The intestinal epithelial barrier: a therapeutic target? (original) (raw)
Marchiando, A. M., Graham, W. V. & Turner, J. R. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol.5, 119–144 (2010). CASPubMed Google Scholar
Turner, J. R. in Yamada's Textbook of Gastroenterology (eds Podolsky, D. K. et al.) 317–329 (Wiley-Blackwell, 2015). Google Scholar
Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol.9, 799–809 (2009). CASPubMed Google Scholar
Fu, J. et al. Loss of intestinal core 1-derived _O_-glycans causes spontaneous colitis in mice. J. Clin. Invest.121, 1657–1666 (2011). CASPubMedPubMed Central Google Scholar
Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA105, 15064–15069 (2008). CASPubMed Google Scholar
Johansson, M. E. et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut63, 281–291 (2014). CASPubMed Google Scholar
Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology131, 117–129 (2006). CASPubMed Google Scholar
Shen, L., Weber, C. R., Raleigh, D. R., Yu, D. & Turner, J. R. Tight junction pore and leak pathways: a dynamic duo. Annu. Rev. Physiol.73, 283–309 (2011). CASPubMedPubMed Central Google Scholar
Madara, J. L. Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am. J. Physiol.253, C171–C175 (1987). CASPubMed Google Scholar
Mooseker, M. S. et al. Brush border cytoskeleton and integration of cellular functions. J. Cell Biol.99, 104s–112s (1984). CASPubMedPubMed Central Google Scholar
Takeichi, M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell Biol.15, 397–410 (2014). CASPubMed Google Scholar
Hartsock, A. & Nelson, W. J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta1778, 660–669 (2008). CASPubMed Google Scholar
Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell123, 903–915 (2005). CASPubMedPubMed Central Google Scholar
Maiden, S. L. & Hardin, J. The secret life of α-catenin: moonlighting in morphogenesis. J. Cell Biol.195, 543–552 (2011). CASPubMedPubMed Central Google Scholar
Capaldo, C. T. & Macara, I. G. Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol. Biol. Cell18, 189–200 (2007). CASPubMedPubMed Central Google Scholar
Maiers, J. L., Peng, X., Fanning, A. S. & DeMali, K. A. ZO-1 recruitment to α-catenin — a novel mechanism for coupling the assembly of tight junctions to adherens junctions. J. Cell Sci.126, 3904–3915 (2013). CASPubMedPubMed Central Google Scholar
Goodenough, D. A. & Revel, J. P. A fine structural analysis of intercellular junctions in the mouse liver. J. Cell Biol.45, 272–290 (1970). CASPubMedPubMed Central Google Scholar
Kachar, B. & Reese, T. S. Evidence for the lipidic nature of tight junction strands. Nature296, 464–466 (1982). CASPubMed Google Scholar
Lingaraju, A. et al. Conceptual barriers to understanding physical barriers. Semin. Cell Dev. Biol.42, 13–21 (2015). PubMedPubMed Central Google Scholar
Furuse, M. et al. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol.123, 1777–1788 (1993). CASPubMed Google Scholar
Stankewich, M. C., Francis, S. A., Vu, Q. U., Schneeberger, E. E. & Lynch, R. D. Alterations in cell cholesterol content modulate Ca2+-induced tight junction assembly by MDCK cells. Lipids31, 817–828 (1996). CASPubMed Google Scholar
Francis, S. A. et al. Rapid reduction of MDCK cell cholesterol by methyl-β-cyclodextrin alters steady state transepithelial electrical resistance. Eur. J. Cell Biol.78, 473–484 (1999). CASPubMed Google Scholar
Shen, L. et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J. Cell Sci.119, 2095–2106 (2006). CASPubMed Google Scholar
Van Itallie, C. M. & Anderson, J. M. Claudins and epithelial paracellular transport. Annu. Rev. Physiol.68, 403–429 (2006). CASPubMed Google Scholar
Furuse, M., Furuse, K., Sasaki, H. & Tsukita, S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J. Cell Biol.153, 263–272 (2001). CASPubMedPubMed Central Google Scholar
Amasheh, S. et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J. Cell Sci.115, 4969–4976 (2002). CASPubMed Google Scholar
Weber, C. R. et al. Claudin-2-dependent paracellular channels are dynamically gated. eLife4, e09906 (2015). PubMedPubMed Central Google Scholar
Weber, C. R. et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J. Biol. Chem.285, 12037–12046 (2010). CASPubMedPubMed Central Google Scholar
Raleigh, D. R. et al. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J. Cell Biol.193, 565–582 (2011). CASPubMedPubMed Central Google Scholar
Wada, M., Tamura, A., Takahashi, N. & Tsukita, S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology144, 369–380 (2013). CASPubMed Google Scholar
Tamura, A. et al. Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology140, 913–923 (2011). CASPubMed Google Scholar
Turner, J. R., Buschmann, M. M., Romero-Calvo, I., Sailer, A. & Shen, L. The role of molecular remodeling in differential regulation of tight junction permeability. Semin. Cell Dev. Biol.36, 204–212 (2014). CASPubMed Google Scholar
Raleigh, D. R. et al. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol. Biol. Cell21, 1200–1213 (2010). CASPubMedPubMed Central Google Scholar
Furuse, M. et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J. Cell Biol.127, 1617–1626 (1994). CASPubMed Google Scholar
Cording, J. et al. In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J. Cell Sci.126, 554–564 (2013). CASPubMed Google Scholar
Fanning, A. S. & Anderson, J. M. Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann. N. Y. Acad. Sci.1165, 113–120 (2009). CASPubMedPubMed Central Google Scholar
Anderson, J. M., Fanning, A. S., Lapierre, L. & Van Itallie, C. M. Zonula occludens (ZO)-1 and ZO-2: membrane-associated guanylate kinase homologues (MAGuKs) of the tight junction. Biochem. Soc. Trans.23, 470–475 (1995). CASPubMed Google Scholar
Katsuno, T. et al. Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol. Biol. Cell19, 2465–2475 (2008). CASPubMedPubMed Central Google Scholar
Xu, J. et al. Early embryonic lethality of mice lacking ZO-2, but not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Mol. Cell. Biol.28, 1669–1678 (2008). CASPubMedPubMed Central Google Scholar
Carlton, V. E. et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat. Genet.34, 91–96 (2003). CASPubMed Google Scholar
Sambrotta, M. et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat. Genet.46, 326–328 (2014). CASPubMedPubMed Central Google Scholar
Matsumoto, K. et al. Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice. Gastroenterology147, 1134–1145.e10 (2014). CASPubMed Google Scholar
Luther, J. et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell. Mol. Gastroenterol. Hepatol.1, 222–232 (2015). PubMedPubMed Central Google Scholar
Llorente, C. & Schnabl, B. The gut microbiota and liver disease. Cell. Mol. Gastroenterol. Hepatol.1, 275–284 (2015). PubMedPubMed Central Google Scholar
Van Itallie, C. M., Fanning, A. S., Bridges, A. & Anderson, J. M. ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol. Biol. Cell20, 3930–3940 (2009). CASPubMedPubMed Central Google Scholar
Nalle, S. C. & Turner, J. R. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunol.8, 720–730 (2015). CASPubMed Google Scholar
Su, L. et al. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology145, 407–415 (2013). CASPubMedPubMed Central Google Scholar
Kiesler, P., Fuss, I. J. & Strober, W. Experimental models of inflammatory bowel diseases. Cell. Mol. Gastroenterol. Hepatol.1, 154–170 (2015). PubMedPubMed Central Google Scholar
Gitter, A. H., Wullstein, F., Fromm, M. & Schulzke, J. D. Epithelial barrier defects in ulcerative colitis: characterization and quantification by electrophysiological imaging. Gastroenterology121, 1320–1328 (2001). CASPubMed Google Scholar
Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell143, 134–144 (2010). CASPubMed Google Scholar
van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol.71, 241–260 (2009). CASPubMed Google Scholar
Aoki, R. et al. Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell. Mol. Gastroenterol. Hepatol.2, 175–188 (2016). PubMed Google Scholar
Russo, J. M. et al. Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure. Gastroenterology128, 987–1001 (2005). CASPubMedPubMed Central Google Scholar
Marchiando, A. M. et al. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology140, 1208–1218.e2 (2011). CASPubMedPubMed Central Google Scholar
Rosenblatt, J., Raff, M. C. & Cramer, L. P. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol.11, 1847–1857 (2001). CASPubMed Google Scholar
Madara, J. L. & Pappenheimer, J. R. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J. Membr. Biol.100, 149–164 (1987). CASPubMed Google Scholar
Pappenheimer, J. R. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J. Membr. Biol.100, 137–148 (1987). CASPubMed Google Scholar
Pappenheimer, J. R. & Reiss, K. Z. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J. Membr. Biol.100, 123–136 (1987). CASPubMed Google Scholar
Turner, J. R. et al. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am. J. Physiol.273, C1378–C1385 (1997). CASPubMed Google Scholar
Turner, J. R. Show me the pathway! Regulation of paracellular permeability by Na+-glucose cotransport. Adv. Drug Deliv. Rev.41, 265–281 (2000). CASPubMed Google Scholar
Meddings, J. B. & Westergaard, H. Intestinal glucose transport using perfused rat jejunum in vivo: model analysis and derivation of corrected kinetic constants. Clin. Sci. (Lond.)76, 403–413 (1989). CAS Google Scholar
Sadowski, D. C. & Meddings, J. B. Luminal nutrients alter tight-junction permeability in the rat jejunum: an in vivo perfusion model. Can. J. Physiol. Pharmacol.71, 835–839 (1993). CASPubMed Google Scholar
Turner, J. R., Cohen, D. E., Mrsny, R. J. & Madara, J. L. Noninvasive in vivo analysis of human small intestinal paracellular absorption: regulation by Na+-glucose cotransport. Dig. Dis. Sci.45, 2122–2126 (2000). CASPubMed Google Scholar
Heller, F. et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology129, 550–564 (2005). CASPubMed Google Scholar
Suzuki, T., Yoshinaga, N. & Tanabe, S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J. Biol. Chem.286, 31263–31271 (2011). CASPubMedPubMed Central Google Scholar
Wisner, D. M., Harris, L. R. III, Green, C. L. & Poritz, L. S. Opposing regulation of the tight junction protein claudin-2 by interferon-γ and interleukin-4. J. Surg. Res.144, 1–7 (2008). CASPubMed Google Scholar
Mankertz, J. et al. TNFα up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol–3-kinase signaling. Cell Tissue Res.336, 67–77 (2009). CASPubMed Google Scholar
Gerlach, K. et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol.15, 676–686 (2014). CASPubMed Google Scholar
Zeissig, S. et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut56, 61–72 (2007). CASPubMed Google Scholar
Prasad, S. et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab. Invest.85, 1139–1162 (2005). CASPubMed Google Scholar
Yu, A. S. et al. Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J. Gen. Physiol.133, 111–127 (2009). CASPubMedPubMed Central Google Scholar
Li, J., Zhuo, M., Pei, L. & Yu, A. S. Conserved aromatic residue confers cation selectivity in claudin-2 and claudin-10b. J. Biol. Chem.288, 22790–22797 (2013). CASPubMedPubMed Central Google Scholar
Li, J., Zhuo, M., Pei, L., Rajagopal, M. & Yu, A. S. Comprehensive cysteine-scanning mutagenesis reveals claudin-2 pore-lining residues with different intrapore locations. J. Biol. Chem.289, 6475–6484 (2014). CASPubMedPubMed Central Google Scholar
Marcial, M. A., Carlson, S. L. & Madara, J. L. Partitioning of paracellular conductance along the ileal crypt–villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships. J. Membr. Biol.80, 59–70 (1984). CASPubMed Google Scholar
Fihn, B. M., Sjoqvist, A. & Jodal, M. Permeability of the rat small intestinal epithelium along the villus–crypt axis: effects of glucose transport. Gastroenterology119, 1029–1036 (2000). CASPubMed Google Scholar
Mora-Galindo, J. Maturation of tight junctions in guinea-pig cecal epithelium. Cell Tissue Res.246, 169–175 (1986). CASPubMed Google Scholar
Suenaert, P. et al. Anti-tumor necrosis factor treatment restores the gut barrier in Crohn's disease. Am. J. Gastroenterol.97, 2000–2004 (2002). CASPubMed Google Scholar
Baert, F. J. et al. Tumor necrosis factor alpha antibody (infliximab) therapy profoundly down-regulates the inflammation in Crohn's ileocolitis. Gastroenterology116, 22–28 (1999). CASPubMed Google Scholar
Zolotarevsky, Y. et al. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology123, 163–172 (2002). CASPubMed Google Scholar
Wang, F. et al. Interferon-γ and tumor necrosis factor-α synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol.166, 409–419 (2005). CASPubMedPubMed Central Google Scholar
Clayburgh, D. R., Musch, M. W., Leitges, M., Fu, Y. X. & Turner, J. R. Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo. J. Clin. Invest.116, 2682–2694 (2006). CASPubMedPubMed Central Google Scholar
Wang, F. et al. IFN-γ-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology131, 1153–1163 (2006). CASPubMedPubMed Central Google Scholar
Clayburgh, D. R. et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J. Clin. Invest.115, 2702–2715 (2005). CASPubMedPubMed Central Google Scholar
Graham, W. V. et al. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J. Biol. Chem.281, 26205–26215 (2006). CASPubMed Google Scholar
Su, L. et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology136, 551–563 (2009). CASPubMed Google Scholar
Marchiando, A. M. et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J. Cell Biol.189, 111–126 (2010). CASPubMedPubMed Central Google Scholar
Buschmann, M. M. et al. Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol. Biol. Cell24, 3056–3068 (2013). CASPubMedPubMed Central Google Scholar
Van Itallie, C. M., Fanning, A. S., Holmes, J. & Anderson, J. M. Occludin is required for cytokine-induced regulation of tight junction barriers. J. Cell Sci.123, 2844–2852 (2010). CASPubMedPubMed Central Google Scholar
Westphal, J. K. et al. Tricellulin forms homomeric and heteromeric tight junctional complexes. Cell. Mol. Life Sci.67, 2057–2068 (2010). CASPubMed Google Scholar
Krug, S. M. et al. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol. Biol. Cell20, 3713–3724 (2009). CASPubMedPubMed Central Google Scholar
Ikenouchi, J., Sasaki, H., Tsukita, S., Furuse, M. & Tsukita, S. Loss of occludin affects tricellular localization of tricellulin. Mol. Biol. Cell19, 4687–4693 (2008). CASPubMedPubMed Central Google Scholar
Kojima, T. et al. c-Jun N-terminal kinase is largely involved in the regulation of tricellular tight junctions via tricellulin in human pancreatic duct epithelial cells. J. Cell. Physiol.225, 720–733 (2010). CASPubMed Google Scholar
Nayak, G. et al. Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J. Clin. Invest.123, 4036–4049 (2013). CASPubMedPubMed Central Google Scholar
Riazuddin, S. et al. Tricellulin is a tight-junction protein necessary for hearing. Am. J. Hum. Genet.79, 1040–1051 (2006). CASPubMedPubMed Central Google Scholar
Chishti, M. S. et al. Splice-site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. J. Hum. Genet.53, 101–105 (2008). CASPubMed Google Scholar
Kitajiri, S. I. et al. Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells. Biol. Open3, 759–766 (2014). PubMedPubMed Central Google Scholar
Saitou, M. et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell11, 4131–4142 (2000). CASPubMedPubMed Central Google Scholar
Schulzke, J. D. et al. Epithelial transport and barrier function in occludin-deficient mice. Biochim. Biophys. Acta1669, 34–42 (2005). CASPubMed Google Scholar
Olson, T. S. et al. The primary defect in experimental ileitis originates from a nonhematopoietic source. J. Exp. Med.203, 541–552 (2006). CASPubMedPubMed Central Google Scholar
Maes, M. & Leunis, J. C. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: effects of age, duration of illness and the translocation of LPS from gram-negative bacteria. Neuro Endocrinol. Lett.29, 902–910 (2008). PubMed Google Scholar
Quigley, E. M. Leaky gut — concept or clinical entity? Curr. Opin. Gastroenterol.32, 74–79 (2016). PubMed Google Scholar
Odenwald, M. A. & Turner, J. R. Intestinal permeability defects: is it time to treat? Clin. Gastroenterol. Hepatol.11, 1075–1083 (2013). PubMedPubMed Central Google Scholar
In, J. et al. Enterohemorrhagic Escherichia coli reduces mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell. Mol. Gastroenterol. Hepatol.2, 48–62.e3 (2016). PubMed Google Scholar
Yuhan, R., Koutsouris, A., Savkovic, S. D. & Hecht, G. Enteropathogenic _Escherichia coli_-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology113, 1873–1882 (1997). CASPubMed Google Scholar
Sonoda, N. et al. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J. Cell Biol.147, 195–204 (1999). PubMedPubMed Central Google Scholar
Saitoh, Y. et al. Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science347, 775–778 (2015). CASPubMed Google Scholar
Hecht, G., Koutsouris, A., Pothoulakis, C., LaMont, J. T. & Madara, J. L. Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology102, 416–423 (1992). CASPubMed Google Scholar
Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature375, 500–503 (1995). CASPubMed Google Scholar
Pearson, A. D., Eastham, E. J., Laker, M. F., Craft, A. W. & Nelson, R. Intestinal permeability in children with Crohn's disease and coeliac disease. Br. Med. J. (Clin. Res. Ed.)285, 20–21 (1982). CAS Google Scholar
Ukabam, S. O., Clamp, J. R. & Cooper, B. T. Abnormal small intestinal permeability to sugars in patients with Crohn's disease of the terminal ileum and colon. Digestion27, 70–74 (1983). CASPubMed Google Scholar
Schmitz, H. et al. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology116, 301–309 (1999). CASPubMed Google Scholar
Weber, C. R., Nalle, S. C., Tretiakova, M., Rubin, D. T. & Turner, J. R. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab. Invest.88, 1110–1120 (2008). CASPubMedPubMed Central Google Scholar
Blair, S. A., Kane, S. V., Clayburgh, D. R. & Turner, J. R. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab. Invest.86, 191–201 (2006). CASPubMed Google Scholar
Wyatt, J., Vogelsang, H., Hubl, W., Waldhoer, T. & Lochs, H. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet341, 1437–1439 (1993). CASPubMed Google Scholar
D'Inca, R. et al. Intestinal permeability test as a predictor of clinical course in Crohn's disease. Am. J. Gastroenterol.94, 2956–2960 (1999). CASPubMed Google Scholar
Tibble, J. A., Sigthorsson, G., Bridger, S., Fagerhol, M. K. & Bjarnason, I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology119, 15–22 (2000). CASPubMed Google Scholar
Kiesslich, R. et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut61, 1146–1153 (2012). CASPubMed Google Scholar
Madara, J. L. Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J. Membr. Biol.116, 177–184 (1990). CASPubMed Google Scholar
Hollander, D. et al. Increased intestinal permeability in patients with Crohn's disease and their relatives. A possible etiologic factor. Ann. Intern. Med.105, 883–885 (1986). CASPubMed Google Scholar
Jacobs, J. P. et al. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients. Cell. Mol. Gastroenterol. Hepatol.2, 750–766 (2016). PubMedPubMed Central Google Scholar
Li, X. et al. Microgeographic proteomic networks of the human colonic mucosa and their association with inflammatory bowel disease. Cell. Mol. Gastroenterol. Hepatol.2, 567–583 (2016). PubMedPubMed Central Google Scholar
Buhner, S. et al. Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation? Gut55, 342–347 (2006). CASPubMedPubMed Central Google Scholar
Bjarnason, I., MacPherson, A. & Hollander, D. Intestinal permeability: an overview. Gastroenterology108, 1566–1581 (1995). CASPubMed Google Scholar
Irvine, E. J. & Marshall, J. K. Increased intestinal permeability precedes the onset of Crohn's disease in a subject with familial risk. Gastroenterology119, 1740–1744 (2000). CASPubMed Google Scholar
Vetrano, S. et al. Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology135, 173–184 (2008). CASPubMed Google Scholar
Turner, J. R. in Robbins and Cotran Pathologic Basis of Disease (eds Kumar, V., Abbas, A. K. & Aster, J. C.) 749–819 (Elsevier, 2014). Google Scholar
Hamilton, I., Cobden, I., Rothwell, J. & Axon, A. T. Intestinal permeability in coeliac disease: the response to gluten withdrawal and single-dose gluten challenge. Gut23, 202–210 (1982). CASPubMedPubMed Central Google Scholar
Smecuol, E. et al. Gastrointestinal permeability in celiac disease. Gastroenterology112, 1129–1136 (1997). CASPubMed Google Scholar
van Elburg, R. M., Uil, J. J., Mulder, C. J. & Heymans, H. S. Intestinal permeability in patients with coeliac disease and relatives of patients with coeliac disease. Gut34, 354–357 (1993). CASPubMedPubMed Central Google Scholar
Cummins, A. G. et al. Improvement in intestinal permeability precedes morphometric recovery of the small intestine in coeliac disease. Clin. Sci. (Lond.)100, 379–386 (2001). CAS Google Scholar
Vazquez-Roque, M. I. et al. A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: effects on bowel frequency and intestinal function. Gastroenterology144, 903–911.e3 (2013). CASPubMedPubMed Central Google Scholar
Hall, E. J. & Batt, R. M. Abnormal permeability precedes the development of a gluten sensitive enteropathy in Irish setter dogs. Gut32, 749–753 (1991). CASPubMedPubMed Central Google Scholar
Verdu, E. F. et al. Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice. Am. J. Physiol. Gastrointest. Liver Physiol.294, G217–G225 (2008). CASPubMed Google Scholar
Natividad, J. M. et al. Host responses to intestinal microbial antigens in gluten-sensitive mice. PLoS ONE4, e6472 (2009). PubMedPubMed Central Google Scholar
Clemente, M. G. et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut52, 218–223 (2003). CASPubMedPubMed Central Google Scholar
Sander, G. R., Cummins, A. G., Henshall, T. & Powell, B. C. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett.579, 4851–4855 (2005). CASPubMed Google Scholar
Fasano, A. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet355, 1518–1519 (2000). CASPubMed Google Scholar
Gopalakrishnan, S. et al. Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides35, 86–94 (2012). CASPubMed Google Scholar
Kelly, C. P. et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment. Pharmacol. Ther.37, 252–262 (2013). CASPubMed Google Scholar
Monsuur, A. J. et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat. Genet.37, 1341–1344 (2005). CASPubMed Google Scholar
Van Belzen, M. J. et al. A major non-HLA locus in celiac disease maps to chromosome 19. Gastroenterology125, 1032–1041 (2003). CASPubMed Google Scholar
Wirth, J. A., Jensen, K. A., Post, P. L., Bement, W. M. & Mooseker, M. S. Human myosin-IXb, an unconventional myosin with a chimerin-like rho/rac GTPase-activating protein domain in its tail. J. Cell Sci.109, 653–661 (1996). CASPubMed Google Scholar
Post, P. L., Bokoch, G. M. & Mooseker, M. S. Human myosin-IXb is a mechanochemically active motor and a GAP for rho. J. Cell Sci.111, 941–950 (1998). CASPubMed Google Scholar
Hunt, K. A. et al. Lack of association of MYO9B genetic variants with coeliac disease in a British cohort. Gut55, 969–972 (2006). CASPubMedPubMed Central Google Scholar
Amundsen, S. S. et al. Association analysis of MYO9B gene polymorphisms with celiac disease in a Swedish/Norwegian cohort. Hum. Immunol.67, 341–345 (2006). CASPubMed Google Scholar
Wolters, V. M. et al. Replication of genetic variation in the MYO9B gene in Crohn's disease. Hum. Immunol.72, 592–597 (2011). CASPubMed Google Scholar
van Bodegraven, A. A. et al. Genetic variation in myosin IXB is associated with ulcerative colitis. Gastroenterology131, 1768–1774 (2006). CASPubMed Google Scholar
Cooney, R. et al. Association between genetic variants in myosin IXB and Crohn's disease. Inflamm. Bowel Dis.15, 1014–1021 (2009). PubMed Google Scholar
Chandhoke, S. K. & Mooseker, M. S. A role for myosin IXb, a motor-RhoGAP chimera, in epithelial wound healing and tight junction regulation. Mol. Biol. Cell23, 2468–2480 (2012). CASPubMedPubMed Central Google Scholar
Hegan, P. S. et al. Mice lacking myosin IXb, an inflammatory bowel disease susceptibility gene, have impaired intestinal barrier function and superficial ulceration in the ileum. Cytoskeleton (Hoboken)73, 163–179 (2016). CAS Google Scholar
Schumann, M. et al. Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut61, 220–228 (2012). CASPubMed Google Scholar
Szakal, D. N. et al. Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease. Virchows Arch.456, 245–250 (2010). PubMed Google Scholar
Menzies, I. S. et al. Abnormal intestinal permeability to sugars in villous atrophy. Lancet2, 1107–1109 (1979). CASPubMed Google Scholar
Keating, J. et al. Intestinal absorptive capacity, intestinal permeability and jejunal histology in HIV and their relation to diarrhoea. Gut37, 623–629 (1995). CASPubMedPubMed Central Google Scholar
Hermiston, M. L. & Gordon, J. I. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science270, 1203–1207 (1995). CASPubMed Google Scholar
Jankowski, J. A. et al. Alterations in classical cadherins associated with progression in ulcerative and Crohn's colitis. Lab. Invest.78, 1155–1167 (1998). CASPubMed Google Scholar
Smalley-Freed, W. G. et al. p120-catenin is essential for maintenance of barrier function and intestinal homeostasis in mice. J. Clin. Invest.120, 1824–1835 (2010). CASPubMedPubMed Central Google Scholar
Schneider, M. R. et al. A key role for E-cadherin in intestinal homeostasis and Paneth cell maturation. PLoS ONE5, e14325 (2010). CASPubMedPubMed Central Google Scholar
Barrett, J. C. et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet.41, 1330–1334 (2009). CASPubMed Google Scholar
Moran, C. J. et al. IL-10R polymorphisms are associated with very-early-onset ulcerative colitis. Inflamm. Bowel Dis.19, 115–123 (2013). PubMedPubMed Central Google Scholar
Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med.361, 2033–2045 (2009). CASPubMedPubMed Central Google Scholar
Doecke, J. D. et al. Genetic susceptibility in IBD: overlap between ulcerative colitis and Crohn's disease. Inflamm. Bowel Dis.19, 240–245 (2013). PubMed Google Scholar
Madsen, K. L. Inflammatory bowel disease: lessons from the IL-10 gene-deficient mouse. Clin. Invest. Med.24, 250–257 (2001). CASPubMed Google Scholar
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75, 263–274 (1993). CASPubMed Google Scholar
Matharu, K. S. et al. Toll-like receptor 4-mediated regulation of spontaneous _Helicobacter_-dependent colitis in IL-10-deficient mice. Gastroenterology137, 1380–1390.e3 (2009). CASPubMedPubMed Central Google Scholar
Madsen, K. L. et al. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm. Bowel Dis.5, 262–270 (1999). CASPubMed Google Scholar
Madsen, K. L. et al. Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology118, 1094–1105 (2000). CASPubMed Google Scholar
Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology146, 1489–1499 (2014). CASPubMedPubMed Central Google Scholar
Berg, D. J. et al. Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology123, 1527–1542 (2002). CASPubMed Google Scholar
Arrieta, M. C., Madsen, K. L., Field, C. J. & Meddings, J. B. Increasing small intestinal permeability worsens colitis in the IL-10−/− mouse and prevents the induction of oral tolerance to ovalbumin. Inflamm. Bowel Dis.21, 8–18 (2015). PubMed Google Scholar
Arrieta, M. C., Madsen, K., Doyle, J. & Meddings, J. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut58, 41–48 (2009). CASPubMed Google Scholar
Storb, R. et al. Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings — beneficial effect of a protective environment. N. Engl. J. Med.308, 302–307 (1983). CASPubMed Google Scholar
Brown, G. R. et al. Tumor necrosis factor inhibitor ameliorates murine intestinal graft-versus-host disease. Gastroenterology116, 593–601 (1999). CASPubMed Google Scholar
Cooke, K. R. et al. Tumor necrosis factor- α production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease. J. Clin. Invest.102, 1882–1891 (1998). CASPubMedPubMed Central Google Scholar
Nalle, S. C. et al. Recipient NK cell inactivation and intestinal barrier loss are required for MHC-matched graft-versus-host disease. Sci. Transl Med.6, 243ra87 (2014). PubMedPubMed Central Google Scholar
Bosi, E. et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia49, 2824–2827 (2006). CASPubMed Google Scholar
Meddings, J. B., Jarand, J., Urbanski, S. J., Hardin, J. & Gall, D. G. Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am. J. Physiol.276, G951–G957 (1999). CASPubMed Google Scholar
Tennyson, C. A. & Friedman, G. Microecology, obesity, and probiotics. Curr. Opin. Endocrinol. Diabetes Obes.15, 422–427 (2008). PubMed Google Scholar
Pound, L. D. et al. Cathelicidin antimicrobial peptide: a novel regulator of islet function, islet regeneration, and selected gut bacteria. Diabetes64, 4135–4147 (2015). CASPubMed Google Scholar
Daft, J. G. & Lorenz, R. G. Role of the gastrointestinal ecosystem in the development of Type 1 diabetes. Pediatr. Diabetes16, 407–418 (2015). PubMedPubMed Central Google Scholar
Wen, L. et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature455, 1109–1113 (2008). CASPubMedPubMed Central Google Scholar
Pozzilli, P., Signore, A., Williams, A. J. & Beales, P. E. NOD mouse colonies around the world — recent facts and figures. Immunol. Today14, 193–196 (1993). CASPubMed Google Scholar
Watts, T. et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc. Natl Acad. Sci. USA102, 2916–2921 (2005). CASPubMed Google Scholar
Sapone, A. et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes55, 1443–1449 (2006). CASPubMed Google Scholar
Leffler, D. A. et al. A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am. J. Gastroenterol.107, 1554–1562 (2012). CASPubMedPubMed Central Google Scholar
Avansino, J. R., Chen, D. C., Woolman, J. D., Hoagland, V. D. & Stelzner, M. Engraftment of mucosal stem cells into murine jejunum is dependent on optimal dose of cells. J. Surg. Res.132, 74–79 (2006). CASPubMed Google Scholar
Tait, I. S., Evans, G. S., Flint, N. & Campbell, F. C. Colonic mucosal replacement by syngeneic small intestinal stem cell transplantation. Am. J. Surg.167, 67–72 (1994). CASPubMed Google Scholar
Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature459, 262–265 (2009). CASPubMed Google Scholar
Aihara, E. et al. Epithelial regeneration after gastric ulceration causes prolonged cell-type alterations. Cell. Mol. Gastroenterol. Hepatol.2, 625–647 (2016). PubMedPubMed Central Google Scholar
Engevik, A. C. et al. The development of spasmolytic polypeptide/TFF2-expressing metaplasia (SPEM) during gastric repair is absent in the aged stomach. Cell. Mol. Gastroenterol. Hepatol.2, 605–624 (2016). PubMedPubMed Central Google Scholar
Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med.18, 618–623 (2012). CASPubMed Google Scholar
Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science337, 730–735 (2012). CASPubMed Google Scholar
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature457, 608–611 (2009). CASPubMed Google Scholar
Kieckhaefer, J. et al. The RNA polymerase III subunit Polr3b is required for the maintenance of small intestinal crypts in mice. Cell. Mol. Gastroenterol. Hepatol.2, 783–795 (2016). PubMedPubMed Central Google Scholar
Watanabe, N. et al. Requirement of Gαq/Gα11 signaling in the preservation of mouse intestinal epithelial homeostasis. Cell. Mol. Gastroenterol. Hepatol.2, 767–782 (2016). PubMedPubMed Central Google Scholar
Yamaoka, T. et al. Transactivation of EGF receptor and ErbB2 protects intestinal epithelial cells from TNF-induced apoptosis. Proc. Natl Acad. Sci. USA105, 11772–11777 (2008). CASPubMed Google Scholar
Zhao, J. et al. R-spondin1, a novel intestinotrophic mitogen, ameliorates experimental colitis in mice. Gastroenterology132, 1331–1343 (2007). CASPubMed Google Scholar
Pinto, D. & Clevers, H. Wnt, stem cells and cancer in the intestine. Biol. Cell97, 185–196 (2005). CASPubMed Google Scholar
Sansom, O. J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev.18, 1385–1390 (2004). CASPubMedPubMed Central Google Scholar
Powell, A. E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell149, 146–158 (2012). CASPubMedPubMed Central Google Scholar
Wong, V. W. et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol.14, 401–408 (2012). CASPubMedPubMed Central Google Scholar
Dube, P. E. et al. Epidermal growth factor receptor inhibits colitis-associated cancer in mice. J. Clin. Invest.122, 2780–2792 (2012). CASPubMedPubMed Central Google Scholar
He, W. Q. et al. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension. Am. J. Physiol. Heart Circ. Physiol.301, H584–H591 (2011). CASPubMedPubMed Central Google Scholar
He, W. Q. et al. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice. Gastroenterology135, 610–620 (2008). CASPubMedPubMed Central Google Scholar
Zhang, W. C. et al. Myosin light chain kinase is necessary for tonic airway smooth muscle contraction. J. Biol. Chem.285, 5522–5531 (2010). CASPubMed Google Scholar
Schumann, M. et al. Defective tight junctions in refractory celiac disease. Ann. N. Y. Acad. Sci.1258, 43–51 (2012). CASPubMed Google Scholar
Noth, R. et al. Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model. BMC Gastroenterol.11, 109 (2011). CASPubMedPubMed Central Google Scholar
Becker, C., Watson, A. J. & Neurath, M. F. Complex roles of caspases in the pathogenesis of inflammatory bowel disease. Gastroenterology144, 283–293 (2013). CASPubMed Google Scholar
Washington, K. & Jagasia, M. Pathology of graft-versus-host disease in the gastrointestinal tract. Hum. Pathol.40, 909–917 (2009). PubMed Google Scholar
Peeters, M. et al. Increased permeability of macroscopically normal small bowel in Crohn's disease. Dig. Dis. Sci.39, 2170–2176 (1994). CASPubMed Google Scholar
Sundqvist, T., Magnusson, K. E., Sjodahl, R., Stjernstrom, I. & Tagesson, C. Passage of molecules through the wall of the gastrointestinal tract. II. Application of low-molecular weight polyethyleneglycol and a deterministic mathematical model for determining intestinal permeability in man. Gut21, 208–214 (1980). CASPubMedPubMed Central Google Scholar
Arnott, I. D., Kingstone, K. & Ghosh, S. Abnormal intestinal permeability predicts relapse in inactive Crohn disease. Scand. J. Gastroenterol.35, 1163–1169 (2000). CASPubMed Google Scholar
May, G. R., Sutherland, L. M. & Meddings, J. B. Lactulose/mannitol permeability is increased in relatives of patients with Crohn's disease. Gastroenterology102, A934 (1992). Google Scholar
Smecuol, E. et al. Sugar tests detect celiac disease among first-degree relatives. Am. J. Gastroenterol.94, 3547–3552 (1999). CASPubMed Google Scholar
Secondulfo, M. et al. Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig. Liver Dis.36, 35–45 (2004). CASPubMed Google Scholar
Poritz, L. S. et al. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J. Surg. Res.140, 12–19 (2007). CASPubMed Google Scholar
Yan, Y. et al. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS ONE4, e6073 (2009). PubMedPubMed Central Google Scholar
Johansson, J. E. & Ekman, T. Gut toxicity during hemopoietic stem cell transplantation may predict acute graft-versus-host disease severity in patients. Dig. Dis. Sci.52, 2340–2345 (2007). PubMed Google Scholar
Lee, A. S. et al. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia53, 741–748 (2010). CASPubMed Google Scholar