Khosla, S., Mendiratta, G. & Brahmachari, C. Genomic imprinting in the mealybugs. Cytogenet. Genome Res.113, 41–52 (2006). CASPubMed Google Scholar
Cooper, D. W., VendeBerg, J. L., Sharman, G. B. & Poole, W. Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation. Nature New Biol.230, 155–157 (1971). CASPubMed Google Scholar
Takagi, N. & Sasaki, M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature256, 640–642 (1975). CASPubMed Google Scholar
Kermicle, J. L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics66, 69–85 (1970). CASPubMedPubMed Central Google Scholar
Johnson, D. M. Hairpin-tail: a case of post-reductional gene action in the mouse egg? Genetics76, 795–805 (1974). CASPubMedPubMed Central Google Scholar
Searle, A. G. & Beechey, C. V. Complementation studies with mouse translocations. Cytogenet. Cell Genet.20, 282–303 (1978). CASPubMed Google Scholar
Cattanach, B. M. & Kirk, M. Differential activity of maternal and paternally derived chromosome regions in mice. Nature315, 496–498 (1985). CASPubMed Google Scholar
Cattanach, B. M. Parental origin effects in mice. J. Embryol. Exp. Morphol.97, 137–150 (1986). PubMed Google Scholar
Surani, M. A. & Barton, S. C. Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science222, 1034–1036 (1983). CASPubMed Google Scholar
McGrath, J. & Solter, D. Nuclear transplantation in mouse embryos. J. Exp. Zool.228, 355–362 (1983). CASPubMed Google Scholar
McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell37, 179–183 (1984). CASPubMed Google Scholar
Surani, M. A., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggest imprinting of the genome during gametogenesis. Nature308, 548–550 (1984). CASPubMed Google Scholar
McGrath, J. & Solter, D. Maternal Thp lethality is a nuclear, not cytoplasmic defect. Nature308, 550–551 (1984). CASPubMed Google Scholar
Mann, J. & Lovell-Badge, R. H. Inviability of parthenogenones is deterined by pronuclei not egg cytoplasm. Nature310, 66–67 (1984). CASPubMed Google Scholar
Fundele, R. H. et al. Temporal and spatial selection against parthenogenetic cells during development of fetal chimeras. Development108, 203–211 (1990). CASPubMed Google Scholar
Barton, S. C., Ferguson-Smith, A. C., Fundele, R. & Surani, M. A. Influence of paternally imprinted genes on development. Development113, 679–687 (1991). CASPubMed Google Scholar
Kono, T. et al. Birth of parthenogenetic mice that can develop to adulthood. Nature428, 860–864 (2004). CASPubMed Google Scholar
Kawahara, M. et al. High-frequency generation of viable mice from engineered bi-maternal embryos. Nature Biotech.25, 1045–1050 (2007). CAS Google Scholar
Barlow, D. P., Stoger, R., Herrmann, B. G., Saito, K. & Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature349, 84–87 (1991). CASPubMed Google Scholar
Zwart, R., Sleutels, F., Wutz, A., Schinkel, A. H. & Barlow, D. P. Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev.15, 2361–2366 (2001). CASPubMedPubMed Central Google Scholar
DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell64, 849–859 (1991). CASPubMed Google Scholar
Ferguson-Smith, A. C., Cattanach, B. M., Barton, S. C., Beechey, C. V. & Surani, M. A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature351, 667–670 (1991). CASPubMed Google Scholar
Smits G. et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nature Genet.40, 971–976 (2008). CASPubMed Google Scholar
Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Parental imprinting of the mouse H19 gene. Nature351, 153–155 (1991). CASPubMed Google Scholar
Ferron, S. et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature (in the press).
Plass, C. et al. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nature Genet.14, 106–109 (1996). CASPubMed Google Scholar
Frost, J. & Moore, G. The importance of imprinting in the human placenta. PLoS Genet.6, e1001015 (2010). PubMedPubMed Central Google Scholar
Babak, T. et al. Global survey of genomic imprinting by transcriptome sequencing. Current Biol.18, 1735–1741 (2008). CAS Google Scholar
Wang, X. et al. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS ONE.3, e3839 (2008). PubMedPubMed Central Google Scholar
Gregg, C. et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science329, 643–648 (2010). CASPubMedPubMed Central Google Scholar
Luedi, P. P., Hartemink, A. J. & Jirtle, R. L. Genome-wide prediction of imprinted murine genes. Genome Res.15, 875–884 (2005). CASPubMedPubMed Central Google Scholar
Brideau, C. M., Eilertson, K. E., Hagarman, J. A., Bustamante, C. D. & Soloway, P. D. Successful computational prediction of novel imprinted genes from epigenomic features. Mol. Cell. Biol.30, 3357–3370 (2010). CASPubMedPubMed Central Google Scholar
Wood, A. J. et al. A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation. PLoS Genet.3, e20 (2006). PubMed Google Scholar
Monk, D. et al. Limited evolutionary conservation of imprinting in the human placenta. Proc. Natl Acad. Sci. USA103, 6623–6628 (2006). CASPubMedPubMed Central Google Scholar
Li, J. et al. L3mbtl, the mouse orthologue of the imprinted L3MBTL, displays a complex pattern of alternative splicing and escapes genomic imprinting. Genomics86, 489–494 (2005). CASPubMed Google Scholar
Engel, E. A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am. J. Med. Genet.6, 137–143 (1980). CASPubMed Google Scholar
Lim, D. et al. Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum. Reprod.24, 741–747 (2010). Google Scholar
Nicholls, R. D., Knoll, J. H., Butler, M. G., Karam, S. & Lalande, M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature342, 281–285 (1989). CASPubMedPubMed Central Google Scholar
Weksberg, R., Shen, D. R., Fei, Y. L., Song, Q. L. & Squire, J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nature Genet.5, 143–150 (1993). CASPubMed Google Scholar
Buiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet.9, 395–400 (1995). CASPubMed Google Scholar
Lee, M., Hu, R., Johnson, L. & Feinberg, A. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nature Genet.15, 181–185 (1997). PubMed Google Scholar
Ogata, T., Kagami, M. & Ferguson-Smith, A. C. Molecular mechanisms regulating phenotypic outcome in paternal and maternal uniparental disomy for chromosome 14. Epigenetics3, 181–187 (2008). PubMed Google Scholar
Reik, W. & Maher, E. Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome. Trends Genet.13, 330–334 (1997). CASPubMed Google Scholar
Buiting, K. Prader-Willi and Angelman Syndrome. Am. J. Med. Genet. C Semin. Med. Genet.154, 365–376 (2010). Google Scholar
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev.16, 6–21 (2002). CASPubMed Google Scholar
Ferguson-Smith, A. C., Sasaki, H., Cattanach, B. M. & Surani, M. A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature362, 751–755 (1993). CASPubMed Google Scholar
Stöger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell73, 61–71 (1993). PubMed Google Scholar
Bartolomei, M. S., Webber, A. L., Brunkow, M. E. & Tilghman, S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev.7, 1663–1673 (1993). CASPubMed Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 (1993). CASPubMed Google Scholar
Edwards, C. A. & Ferguson-Smith, A. C. Mechanisms regulating imprinted genes in clusters. Curr. Opin. Cell Biol.19, 281–289 (2007). CASPubMed Google Scholar
Sutcliffe, J. S. et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nature Genet.8, 52–58 (1994). CASPubMed Google Scholar
Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature389, 745–749 (1997). CASPubMed Google Scholar
Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev.12, 3693–3702 (1998). CASPubMedPubMed Central Google Scholar
Smilinich, N. J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc. Natl Acad. Sci. USA.96, 8064–8069 (1999). CASPubMedPubMed Central Google Scholar
Lin, S.-P. et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nature Genet.35, 97–102 (2003). CASPubMed Google Scholar
Williamson, C. M. et al. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nature Genet.38, 350–355 (2006). CASPubMed Google Scholar
Bourc'his, D. & Bestor, T. H. Origins of extreme sexual dimorphism in genomic imprinting. Cytogenet. Genome Res.113, 36–40 (2006). CASPubMed Google Scholar
Lees-Murdock, D. L. & Walsh, C. P. DNA methylation reprogramming in the germ line. Epigenetics3, 5–13 (2008). PubMed Google Scholar
Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature452, 877–881 (2008). CASPubMed Google Scholar
Lucifero, D., Mann, M. R., Bartolomei, M. S. & Trasler, J. M. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet.13, 839–849 (2004). CASPubMed Google Scholar
Kaneda, M. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature429, 900–903 (2004). CASPubMed Google Scholar
Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science294, 2536–2539 (2001). CASPubMed Google Scholar
Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A. & Cheng, X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature449, 248–251 (2007). CASPubMedPubMed Central Google Scholar
Bourc'his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature431, 96–99 (2004). CASPubMed Google Scholar
Barlow, D. P. Methylation and imprinting: from host defense to gene regulation? Science260, 309–310 (1993). CASPubMed Google Scholar
Chotalia, M. et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev.23, 105–117 (2009). CASPubMedPubMed Central Google Scholar
Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature448, 714–717 (2007). CASPubMedPubMed Central Google Scholar
Ciccone, D. N. et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature461, 415–418 (2009). CASPubMed Google Scholar
Hemberger, M., Dean, W. & Reik, W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal. Nature Rev. Mol. Cell Biol.10, 526–537 (2009). CAS Google Scholar
Iqbal, K., Jin, S. G., Pfeifer, G. P. & Szabó, P. E. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA.108, 3642–3647 (2011). CASPubMedPubMed Central Google Scholar
Wossidlo, M. et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Commun.2, 241 (2011). Google Scholar
Albert, M. & Peters, A. H. Genetic and epigenetic control of early mouse development. Curr. Opin. Genet. Dev.19, 113–121 (2009). CASPubMed Google Scholar
Li, X. et al. A maternal zygotic effect gene Zfp57 maintains both maternal and paternal imprints. Dev. Cell15, 547–557 (2008). CASPubMedPubMed Central Google Scholar
Nakamura, T. et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nature Cell Biol.9, 64–71 (2007). CASPubMed Google Scholar
Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature415, 810–813 (2002). CASPubMed Google Scholar
Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science322, 1717–1720 (2008). CASPubMed Google Scholar
Rougeulle, C., Cardoso, C., Fontés, M., Colleaux, L. & Lalande, M. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nature Genet.19, 15–16 (1998). CASPubMed Google Scholar
Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev.20, 1268–1282 (2006). CASPubMedPubMed Central Google Scholar
Szabó, P., Tang, S. H., Rentsendorj, A., Pfeifer, G. P. & Mann, J. R. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr. Biol.10, 607–610 (2000). PubMed Google Scholar
Bell, A. C., & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature405, 482–485 (2000). CASPubMed Google Scholar
Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature.405, 486–489 (2000). CASPubMed Google Scholar
Engel N., West, A. G., Felsenfeld, G. & Bartolomei, M. S. Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations. Nature Genet.36, 883–888 (2004). CASPubMed Google Scholar
Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nature Genet.36, 889–893 (2004). CASPubMed Google Scholar
Da Rocha, S., Edwards, C., Ito, M., Ogata, T. & Ferguson-Smith, A. C. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet.24, 306–316 (2008). PubMed Google Scholar
Killian, J., Buckley, T., Stewart, N., Munday, B. & Jirtle, R. M6P/IGF2R imprinting evolution in mammals . Mol. Cell5, 707–716 (2000). CASPubMed Google Scholar
Sato, S., Yoshida, W., Soejima, H., Nakabayashi, K. & Hata, K. Methylation dynamics of IG-DMR and _Gtl2_-DMR during murine embryonic and placental development. Genomics 18 May 2011 (doi:10.1016/j.ygeno.2011.05.003). CASPubMed Google Scholar
Henckel, A. et al. Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum. Mol. Genet.18, 3375–3383 (2009). CASPubMed Google Scholar
Regha, K. et al. Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol. Cell27, 353–366 (2007). CASPubMedPubMed Central Google Scholar
McEwen, K. R. & Ferguson-Smith, A. C. Distinguishing epigenetic marks of developmental and imprinting regulation. Epigenetics Chromatin3, 2 (2010). PubMedPubMed Central Google Scholar
Mann, J. R., Gadi, I., Harbison, M. L., Abbondanzo, S. J. & Stewart, C. L. Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell62, 251–260 (1990). CASPubMed Google Scholar
Allen, N. D. et al. Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc. Natl Acad. Sci. USA.92, 10782–10786 (1995). CASPubMedPubMed Central Google Scholar
Coan, P., Burton, G. & Ferguson-Smith, A. C. Imprinted genes in the placenta. Placenta26, S10–S20 (2005). PubMed Google Scholar
Plagge, A. et al. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nature Genet.36, 818–826 (2004). CASPubMed Google Scholar
Garfield, A. S. et al. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature469, 534–538 (2011). CASPubMedPubMed Central Google Scholar
Chen, M. et al. Central nervous system imprinting of the G protein Gsα and its role in metabolic regulation. Cell Metab.9, 548–555 (2009). PubMedPubMed Central Google Scholar
Plass, C. et al. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nature Genet.14, 106–109 (1996). CASPubMed Google Scholar
O'Neill, M. J., Ingram, R. S., Vrana, P. B. & Tilghman, S. M. Allelic expression of IGF2 in marsupials and birds. Dev. Genes Evol.210, 18–20 (2000). CASPubMed Google Scholar
Rapkins, R. W. et al. Recent assembly of an imprinted domain from non-imprinted components. PLoS Genet.2, e182 (2006). PubMedPubMed Central Google Scholar
Edwards, C. et al. The evolution of the imprinted Dlk1-Dio3 domain in mammals. PLoS Biol.6, e135 (2008). PubMedPubMed Central Google Scholar
Renfree, M. B., Hore, T. A., Shaw, G., Graves, J. A. & Pask, A. J. Evolution of genomic imprinting: insights from marsupials and monotremes. Annu. Rev. Genomics Hum. Genet.10, 241–262 (2009). CASPubMed Google Scholar
Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet.7, 45–49 (1991). CASPubMed Google Scholar
Keverne, E. B. & Curley, J. P. Epigenetics, brain evolution and behavior. Frontiers in Neuroendocrinol.29, 398–412 (2008). CAS Google Scholar
Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature463, 237–240 (2010). CASPubMed Google Scholar
Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J.24, 800–812 (2005). CASPubMedPubMed Central Google Scholar
Watanabe, T. et al. Role for piRNAs and a novel RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science332, 848–852 (2011). CASPubMedPubMed Central Google Scholar
Glass, J. L., Fazzari, M. J., Ferguson-Smith, A. C. & Greally, J. M. CG dinucleotide periodicities recognized by the Dnmt3a-Dnmt3L complex are distinctive at retroelements and imprinted domains. Mamm. Genome20, 633–643 (2009). CASPubMed Google Scholar
Wallace, C. et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nature Genet.42, 68–71 (2010). CASPubMed Google Scholar
Kong, A. et al. Parental origin of sequence variants that segregate with complex diseases. Nature462, 868–874 (2009). CASPubMedPubMed Central Google Scholar
Lubinsky, M., Herrmann J., Kosseff, A. L. & Opitz, J. M. Autosomal-dominant sex-dependent transmission of the Wiedemann-Beckwith syndrome. Lancet.1, 932 (1974). CASPubMed Google Scholar
Cattanach, B. M. & Beechey, C. V. in Chromosomes Today (eds Fredga, K., Kihlman, B. & Bennett, M.) 135–148 (Unwin Hyman, London, 1990). Google Scholar
Kanduri, C. et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol.10, 853–856 (2000). CASPubMed Google Scholar