The immunopathology of sepsis and potential therapeutic targets (original) (raw)
Funk, D. J., Parrillo, J. E. & Kumar, A. Sepsis and septic shock: a history. Crit. Care Clin.25, 83–101 (2009). ArticlePubMed Google Scholar
Bone, R. C., Sibbald, W. J. & Sprung, C. L. The ACCP–SCCM Consensus Conference on sepsis and organ failure. Chest101, 1481–1483 (1992). ArticleCASPubMed Google Scholar
Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA315, 801–810 (2016). This article describes the most recent consensus definition of sepsis. ArticleCASPubMedPubMed Central Google Scholar
Marshall, J. C. Why have clinical trials in sepsis failed? Trends Mol. Med.20, 195–203 (2014). ArticlePubMed Google Scholar
Cohen, J. et al. Sepsis: a roadmap for future research. Lancet Infect. Dis.15, 581–614 (2015). ArticlePubMed Google Scholar
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell140, 805–820 (2010). ArticleCASPubMed Google Scholar
Deutschman, C. S. & Tracey, K. J. Sepsis: current dogma and new perspectives. Immunity40, 463–475 (2014). ArticleCASPubMed Google Scholar
Gentile, L. F. et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg.72, 1491–1501 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wiersinga, W. J., Leopold, S. J., Cranendonk, D. R. & van der Poll, T. Host innate immune responses to sepsis. Virulence5, 36–44 (2014). ArticlePubMed Google Scholar
Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: role in immunity. Front. Immunol.6, 257 (2015). PubMedPubMed Central Google Scholar
Guo, R. F. & Ward, P. A. Role of C5a in inflammatory responses. Annu. Rev. Immunol.23, 821–852 (2005). ArticleCASPubMed Google Scholar
Silasi-Mansat, R. et al. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood116, 1002–1010 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shao, Z., Nishimura, T., Leung, L. L. & Morser, J. Carboxypeptidase B2 deficiency reveals opposite effects of complement C3a and C5a in a murine polymicrobial sepsis model. J. Thromb. Haemost.13, 1090–1102 (2015). ArticleCASPubMedPubMed Central Google Scholar
Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol.13, 34–45 (2013). ArticleCASPubMed Google Scholar
Danese, S., Vetrano, S., Zhang, L., Poplis, V. A. & Castellino, F. J. The protein C pathway in tissue inflammation and injury: pathogenic role and therapeutic implications. Blood115, 1121–1130 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kerschen, E. J. et al. Endotoxemia and sepsis mortality reduction by non-anticoagulant activated protein C. J. Exp. Med.204, 2439–2448 (2007). ArticleCASPubMedPubMed Central Google Scholar
Warren, B. L. et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA286, 1869–1878 (2001). ArticleCASPubMed Google Scholar
Abraham, E. et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA290, 238–247 (2003). ArticleCASPubMed Google Scholar
Bernard, G. R. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med.344, 699–709 (2001). ArticleCASPubMed Google Scholar
Ranieri, V. M. et al. Drotrecogin alfa (activated) in adults with septic shock. N. Engl. J. Med.366, 2055–2064 (2012). ArticleCASPubMed Google Scholar
Sorensen, O. E. & Borregaard, N. Neutrophil extracellular traps — the dark side of neutrophils. J. Clin. Invest.126, 1612–1620 (2016). ArticlePubMedPubMed Central Google Scholar
Czaikoski, P. G. et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS ONE11, e0148142 (2016). ArticleCASPubMedPubMed Central Google Scholar
von Bruhl, M. L. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med.209, 819–835 (2012). ArticleCASPubMedPubMed Central Google Scholar
Opal, S. M. & van der Poll, T. Endothelial barrier dysfunction in septic shock. J. Intern. Med.277, 277–293 (2015). ArticleCASPubMed Google Scholar
Darwish, I. & Liles, W. C. Emerging therapeutic strategies to prevent infection-related microvascular endothelial activation and dysfunction. Virulence4, 572–582 (2013). ArticlePubMedPubMed Central Google Scholar
Tressel, S. L. et al. A matrix metalloprotease–PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol. Med.3, 370–384 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sanchez, T. Sphingosine-1-phosphate signaling in endothelial disorders. Curr. Atheroscler. Rep.18, 31 (2016). ArticleCASPubMed Google Scholar
Mikacenic, C. et al. Biomarkers of endothelial activation are associated with poor outcome in critical illness. PLoS ONE10, e0141251 (2015). ArticleCASPubMedPubMed Central Google Scholar
Claushuis, T. A. et al. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients. Blood127, 3062–3072 (2016). ArticleCASPubMed Google Scholar
Wong, C. H., Jenne, C. N., Petri, B., Chrobok, N. L. & Kubes, P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol.14, 785–792 (2013). This paper demonstrates the tight interaction between haemostasis and innate immunity by showing that platelets and Kupffer cells act together in a mechanism that rapidly clears Gram-positive blood-borne bacteria. ArticleCASPubMedPubMed Central Google Scholar
de Stoppelaar, S. F. et al. Thrombocytopenia impairs host defense in gram-negative pneumonia-derived sepsis in mice. Blood124, 3781–3790 (2014). ArticleCASPubMedPubMed Central Google Scholar
de Stoppelaar, S. F., van 't Veer, C. & van der Poll, T. The role of platelets in sepsis. Thromb. Haemost.112, 666–677 (2014). ArticlePubMed Google Scholar
Rauch, P. J. et al. Innate response activator B cells protect against microbial sepsis. Science335, 597–601 (2012). This paper describes innate response activator B cells as key components of the innate immune response that facilitates bacterial clearance during sepsis. ArticleCASPubMedPubMed Central Google Scholar
Weber, G. F. et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science347, 1260–1265 (2015). ArticleCASPubMedPubMed Central Google Scholar
Hotchkiss, R. S., Monneret, G. & Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol.13, 862–874 (2013). ArticleCASPubMedPubMed Central Google Scholar
Boomer, J. S. et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA306, 2594–2605 (2011). This article reports that patients who die in the ICU following sepsis, when compared with patients who die of non-sepsis aetiologies, have biochemical, flow cytometric and immunohistochemical findings that are consistent with immunosuppression. ArticleCASPubMedPubMed Central Google Scholar
Huang, X. et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl Acad. Sci. USA106, 6303–6308 (2009). ArticlePubMedPubMed Central Google Scholar
Shao, R. et al. Monocyte programmed death ligand-1 expression after 3–4 days of sepsis is associated with risk stratification and mortality in septic patients: a prospective cohort study. Crit. Care20, 124 (2016). ArticlePubMedPubMed Central Google Scholar
Venet, F. et al. Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism. J. Immunol.177, 6540–6547 (2006). ArticleCASPubMed Google Scholar
Scumpia, P. O. et al. Treatment with GITR agonistic antibody corrects adaptive immune dysfunction in sepsis. Blood110, 3673–3681 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pastille, E. et al. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. J. Immunol.186, 977–986 (2011). ArticleCASPubMed Google Scholar
Hotchkiss, R. S. et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol.168, 2493–2500 (2002). ArticleCASPubMed Google Scholar
Scumpia, P. O. et al. CD11c+ dendritic cells are required for survival in murine polymicrobial sepsis. J. Immunol.175, 3282–3286 (2005). ArticleCASPubMed Google Scholar
Carson, W. F., Cavassani, K. A., Dou, Y. & Kunkel, S. L. Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics6, 273–283 (2011). ArticleCASPubMedPubMed Central Google Scholar
Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet.9, 102–114 (2008). ArticleCASPubMed Google Scholar
Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature447, 972–978 (2007). ArticleCASPubMed Google Scholar
Chan, C., Li, L., McCall, C. E. & Yoza, B. K. Endotoxin tolerance disrupts chromatin remodeling and NF-κB transactivation at the IL-1β promoter. J. Immunol.175, 461–468 (2005). ArticleCASPubMed Google Scholar
El Gazzar, M. et al. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol. Cell. Biol.29, 1959–1971 (2009). ArticleCASPubMed Google Scholar
De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell130, 1083–1094 (2007). ArticleCASPubMed Google Scholar
Liu, T. F., Yoza, B. K., El Gazzar, M., Vachharajani, V. T. & McCall, C. E. NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J. Biol. Chem.286, 9856–9864 (2011). ArticleCASPubMedPubMed Central Google Scholar
Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe9, 355–361 (2011). This paper introduces the term trained immunity to describe the phenomenon that mammalian innate immunity exhibits an immunological memory of past insults. ArticleCASPubMed Google Scholar
Blok, B. A., Arts, R. J., van Crevel, R., Benn, C. S. & Netea, M. G. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J. Leukoc. Biol.98, 347–356 (2015). ArticleCASPubMed Google Scholar
Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe12, 223–232 (2012). ArticleCASPubMed Google Scholar
Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science345, 1251086 (2014). ArticleCASPubMedPubMed Central Google Scholar
Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab.24, 807–819 (2016). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, K. et al. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat. Immunol.16, 1034–1043 (2015). ArticleCASPubMed Google Scholar
Koopman, F. A. et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl Acad. Sci. USA113, 8284–8289 (2016). ArticleCASPubMedPubMed Central Google Scholar
Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell167, 457–470 (2016). ArticleCASPubMedPubMed Central Google Scholar
Liu, T. F., Vachharajani, V. T., Yoza, B. K. & McCall, C. E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem.287, 25758–25769 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lachmandas, E. et al. Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes. Nat. Microbiol.2, 16246 (2016). ArticleCASPubMed Google Scholar
Cheng, S. C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol.17, 406–413 (2016). This paper shows that leukocytes from patients with sepsis who have immunoparalysis demonstrate a generalized metabolic defect at the level of both glycolysis and oxidative metabolism. ArticleCASPubMed Google Scholar
Dickson, R. P. The microbiome and critical illness. Lancet Respir. Med.4, 59–72 (2016). ArticlePubMed Google Scholar
Prescott, H. C., Dickson, R. P., Rogers, M. A., Langa, K. M. & Iwashyna, T. J. Hospitalization type and subsequent severe sepsis. Am. J. Respir. Crit. Care Med.192, 581–588 (2015). ArticlePubMedPubMed Central Google Scholar
Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med.16, 228–231 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gauguet, S. et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect. Immun.83, 4003–4014 (2015). ArticleCASPubMedPubMed Central Google Scholar
Schuijt, T. J. et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut65, 575–583 (2016). ArticleCASPubMed Google Scholar
Karmarkar, D. & Rock, K. L. Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response. Immunology140, 483–492 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bo, L. et al. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst. Rev.25, CD009066 (2014). Google Scholar
Besselink, M. G. et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet371, 651–659 (2008). ArticlePubMed Google Scholar
Han, S., Shannahan, S. & Pellish, R. Fecal microbiota transplant: treatment options for Clostridium difficile infection in the intensive care unit. J. Intensive Care Med.31, 577–586 (2016). ArticlePubMed Google Scholar
Li, Q. et al. Successful treatment of severe sepsis and diarrhea after vagotomy utilizing fecal microbiota transplantation: a case report. Crit. Care19, 37 (2015). ArticlePubMedPubMed Central Google Scholar
Sweeney, T. E. & Wong, H. R. Risk stratification and prognosis in sepsis: what have we learned from microarrays? Clin. Chest Med.37, 209–218 (2016). ArticlePubMedPubMed Central Google Scholar
Scicluna, B. P. et al. A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am. J. Respir. Crit. Care Med.192, 826–835 (2015). ArticleCASPubMed Google Scholar
van Vught, L. A. et al. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA315, 1469–1479 (2016). This is a large observational study showing that ICU-acquired infections only modestly contribute to mortality in patients admitted with sepsis. ArticleCASPubMed Google Scholar
van Vught, L. A. et al. Comparative analysis of the host response to community-acquired and hospital-acquired pneumonia in critically ill patients. Am. J. Respir. Crit. Care Med.194, 1366–1374 (2016). ArticleCASPubMed Google Scholar
Burnham, K. L. et al. Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia. Am. J. Respir. Crit. Care Med.http://dx.doi.org/10.1164/rccm.201608-1685OC (2016).
Xiao, W. et al. A genomic storm in critically injured humans. J. Exp. Med.208, 2581–2590 (2011). This study demonstrates that in patients with severe blunt trauma, the early leukocyte genomic response is characterized by an increase in the expression of genes involved in systemic inflammatory and innate immune responses, and concomitant suppression of genes involved in adaptive immunity. ArticleCASPubMedPubMed Central Google Scholar
Davenport, E. E. et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir. Med.4, 259–271 (2016). This study carried out in patients with severe community-acquired pneumonia reveals two distinct sepsis response signatures that are based on analyses of the blood leukocyte transcriptome; one of the signatures identifies individuals with an immunosuppressed phenotype. ArticlePubMedPubMed Central Google Scholar
Shalova, I. N. et al. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α. Immunity42, 484–498 (2015). ArticleCASPubMed Google Scholar
Opal, S. M., Dellinger, R. P., Vincent, J. L., Masur, H. & Angus, D. C. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? Crit. Care Med.42, 1714–1721 (2014). ArticleCASPubMedPubMed Central Google Scholar
Leentjens, J., Kox, M., van der Hoeven, J. G., Netea, M. G. & Pickkers, P. Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? Am. J. Respir. Crit. Care Med.187, 1287–1293 (2013). ArticleCASPubMed Google Scholar
Patil, N. K., Bohannon, J. K. & Sherwood, E. R. Immunotherapy: a promising approach to reverse sepsis-induced immunosuppression. Pharmacol. Res.111, 688–702 (2016). ArticleCASPubMedPubMed Central Google Scholar
van Vught, L. A. et al. The host response in sepsis patients developing intensive care unit-acquired secondary infections. Am. J. Respir. Crit. Care Med.http://dx.doi.org/10.1164/rccm.201606-1225OC (2017).
Cruz, D. N. et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA301, 2445–2452 (2009). ArticleCASPubMed Google Scholar
Payen, D. M. et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med.41, 975–984 (2015). ArticleCASPubMedPubMed Central Google Scholar
Kang, J. H. et al. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med.20, 1211–1216 (2014). ArticleCASPubMed Google Scholar
Arad, G. et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol.9, e1001149 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ramachandran, G. et al. CD28 homodimer interface mimetic peptide acts as a preventive and therapeutic agent in models of severe bacterial sepsis and gram-negative bacterial peritonitis. J. Infect. Dis.211, 995–1003 (2015). ArticleCASPubMed Google Scholar
Bulger, E. M. et al. A novel drug for treatment of necrotizing soft-tissue infections: a randomized clinical trial. JAMA Surg.149, 528–536 (2014). ArticleCASPubMed Google Scholar
Leentjens, J. et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am. J. Respir. Crit. Care Med.186, 838–845 (2012). ArticleCASPubMed Google Scholar
Docke, W. D. et al. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nat. Med.3, 678–681 (1997). ArticleCASPubMed Google Scholar
Delsing, C. E. et al. Interferon-γ as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect. Dis.14, 166 (2014). ArticleCASPubMedPubMed Central Google Scholar
Nalos, M. et al. Immune effects of interferon γ in persistent staphylococcal sepsis. Am. J. Respir. Crit. Care Med.185, 110–112 (2012). ArticlePubMed Google Scholar
Rochman, Y., Spolski, R. & Leonard, W. J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol.9, 480–490 (2009). ArticleCASPubMedPubMed Central Google Scholar
Unsinger, J. et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J. Immunol.184, 3768–3779 (2010). ArticleCASPubMed Google Scholar
Kasten, K. R. et al. Interleukin-7 (IL-7) treatment accelerates neutrophil recruitment through γδ T-cell IL-17 production in a murine model of sepsis. Infect. Immun.78, 4714–4722 (2010). ArticleCASPubMedPubMed Central Google Scholar
Venet, F. et al. IL-7 restores lymphocyte functions in septic patients. J. Immunol.189, 5073–5081 (2012). ArticleCASPubMed Google Scholar
Mackall, C. L., Fry, T. J. & Gress, R. E. Harnessing the biology of IL-7 for therapeutic application. Nat. Rev. Immunol.11, 330–342 (2011). ArticleCASPubMedPubMed Central Google Scholar
Inoue, S. et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J. Immunol.184, 1401–1409 (2010). ArticleCASPubMed Google Scholar
Conlon, K. C. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol.33, 74–82 (2015). ArticleCASPubMed Google Scholar
Meisel, C. et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am. J. Respir. Crit. Care Med.180, 640–648 (2009). ArticleCASPubMed Google Scholar
Hall, M. W. et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med.37, 525–532 (2011). ArticleCASPubMed Google Scholar
Shubin, N. J. et al. BTLA expression contributes to septic morbidity and mortality by inducing innate inflammatory cell dysfunction. J. Leukoc. Biol.92, 593–603 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tuthill, C., Rios, I. & McBeath, R. Thymosin α 1: past clinical experience and future promise. Ann. NY Acad. Sci.1194, 130–135 (2010). ArticleCASPubMed Google Scholar
Wu, J. et al. The efficacy of thymosin α 1 for severe sepsis (ETASS): a multicenter, single-blind, randomized and controlled trial. Crit. Care17, R8 (2013). ArticlePubMedPubMed Central Google Scholar
Feng, Z., Shi, Q., Fan, Y., Wang, Q. & Yin, W. Ulinastatin and/or thymosin α1 for severe sepsis: a systematic review and meta-analysis. J. Trauma Acute Care Surg.80, 335–340 (2016). ArticlePubMed Google Scholar
Walter, J., Ware, L. B. & Matthay, M. A. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet. Respir. Med.2, 1016–1026 (2014). ArticleCASPubMed Google Scholar
Kingsley, S. M. & Bhat, B. V. Could stem cells be the future therapy for sepsis? Blood Rev.30, 439–452 (2016). ArticlePubMed Google Scholar
Nemeth, K. et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med.15, 42–49 (2009). ArticleCASPubMed Google Scholar
Monsel, A. et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med.192, 324–336 (2015). ArticleCASPubMedPubMed Central Google Scholar
Larsen, R. et al. A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl Med.2, 51ra71 (2010). ArticleCASPubMed Google Scholar
Martins, R. et al. Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat. Immunol.17, 1361–1372 (2016). ArticleCASPubMed Google Scholar
Vachharajani, V. T. et al. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J. Leukoc. Biol.96, 785–796 (2014). ArticleCASPubMedPubMed Central Google Scholar
Levy, M. M. et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med.31, 1250–1256 (2003). ArticlePubMed Google Scholar
Vincent, J. L. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med.22, 707–710 (1996). ArticleCASPubMed Google Scholar
Gaieski, D. F., Edwards, J. M., Kallan, M. J. & Carr, B. G. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit. Care Med.41, 1167–1174 (2013). ArticlePubMed Google Scholar
Fleischmann, C. et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am. J. Respir. Crit. Care Med.193, 259–272 (2016). ArticleCASPubMed Google Scholar
Kaukonen, K. M., Bailey, M., Suzuki, S., Pilcher, D. & Bellomo, R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA311, 1308–1316 (2014). This large observational study in Australia and New Zealand finds that absolute mortality in severe sepsis decreased from 35.0% to 18.4% between 2000 and 2012, which represents an annual rate of absolute decrease of 1.3%. ArticleCASPubMed Google Scholar
Rhodes, A. et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2016. Crit. Care Med.45, 486–552 (2017). This is the most recent version of the consensus guidelines for the management of sepsis and septic shock. ArticlePubMed Google Scholar
Iwashyna, T. J., Ely, E. W., Smith, D. M. & Langa, K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA304, 1787–1794 (2010). ArticleCASPubMedPubMed Central Google Scholar
Prescott, H. C., Osterholzer, J. J., Langa, K. M., Angus, D. C. & Iwashyna, T. J. Late mortality after sepsis: propensity matched cohort study. BMJ353, i2375 (2016). ArticlePubMedPubMed Central Google Scholar
Yende, S. et al. Long-term quality of life among survivors of severe sepsis: analyses of two international trials. Crit. Care Med.44, 1461–1467 (2016). ArticleCASPubMedPubMed Central Google Scholar