Crawford, G. E. et al. Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc. Natl Acad. Sci. USA101, 992–997 (2004). ArticleCASPubMedPubMed Central Google Scholar
Weintraub, H. & Groudine, M. Chromosomal subunits in active genes have an altered conformation. Science193, 848–856 (1976). This paper was the first to describe differential sensitivity of active and repressed genes to DNase I digestion. ArticleCASPubMed Google Scholar
Bulger, M. et al. A complex chromatin landscape revealed by patterns of nuclease sensitivity and histone modification within the mouse β-globin locus. Mol. Cell. Biol.23, 5234–5244 (2003). ArticleCASPubMedPubMed Central Google Scholar
Noll, M., Thomas, J. O. & Kornberg, R. D. Preparation of native chromatin and damage caused by shearing. Science187, 1203–1206 (1975). ArticleCASPubMed Google Scholar
Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell132, 887–898 (2008). ArticleCASPubMed Google Scholar
Jessen, W. J., Hoose, S. A., Kilgore, J. A. & Kladde, M. P. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nature Struct. Mol. Biol.13, 256–263 (2006). ArticleCAS Google Scholar
Fatemi, M. et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res.33, e176 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Gottschling, D. E. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc. Natl Acad. Sci. USA89, 4062–4065 (1992). ArticleCASPubMedPubMed Central Google Scholar
Singh, J. & Klar, A. J. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev.6, 186–196 (1992). ArticleCASPubMed Google Scholar
Bell, O. et al. Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing. Nature Struct. Mol. Biol.17, 894–900 (2010). ArticleCAS Google Scholar
Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science295, 1306–1311 (2002). ArticleCASPubMed Google Scholar
Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell10, 1453–1465 (2002). ArticleCASPubMed Google Scholar
Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res.16, 1299–1309 (2006). ArticleCASPubMedPubMed Central Google Scholar
Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genet.38, 1348–1354 (2006). ArticleCASPubMed Google Scholar
Tiwari, V. K., Cope, L., McGarvey, K. M., Ohm, J. E. & Baylin, S. B. A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res.18, 1171–1179 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nature Genet.38, 1341–1347 (2006). ArticleCASPubMed Google Scholar
Wu, C., Wong, Y. C. & Elgin, S. C. The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell16, 807–814 (1979). ArticleCASPubMed Google Scholar
Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell55, 1137–1145 (1988). ArticleCASPubMed Google Scholar
Knezetic, J. A. & Luse, D. S. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell45, 95–104 (1986). ArticleCASPubMed Google Scholar
Drew, H. R. & Travers, A. A. DNA bending and its relation to nucleosome positioning. J. Mol. Biol.186, 773–790 (1985). ArticleCASPubMed Google Scholar
Satchwell, S. C., Drew, H. R. & Travers, A. A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol.191, 659–675 (1986). ArticleCASPubMed Google Scholar
Struhl, K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc. Natl Acad. Sci. USA82, 8419–8423 (1985). ArticleCASPubMedPubMed Central Google Scholar
Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res.18, 1051–1063 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science332, 977–980 (2011). The authors showed thatin vitroreconstitution of nucleosome positioning outside budding yeast promoters relies mostly on ATP-dependent remodelling rather than sequence determinants. ArticleCASPubMedPubMed Central Google Scholar
Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell128, 707–719 (2007). ArticleCASPubMed Google Scholar
Workman, J. L. & Kingston, R. E. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science258, 1780–1784 (1992). ArticleCASPubMed Google Scholar
Fascher, K. D., Schmitz, J. & Horz, W. Role of _trans_-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae. EMBO J.9, 2523–2528 (1990). ArticleCASPubMedPubMed Central Google Scholar
Lomvardas, S. & Thanos, D. Nucleosome sliding via TBP DNA binding in vivo. Cell106, 685–696 (2001). ArticleCASPubMed Google Scholar
John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nature Genet.43, 264–268 (2011). This genome-wide study revealed that tissue-specific DNA binding of glucorticoid receptors is largely directed by pre-existing foci of accessible chromatin. ArticleCASPubMed Google Scholar
Bucceri, A., Kapitza, K. & Thoma, F. Rapid accessibility of nucleosomal DNA in yeast on a second time scale. EMBO J.25, 3123–3132 (2006). ArticleCASPubMedPubMed Central Google Scholar
Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nature Struct. Mol. Biol.12, 46–53 (2005). ArticleCAS Google Scholar
Almer, A. & Horz, W. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J.5, 2681–2687 (1986). ArticleCASPubMedPubMed Central Google Scholar
Lam, F. H., Steger, D. J. & O'Shea, E. K. Chromatin decouples promoter threshold from dynamic range. Nature453, 246–250 (2008). This study systematically dissects the interplay between affinity and location of transcription factor binding sites relative to positioned nucleosomes and implies a role for chromatin to fine-tune the transcriptional response to external signalling. ArticleCASPubMedPubMed Central Google Scholar
Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem.78, 273–304 (2009). ArticleCASPubMed Google Scholar
Becker, P. B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem.71, 247–273 (2002). ArticleCASPubMed Google Scholar
Parnell, T. J., Huff, J. T. & Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J.27, 100–110 (2008). ArticleCASPubMed Google Scholar
Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell137, 445–458 (2009). This work dissects the order of events and reveals concerted action of sequence determinants, transcription-factor binding and nucleosome remodelling that lead to establishment of NDRs in budding yeast. ArticleCASPubMedPubMed Central Google Scholar
Raisner, R. M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell123, 233–248 (2005). ArticleCASPubMedPubMed Central Google Scholar
Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature450, 1031–1035 (2007). This genome-wide localization study showed that the chromatin remodeller Isw2 slides nucleosomes onto unfavourable A/T-rich sequences, which prevents aberrant transcription from canonical and cryptic start sites. ArticleCASPubMed Google Scholar
Izban, M. G. & Luse, D. S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev.5, 683–696 (1991). ArticleCASPubMed Google Scholar
Lee, C. K., Shibata, Y., Rao, B., Strahl, B. D. & Lieb, J. D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genet.36, 900–905 (2004). ArticleCASPubMed Google Scholar
Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science301, 1090–1093 (2003). ArticleCASPubMed Google Scholar
Schwabish, M. A. & Struhl, K. Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol. Cell22, 415–422 (2006). ArticleCASPubMed Google Scholar
Bortvin, A. & Winston, F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science272, 1473–1476 (1996). ArticleCASPubMed Google Scholar
Kaplan, C. D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science301, 1096–1099 (2003). ArticleCASPubMed Google Scholar
Mason, P. B. & Struhl, K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol. Cell. Biol.23, 8323–8333 (2003). ArticleCASPubMedPubMed Central Google Scholar
McKittrick, E., Gafken, P. R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl Acad. Sci. USA101, 1525–1530 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schwartz, B. E. & Ahmad, K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev.19, 804–814 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wirbelauer, C., Bell, O. & Schubeler, D. Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev.19, 1761–1766 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H., Roberts, D. N. & Cairns, B. R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell123, 219–231 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jin, C. et al. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nature Genet.41, 941–945 (2009). ArticleCASPubMed Google Scholar
Rando, O. J. Global patterns of histone modifications. Curr. Opin. Genet. Dev.17, 94–99 (2007). ArticleCASPubMed Google Scholar
Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol.14, 1025–1040 (2007). ArticleCAS Google Scholar
Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature442, 86–90 (2006). ArticleCASPubMed Google Scholar
Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T. J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol.327, 85–96 (2003). ArticleCASPubMed Google Scholar
Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science311, 844–847 (2006). The authors providein vitroevidence that H4K16ac antagonizes chromatin condensation by disrupting charge-based histone interactions and binding of the chromatin remodelling factor ACF. ArticleCASPubMed Google Scholar
Akhtar, A. & Becker, P. B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell5, 367–375 (2000). ArticleCASPubMed Google Scholar
Larschan, E. et al. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature471, 115–118 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nature Chem. Biol.7, 113–119 (2011). ArticleCAS Google Scholar
Heitz, E. Das Heterochromatin der Moose. Jahrbücher für wissenschaftliche Botanik69, 762–818 (1928). Google Scholar
Huisinga, K. L., Brower-Toland, B. & Elgin, S. C. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma115, 110–122 (2006). ArticleCASPubMed Google Scholar
Schotta, G. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev.18, 1251–1262 (2004). ArticleCASPubMedPubMed Central Google Scholar
Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature464, 927–931 (2010). ArticleCASPubMed Google Scholar
Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature412, 561–565 (2001). ArticleCASPubMed Google Scholar
Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev.16, 919–932 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCASPubMed Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCASPubMed Google Scholar
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). ArticleCASPubMed Google Scholar
Lu, X. et al. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nature Struct. Mol. Biol.15, 1122–1124 (2008). ArticleCAS Google Scholar
Beisel, C. & Paro, R. Silencing chromatin: comparing modes and mechanisms. Nature Rev. Genet.12, 123–135 (2011). ArticleCASPubMed Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002). ArticleCASPubMed Google Scholar
Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell111, 197–208 (2002). ArticleCASPubMed Google Scholar
Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol.9, 1428–1435 (2007). ArticleCASPubMed Google Scholar
Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a polycomb group protein complex. Science306, 1574–1577 (2004). ArticleCASPubMed Google Scholar
Lanzuolo, C., Roure, V., Dekker, J., Bantignies, F. & Orlando, V. Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nature Cell Biol.9, 1167–1174 (2007). ArticleCASPubMed Google Scholar
Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell38, 452–464 (2010). ArticleCASPubMedPubMed Central Google Scholar
Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature453, 948–951 (2008). ArticleCASPubMed Google Scholar
Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell143, 212–224 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schwaiger, M. & Schubeler, D. A question of timing: emerging links between transcription and replication. Curr. Opin. Genet. Dev.16, 177–183 (2006). ArticleCASPubMed Google Scholar
Gilbert, D. M. Evaluating genome-scale approaches to eukaryotic DNA replication. Nature Rev. Genet.11, 673–684 (2010). ArticleCASPubMed Google Scholar
Gilbert, D. M. In search of the holy replicator. Nature Rev. Mol. Cell Biol.5, 848–855 (2004). ArticleCAS Google Scholar
Eaton, M. L. et al. Chromatin signatures of the Drosophila replication program. Genome Res.21, 164–174 (2010). ArticleCASPubMed Google Scholar
Cadoret, J. C. et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl Acad. Sci. USA105, 15837–15842 (2008). ArticleCASPubMedPubMed Central Google Scholar
Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev.24, 748–753 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schwaiger, M. et al. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev.23, 589–601 (2009). This study shows that chromosome-wide changes in acetylation correlate more closely with advanced replication timing rather than with changes in transcription, supporting a chromatin-based regulation of the replication program. ArticleCASPubMedPubMed Central Google Scholar
Hiratani, I. et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol.6, e245 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Mechali, M. Eukaryotic DNA replication origins: many choices for appropriate answers. Nature Rev. Mol. Cell Biol.11, 728–738 (2010). ArticleCAS Google Scholar
Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell80, 859–868 (1995). ArticleCASPubMed Google Scholar
Thoma, F. Repair of UV lesions in nucleosomes — intrinsic properties and remodeling. DNA Repair (Amst.)4, 855–869 (2005). ArticleCAS Google Scholar
Nag, R. & Smerdon, M. J. Altering the chromatin landscape for nucleotide excision repair. Mutat. Res.682, 13–20 (2009). ArticleCASPubMed Google Scholar
Huang, J. C. & Sancar, A. Determination of minimum substrate size for human excinuclease. J. Biol. Chem.269, 19034–19040 (1994). ArticleCASPubMed Google Scholar
Ura, K. et al. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J.20, 2004–2014 (2001). ArticleCASPubMedPubMed Central Google Scholar
van Attikum, H. & Gasser, S. M. The histone code at DNA breaks: a guide to repair? Nature Rev. Mol. Cell Biol.6, 757–765 (2005). ArticleCAS Google Scholar
Gong, F., Fahy, D. & Smerdon, M. J. Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nature Struct. Mol. Biol.13, 902–907 (2006). ArticleCAS Google Scholar
Zhang, L., Zhang, Q., Jones, K., Patel, M. & Gong, F. The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage. Cell Cycle8, 3953–3959 (2009). ArticleCASPubMed Google Scholar
Zhao, Q. et al. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J. Biol. Chem.284, 30424–30432 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jiang, Y. et al. INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway. Proc. Natl Acad. Sci. USA107, 17274–17279 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yasuda, T. et al. Nucleosomal structure of undamaged DNA regions suppresses the non-specific DNA binding of the XPC complex. DNA Repair (Amst.)4, 389–395 (2005). ArticleCAS Google Scholar
Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell113, 357–367 (2003). ArticleCASPubMed Google Scholar
Sugasawa, K. et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell121, 387–400 (2005). ArticleCASPubMed Google Scholar
Scrima, A. et al. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell135, 1213–1223 (2008). This study showed the mechanism of UV-damage recognition by the UV-DDB complex. A model is presented whereby damage recognition is compatible with chromatin. ArticleCASPubMedPubMed Central Google Scholar
Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell22, 383–394 (2006). ArticleCASPubMed Google Scholar