Cytokine control of memory T-cell development and survival (original) (raw)

References

  1. Cho, B. K., Wang, C., Sugawa, S., Eisen, H. N. & Chen, J. Functional differences between memory and naive CD8 T cells. Proc. Natl Acad. Sci. USA 96, 2976–2981 (1999).
    CAS PubMed PubMed Central Google Scholar
  2. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).
    Article CAS PubMed Google Scholar
  3. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T-cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).
    CAS PubMed Google Scholar
  4. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).
    CAS PubMed Google Scholar
  5. Lin, J. X. et al. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13 and IL-15. Immunity 2, 331–339 (1995).
    CAS PubMed Google Scholar
  6. Bulfone-Paus, S. et al. Death deflected: IL-15 inhibits TNF-α-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15Rα chain. FASEB J. 13, 1575–1585 (1999).
    CAS PubMed Google Scholar
  7. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).
    CAS PubMed Google Scholar
  8. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin-15-deficient mice. J. Exp. Med. 191, 771–780 (2000). References 7 and 8 describe the phenotype of IL-15Rα-deficient mice and IL-15-deficient mice, respectively, and show that memory-phenotype CD8+ T cells are deficient in the absence of either IL-15Rα or IL-15.
    Article CAS PubMed PubMed Central Google Scholar
  9. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).
    CAS Google Scholar
  10. Biron, C. A. Interferons α and β as immune regulators — a new look. Immunity 14, 661–664 (2001).
    CAS PubMed Google Scholar
  11. Mattei, F., Schiavoni, G., Belardelli, F. & Tough, D. F. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA or lipopolysaccharide and promotes dendritic-cell activation. J. Immunol. 167, 1179–1187 (2001).
    CAS PubMed Google Scholar
  12. Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene-expression analysis. Nature Immunol. 2, 882–888 (2001).
    CAS Google Scholar
  13. Ohteki, T., Suzue, K., Maki, C., Ota, T. & Koyasu, S. Critical role of IL-15–IL-15R for antigen-presenting cell functions in the innate immune response. Nature Immunol. 2, 1138–1143 (2001).
    CAS Google Scholar
  14. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).
    Article CAS PubMed Google Scholar
  15. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).
    CAS PubMed Google Scholar
  16. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).
    CAS PubMed Google Scholar
  17. Kaech, S. M. & Ahmed, R. Memory CD8+ T-cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422 (2001).
    CAS Google Scholar
  18. Wong, P. & Pamer, E. G. Cutting edge: antigen-independent CD8 T-cell proliferation. J. Immunol. 166, 5864–5868 (2001).
    CAS PubMed Google Scholar
  19. Van Stipdonk, M. J., Lemmens, E. E. & Schoenberger, S. P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunol. 2, 423–429 (2001).
    CAS Google Scholar
  20. Foulds, K. E. et al. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol. 168, 1528–1532 (2002).
    CAS PubMed Google Scholar
  21. Roman, E. et al. CD4 effector T-cell subsets in the response to influenza: heterogeneity, migration and function. J. Exp. Med. 196, 957–968 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  22. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).
    CAS PubMed PubMed Central Google Scholar
  23. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).
    CAS PubMed Google Scholar
  24. Wu, C. Y. et al. Distinct lineages of TH1 cells have differential capacities for memory-cell generation in vivo. Nature Immunol. 3, 852–858 (2002).
    CAS Google Scholar
  25. Oehen, S. & Brduscha-Riem, K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol. 161, 5338–5346 (1998).
    CAS PubMed Google Scholar
  26. Opferman, J. T., Ober, B. T. & Ashton-Rickardt, P. G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).
    CAS PubMed Google Scholar
  27. Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).
    CAS PubMed PubMed Central Google Scholar
  28. Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654 (1994).
    CAS PubMed Google Scholar
  29. Fernando, G. J., Khammanivong, V., Leggatt, G. R., Liu, W. J. & Frazer, I. H. The number of long-lasting functional memory CD8+ T cells generated depends on the nature of the initial nonspecific stimulation. Eur. J. Immunol. 32, 1541–1549 (2002).
    CAS PubMed Google Scholar
  30. Smith, K. A. Interleukin-2: inception, impact and implications. Science 240, 1169–1176 (1988).
    CAS PubMed Google Scholar
  31. Janeway, C. A. Jr & Bottomly, K. Signals and signs for lymphocyte responses. Cell 76, 275–285 (1994).
    CAS PubMed Google Scholar
  32. Schluns, K. S., Williams, K., Ma, A., Zheng, X. X. & Lefrançois, L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol. 168, 4827–4831 (2002). This study, together with references 55 and 77, shows that IL-15 and IL-15Rα are required for the basal proliferation of antigen-specific memory CD8+ T cells in immunocompetent mice.
    CAS PubMed Google Scholar
  33. Vella, A. T., Teague, T. K., Ihle, J. N., Kappler, J. & Marrack, P. Interleukin-4 (IL-4) or IL-7 prevents the death of resting T cells: STAT6 is probably not required for the effect of IL-4. J. Exp. Med. 186, 325–330 (1997).
    CAS PubMed PubMed Central Google Scholar
  34. Vella, A. T., Dow, S., Potter, T. A., Kappler, J. & Marrack, P. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl Acad. Sci. USA 95, 3810–3815 (1998).
    CAS PubMed PubMed Central Google Scholar
  35. Grabstein, K. H. et al. Regulation of T-cell proliferation by IL-7. J. Immunol. 144, 3015–3020 (1990).
    CAS PubMed Google Scholar
  36. Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).
    CAS PubMed Google Scholar
  37. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrançois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000). The first demonstration that IL-7 is required for homeostatic proliferation of CD4+ and CD8+ T cells after transfer into a lymphopenic host. This study showed that IL-7Rα is expressed by naive and memory T cells and that the generation of antigen-specific memory CD8+ T cells is defective in the absence of IL-7Rα expression.
    CAS Google Scholar
  38. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cell in vivo by IL-15. Immunity 8, 591–599 (1998). The first demonstration that memory-phenotype CD8+ T cells have increased levels of expression of the IL-2R β-chain, which correlates with an increased responsiveness to IL-15.
    CAS PubMed Google Scholar
  39. D'Souza, W. N., Schluns, K. S., Masopust, D. & Lefrançois, L. Essential role for IL-2 in the regulation of antiviral extralymphoid CD8 T-cell responses. J. Immunol. 168, 5566–5572 (2002).
    CAS PubMed Google Scholar
  40. Khoruts, A., Mondino, A., Pape, K. A., Reiner, S. L. & Jenkins, M. K. A natural immunological adjuvant enhances T-cell clonal expansion through a CD28-dependent, interleukin (IL)-2-independent mechanism. J. Exp. Med. 187, 225–236 (1998).
    CAS PubMed PubMed Central Google Scholar
  41. Cousens, L. P., Orange, J. S. & Biron, C. A. Endogenous IL-2 contributes to T-cell expansion and IFN-γ production during lymphocytic choriomeningitis virus production. J. Immunol. 155, 5690–5699 (1995).
    CAS PubMed Google Scholar
  42. Utermohlen, O., Tarnok, A., Bonig, L. & Lehmann-Grube, F. T-lymphocyte-mediated antiviral immune responses in mice are diminished by treatment with monoclonal antibody directed against the interleukin-2 receptor. Eur. J. Immunol. 24, 3093–3099 (1994).
    CAS PubMed Google Scholar
  43. Kundig, T. M. et al. Immune responses in interleukin-2-deficient mice. Science 262, 1059–1061 (1993).
    CAS PubMed Google Scholar
  44. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).
    CAS PubMed PubMed Central Google Scholar
  45. Kneitz, B., Herrmann, T., Yonehara, S. & Schimpl, A. Normal clonal expansion but impaired Fas-mediated cell death and anergy induction in interleukin-2-deficient mice. Eur. J. Immunol. 25, 2572–2577 (1995).
    CAS PubMed Google Scholar
  46. Leung, D. T., Morefield, S. & Willerford, D. M. Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo. J. Immunol. 164, 3527–3534 (2000).
    CAS PubMed Google Scholar
  47. Lantz, O., Grandjean, I., Matzinger, P. & Di Santo, J. P. γ-chain required for naive CD4+ T-cell survival but not for antigen proliferation. Nature Immunol. 1, 54–58 (2000).
    CAS Google Scholar
  48. Grabstein, K. H. et al. Cloning of a T-cell growth factor that interacts with the β-chain of the interleukin-2 receptor. Science 264, 965–968 (1994).
    CAS PubMed Google Scholar
  49. Flamand, L., Stefanescu, I. & Menezes, J. Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15. J. Clin. Invest. 97, 1373–1381 (1996).
    CAS PubMed PubMed Central Google Scholar
  50. Carson, W. E. et al. Endogenous production of interleukin-15 by activated human monocytes is critical for optimal production of interferon-γ by natural killer cells in vitro. J. Clin. Invest. 96, 2578–2582 (1995).
    CAS PubMed PubMed Central Google Scholar
  51. Atedzoe, B. N., Ahmad, A. & Menezes, J. Enhancement of natural killer cell cytotoxicity by the human herpesvirus-7 via IL-15 induction. J. Immunol. 159, 4966–4972 (1997).
    CAS PubMed Google Scholar
  52. Doherty, T. M., Seder, R. A. & Sher, A. Induction and regulation of IL-15 expression in murine macrophages. J. Immunol. 156, 735–741 (1996).
    CAS PubMed Google Scholar
  53. Mody, C. H., Spurrell, J. C. & Wood, C. J. Interleukin-15 induces antimicrobial activity after release by _Cryptococcus neoformans_-stimulated monocytes. J. Infect. Dis. 178, 803–814 (1998).
    CAS PubMed Google Scholar
  54. Nishimura, H. et al. IL-15 is a novel growth factor for murine γδ T cells induced by Salmonella infection. J. Immunol. 156, 663–669 (1996).
    CAS PubMed Google Scholar
  55. Becker, T. C. et al. Interleukin-15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541–1548 (2002).
    CAS PubMed PubMed Central Google Scholar
  56. Badovinac, V. P., Porter, B. B. & Harty, J. T. Programmed contraction of CD8+ T cells after infection. Nature Immunol. 3, 619–626 (2002).
    CAS Google Scholar
  57. Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8+ T-cell homeostasis by perforin and interferon-γ. Science 290, 1354–1358 (2000).
    CAS PubMed Google Scholar
  58. Dalton, D. K., Haynes, L., Chu, C. Q., Swain, S. L. & Wittmer, S. Interferon-γ eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J. Exp. Med. 192, 117–122 (2000).
    CAS PubMed PubMed Central Google Scholar
  59. Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T-cell apoptosis. Immunity 8, 615–623 (1998).
    CAS PubMed Google Scholar
  60. Yajima, T. et al. Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure. J. Immunol. 168, 1198–1203 (2002).
    CAS PubMed Google Scholar
  61. Maraskovsky, E. et al. Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells. J. Immunol. 157, 5315–5323 (1996).
    CAS PubMed Google Scholar
  62. Hassan, J. & Reen, D. J. IL-7 promotes the survival and maturation, but not differentiation of human post-thymic CD4+ T cells. Eur. J. Immunol. 28, 3057–3065 (1998).
    CAS PubMed Google Scholar
  63. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I. L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041 (1997).
    CAS PubMed Google Scholar
  64. Maraskovsky, E. et al. Bcl-2 can rescue T-lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant Rag1 −/− mice. Cell 89, 1011–1019 (1997).
    CAS PubMed Google Scholar
  65. Kim, K., Lee, C. K., Sayers, T. J., Muegge, K. & Durum, S. K. The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2 and T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J. Immunol. 160, 5735–5741 (1998).
    CAS PubMed Google Scholar
  66. Schober, S. L. et al. Expression of the transcription factor lung Kruppel-like factor is regulated by cytokines and correlates with survival of memory T cells in vitro and in vivo. J. Immunol. 163, 3662–3667 (1999).
    CAS PubMed Google Scholar
  67. Tough, D. F. & Sprent, J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135 (1994).
    CAS PubMed Google Scholar
  68. Tanchot, C., Lemonnier, F. A., Perarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).
    CAS PubMed Google Scholar
  69. Tough, D. F. & Sprent, J. Lifespan of lymphocytes. Immunol. Res. 14, 1–12 (1995).
    CAS PubMed Google Scholar
  70. Bruno, L., von Boehmer, H. & Kirberg, J. Cell division in the compartment of naive and memory T lymphocytes. Eur. J. Immunol. 26, 3179–3184 (1996).
    CAS PubMed Google Scholar
  71. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class-I-deficient mice. Science 286, 1377–1381 (1999).
    CAS PubMed Google Scholar
  72. Swain, S. L., Hu, H. & Huston, G. Class-II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).
    CAS PubMed Google Scholar
  73. Kassiotis, G., Garcia, S., Simpson, E. & Stockinger, B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nature Immunol. 3, 244–250 (2002).
    CAS Google Scholar
  74. Kanai, T., Thomas, E. K., Yasutomi, Y. & Letvin, N. L. IL-15 stimulates the expansion of AIDS virus-specific CTL. J. Immunol. 157, 3681–3687 (1996).
    CAS PubMed Google Scholar
  75. Kanegane, H. & Tosato, G. Activation of naive and memory T cells by interleukin-15. Blood 88, 230–235 (1996).
    CAS PubMed Google Scholar
  76. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000). This study shows that IL-2 and IL-15 have contrasting roles in memory CD8+ T-cell proliferation, and that in vivo treatment with IL-2/IL-15Rβ-specific antibodies causes a decrease in the proliferation of memory-phenotype CD8+ T cells, whereas blocking IL-2 causes an increase in memory CD8+ T-cell proliferation.
    CAS PubMed Google Scholar
  77. Goldrath, A. W. et al. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 195, 1515–1522 (2002).
    CAS PubMed PubMed Central Google Scholar
  78. Kieper, W. C. et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med. 195, 1533–1539 (2002).
    CAS PubMed PubMed Central Google Scholar
  79. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
    CAS PubMed Google Scholar
  80. Masopust, D., Vezys, V., Marzo, A. L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).
    CAS PubMed Google Scholar
  81. Geginat, J., Sallusto, F. & Lanzavecchia, A. Cytokine-driven proliferation and differentiation of human naive, central memory and effector memory CD4+ T cells. J. Exp. Med. 194, 1711–1719 (2001).
    CAS PubMed PubMed Central Google Scholar
  82. Masopust, D., Jiang, J., Shen, H. & Lefrançois, L. Direct analysis of the dynamics of the intestinal mucosa CD8 T-cell response to systemic virus infection. J. Immunol. 166, 2348–2356 (2001).
    CAS PubMed Google Scholar
  83. Choi, E. Y. et al. Quantitative analysis of the immune response to mouse non-MHC transplantation antigens in vivo: the H60 histocompatibility antigen dominates over all others. J. Immunol. 166, 4370–4379 (2001).
    CAS PubMed Google Scholar
  84. Grayson, J. M., Harrington, L. E., Lanier, J. G., Wherry, E. J. & Ahmed, R. Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J. Immunol. 169, 3760–3770 (2002).
    CAS PubMed Google Scholar
  85. Tough, D. F., Borrow, P. & Sprent, J. Induction of bystander T-cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996).
    CAS PubMed Google Scholar
  86. Tough, D. F., Sun, S. & Sprent, J. T-cell stimulation in vivo by lipopolysaccharide (LPS). J. Exp. Med. 185, 2089–2094 (1997).
    CAS PubMed PubMed Central Google Scholar
  87. Lodolce, J. P., Burkett, P. R., Boone, D. L., Chien, M. & Ma, A. T-cell-independent interleukin-15Rα signals are required for bystander proliferation. J. Exp. Med. 194, 1187–1194 (2001). Whereas most studies have examined direct effects of IL-15 on T cells, this study showed that IL-15 can mediate bystander proliferation of CD8+ T cells through mechanisms that do not require expression of IL-15Rα by T cells, but instead by non-T cells.
    CAS PubMed PubMed Central Google Scholar
  88. Judge, A. D., Zhang, X., Fujii, H., Surh, C. D. & Sprent, J. Interleukin-15 controls both proliferation and survival of a subset of memory-phenotype CD8+ T cells. J. Exp. Med. 196, 935–946 (2002).
    CAS PubMed PubMed Central Google Scholar
  89. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).
    CAS PubMed Google Scholar
  90. Andreasen, S. O., Christensen, J. P., Marker, O. & Thomsen, A. R. Virus-induced non-specific signals cause cell-cycle progression of primed CD8+ T cells, but do not induce cell differentiation. Int. Immunol. 11, 1463–1473 (1999).
    CAS PubMed Google Scholar
  91. Hodes, R. J. Aging and the immune system. Immunol. Rev. 160, 5–8 (1997).
    CAS PubMed Google Scholar
  92. Miller, R. A., Garcia, G., Kirk, C. J. & Witkowski, J. M. Early activation defects in T lymphocytes from aged mice. Immunol. Rev. 160, 79–90 (1997).
    CAS PubMed Google Scholar
  93. Linton, P. J., Haynes, L., Tsui, L., Zhang, X. & Swain, S. From naive to effector — alterations with aging. Immunol. Rev. 160, 9–18 (1997).
    CAS PubMed Google Scholar
  94. Zhang, X. et al. Aging leads to disturbed homeostasis of memory phenotype CD8+ cells. J. Exp. Med. 195, 283–293 (2002).
    CAS PubMed PubMed Central Google Scholar
  95. Freitas, A. A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol. 18, 83–111 (2000).
    CAS PubMed Google Scholar
  96. Selin, L. K. et al. Attrition of T-cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).
    CAS PubMed Google Scholar
  97. Varga, S. M., Selin, L. K. & Welsh, R. M. Independent regulation of lymphocytic choriomeningitis virus-specific T-cell memory pools: relative stability of CD4 memory under conditions of CD8 memory T-cell loss. J. Immunol. 166, 1554–1561 (2001).
    CAS PubMed Google Scholar
  98. Homann, D., Teyton, L. & Oldstone, M. B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nature Med. 7, 913–919 (2001).
    CAS PubMed Google Scholar
  99. Giri, J. G. et al. Utilization of the β and γ chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830 (1994).
    CAS PubMed PubMed Central Google Scholar
  100. Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14, 105–110 (2001).
    CAS PubMed Google Scholar
  101. Lenardo, M. J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature 353, 858–861 (1991).
    CAS PubMed Google Scholar
  102. Zheng, L., Trageser, C. L., Willerford, D. M. & Lenardo, M. J. T-cell growth cytokines cause the superinduction of molecules mediating antigen-induced T-lymphocyte death. J. Immunol. 160, 763–769 (1998).
    CAS PubMed Google Scholar
  103. Dai, Z., Arakelov, A., Wagener, M., Konieczny, B. T. & Lakkis, F. G. The role of the common cytokine receptor γ-chain in regulating IL-2-dependent, activation-induced CD8+ T-cell death. J. Immunol. 163, 3131–3137 (1999).
    CAS PubMed Google Scholar
  104. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).
    CAS PubMed Google Scholar
  105. Murakami, M., Sakamoto, A., Bender, J., Kappler, J. & Marrack, P. CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc. Natl Acad. Sci. USA 99, 8832–8837 (2002).
    CAS PubMed PubMed Central Google Scholar
  106. Furtado, G. C., De Lafaille, M. A., Kutchukhidze, N. & Lafaille, J. J. Interleukin-2 signaling is required for CD4+ regulatory T-cell function. J. Exp. Med. 196, 851–857 (2002).
    CAS PubMed PubMed Central Google Scholar
  107. Anderson, D. M. et al. Functional characterization of the human interleukin-15 receptor α-chain and close linkage of IL15RA and IL2RA genes. J. Biol. Chem. 270, 29862–29869 (1995).
    CAS PubMed Google Scholar
  108. Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002). A surprising demonstration that IL-15Rα recycles and can present IL-15 to opposing cells expressing the IL-2/IL-15Rβ and common γ-chain subunits, but not IL-15Rα.
    CAS PubMed Google Scholar
  109. Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl Acad. Sci. USA 97, 11445–11450 (2000).
    CAS PubMed PubMed Central Google Scholar
  110. Ruchatz, H., Leung, B. P., Wei, X. Q., McInnes, I. B. & Liew, F. Y. Soluble IL-15 receptor α-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology. J. Immunol. 160, 5654–5660 (1998).
    CAS PubMed Google Scholar
  111. Saint-Vis, B. et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J. Immunol. 160, 1666–1667 (1998).
    PubMed Google Scholar
  112. Bamford, R. N., Battiata, A. P., Burton, J. D., Sharma, H. & Waldmann, T. A. Interleukin (IL)-15/IL-T production by the adult T-cell leukemia cell line HuT-102 is associated with a human T-cell lymphotrophic virus type I region /IL-15 fusion message that lacks many upstream AUGs that normally attenuates IL-15 mRNA translation. Proc. Natl Acad. Sci. USA 93, 2897–2902 (1996).
    CAS PubMed PubMed Central Google Scholar
  113. Tagaya, Y. et al. Generation of secretable and nonsecretable interleukin-15 isoforms through alternate usage of signal peptides. Proc. Natl Acad. Sci. USA 94, 14444–14449 (1997).
    CAS PubMed PubMed Central Google Scholar
  114. Giri, J. G. et al. Identification and cloning of a novel IL-15-binding protein that is structurally related to the α-chain of the IL-2 receptor. EMBO J. 14, 3654–3663 (1995).
    CAS PubMed PubMed Central Google Scholar
  115. Dubois, S. et al. Natural splicing of exon 2 of human interleukin-15 receptor α-chain mRNA results in a shortened form with a distinct pattern of expression. J. Biol. Chem. 274, 26978–26984 (1999).
    CAS PubMed Google Scholar
  116. Tagaya, Y., Burton, J. D., Miyamoto, Y. & Waldmann, T. A. Identification of a novel receptor/signal transduction pathway for IL-15/T in mast cells. EMBO J. 15, 4928–4939 (1996).
    CAS PubMed PubMed Central Google Scholar
  117. Tagaya, Y., Bamford, R. N., DeFilippis, A. P. & Waldmann, T. A. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity 4, 329–336 (1996).
    CAS PubMed Google Scholar
  118. Masuda, A. et al. Interleukin-15 induces rapid tyrosine phosphorylation of STAT6 and the expression of interleukin-4 in mouse mast cells. J. Biol. Chem. 275, 29331–29337 (2000).
    CAS PubMed Google Scholar
  119. Greene, W. C. et al. Stable expression of cDNA encoding the human interleukin-2 receptor in eukaryotic cells. J. Exp. Med. 162, 363–368 (1985).
    CAS PubMed Google Scholar
  120. Johnston, J. A., Bacon, C. M., Riedy, M. C. & O'Shea, J. J. Signaling by IL-2 and related cytokines: JAKs, STATs and relationship to immunodeficiency. J. Leukocyte Biol. 60, 441–452 (1996).
    CAS PubMed Google Scholar
  121. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory-phenotype CD8+ cells but are not required for memory-phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).
    CAS PubMed PubMed Central Google Scholar

Download references