Cytokine control of memory T-cell development and survival (original) (raw)
References
Cho, B. K., Wang, C., Sugawa, S., Eisen, H. N. & Chen, J. Functional differences between memory and naive CD8 T cells. Proc. Natl Acad. Sci. USA96, 2976–2981 (1999). CASPubMedPubMed Central Google Scholar
Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol.7, 145–173 (1989). ArticleCASPubMed Google Scholar
Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T-cell immunity and peripheral tolerance induction in vivo. Immunity1, 327–339 (1994). CASPubMed Google Scholar
Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science274, 94–96 (1996). CASPubMed Google Scholar
Lin, J. X. et al. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13 and IL-15. Immunity2, 331–339 (1995). CASPubMed Google Scholar
Bulfone-Paus, S. et al. Death deflected: IL-15 inhibits TNF-α-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15Rα chain. FASEB J.13, 1575–1585 (1999). CASPubMed Google Scholar
Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity9, 669–676 (1998). CASPubMed Google Scholar
Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin-15-deficient mice. J. Exp. Med.191, 771–780 (2000). References 7 and 8 describe the phenotype of IL-15Rα-deficient mice and IL-15-deficient mice, respectively, and show that memory-phenotype CD8+ T cells are deficient in the absence of either IL-15Rα or IL-15. ArticleCASPubMedPubMed Central Google Scholar
Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol.2, 947–950 (2001). CAS Google Scholar
Biron, C. A. Interferons α and β as immune regulators — a new look. Immunity14, 661–664 (2001). CASPubMed Google Scholar
Mattei, F., Schiavoni, G., Belardelli, F. & Tough, D. F. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA or lipopolysaccharide and promotes dendritic-cell activation. J. Immunol.167, 1179–1187 (2001). CASPubMed Google Scholar
Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene-expression analysis. Nature Immunol.2, 882–888 (2001). CAS Google Scholar
Ohteki, T., Suzue, K., Maki, C., Ota, T. & Koyasu, S. Critical role of IL-15–IL-15R for antigen-presenting cell functions in the innate immune response. Nature Immunol.2, 1138–1143 (2001). CAS Google Scholar
Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature393, 474–478 (1998). ArticleCASPubMed Google Scholar
Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393, 478–480 (1998). CASPubMed Google Scholar
Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature393, 480–483 (1998). CASPubMed Google Scholar
Kaech, S. M. & Ahmed, R. Memory CD8+ T-cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol.2, 415–422 (2001). CAS Google Scholar
Wong, P. & Pamer, E. G. Cutting edge: antigen-independent CD8 T-cell proliferation. J. Immunol.166, 5864–5868 (2001). CASPubMed Google Scholar
Van Stipdonk, M. J., Lemmens, E. E. & Schoenberger, S. P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunol.2, 423–429 (2001). CAS Google Scholar
Foulds, K. E. et al. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol.168, 1528–1532 (2002). CASPubMed Google Scholar
Roman, E. et al. CD4 effector T-cell subsets in the response to influenza: heterogeneity, migration and function. J. Exp. Med.196, 957–968 (2002). ArticleCASPubMedPubMed Central Google Scholar
Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest.108, 871–878 (2001). CASPubMedPubMed Central Google Scholar
Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science294, 1735–1739 (2001). CASPubMed Google Scholar
Wu, C. Y. et al. Distinct lineages of TH1 cells have differential capacities for memory-cell generation in vivo. Nature Immunol.3, 852–858 (2002). CAS Google Scholar
Oehen, S. & Brduscha-Riem, K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol.161, 5338–5346 (1998). CASPubMed Google Scholar
Opferman, J. T., Ober, B. T. & Ashton-Rickardt, P. G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science283, 1745–1748 (1999). CASPubMed Google Scholar
Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector and memory CD8+ T cells. J. Exp. Med.194, 953–966 (2001). CASPubMedPubMed Central Google Scholar
Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature369, 652–654 (1994). CASPubMed Google Scholar
Fernando, G. J., Khammanivong, V., Leggatt, G. R., Liu, W. J. & Frazer, I. H. The number of long-lasting functional memory CD8+ T cells generated depends on the nature of the initial nonspecific stimulation. Eur. J. Immunol.32, 1541–1549 (2002). CASPubMed Google Scholar
Smith, K. A. Interleukin-2: inception, impact and implications. Science240, 1169–1176 (1988). CASPubMed Google Scholar
Janeway, C. A. Jr & Bottomly, K. Signals and signs for lymphocyte responses. Cell76, 275–285 (1994). CASPubMed Google Scholar
Schluns, K. S., Williams, K., Ma, A., Zheng, X. X. & Lefrançois, L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol.168, 4827–4831 (2002). This study, together with references 55 and 77, shows that IL-15 and IL-15Rα are required for the basal proliferation of antigen-specific memory CD8+ T cells in immunocompetent mice. CASPubMed Google Scholar
Vella, A. T., Teague, T. K., Ihle, J. N., Kappler, J. & Marrack, P. Interleukin-4 (IL-4) or IL-7 prevents the death of resting T cells: STAT6 is probably not required for the effect of IL-4. J. Exp. Med.186, 325–330 (1997). CASPubMedPubMed Central Google Scholar
Vella, A. T., Dow, S., Potter, T. A., Kappler, J. & Marrack, P. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl Acad. Sci. USA95, 3810–3815 (1998). CASPubMedPubMed Central Google Scholar
Grabstein, K. H. et al. Regulation of T-cell proliferation by IL-7. J. Immunol.144, 3015–3020 (1990). CASPubMed Google Scholar
Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol.167, 6869–6876 (2001). CASPubMed Google Scholar
Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrançois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol.1, 426–432 (2000). The first demonstration that IL-7 is required for homeostatic proliferation of CD4+ and CD8+ T cells after transfer into a lymphopenic host. This study showed that IL-7Rα is expressed by naive and memory T cells and that the generation of antigen-specific memory CD8+ T cells is defective in the absence of IL-7Rα expression. CAS Google Scholar
Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cell in vivo by IL-15. Immunity8, 591–599 (1998). The first demonstration that memory-phenotype CD8+ T cells have increased levels of expression of the IL-2R β-chain, which correlates with an increased responsiveness to IL-15. CASPubMed Google Scholar
D'Souza, W. N., Schluns, K. S., Masopust, D. & Lefrançois, L. Essential role for IL-2 in the regulation of antiviral extralymphoid CD8 T-cell responses. J. Immunol.168, 5566–5572 (2002). CASPubMed Google Scholar
Khoruts, A., Mondino, A., Pape, K. A., Reiner, S. L. & Jenkins, M. K. A natural immunological adjuvant enhances T-cell clonal expansion through a CD28-dependent, interleukin (IL)-2-independent mechanism. J. Exp. Med.187, 225–236 (1998). CASPubMedPubMed Central Google Scholar
Cousens, L. P., Orange, J. S. & Biron, C. A. Endogenous IL-2 contributes to T-cell expansion and IFN-γ production during lymphocytic choriomeningitis virus production. J. Immunol.155, 5690–5699 (1995). CASPubMed Google Scholar
Utermohlen, O., Tarnok, A., Bonig, L. & Lehmann-Grube, F. T-lymphocyte-mediated antiviral immune responses in mice are diminished by treatment with monoclonal antibody directed against the interleukin-2 receptor. Eur. J. Immunol.24, 3093–3099 (1994). CASPubMed Google Scholar
Kundig, T. M. et al. Immune responses in interleukin-2-deficient mice. Science262, 1059–1061 (1993). CASPubMed Google Scholar
Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA98, 8732–8737 (2001). CASPubMedPubMed Central Google Scholar
Kneitz, B., Herrmann, T., Yonehara, S. & Schimpl, A. Normal clonal expansion but impaired Fas-mediated cell death and anergy induction in interleukin-2-deficient mice. Eur. J. Immunol.25, 2572–2577 (1995). CASPubMed Google Scholar
Leung, D. T., Morefield, S. & Willerford, D. M. Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo. J. Immunol.164, 3527–3534 (2000). CASPubMed Google Scholar
Lantz, O., Grandjean, I., Matzinger, P. & Di Santo, J. P. γ-chain required for naive CD4+ T-cell survival but not for antigen proliferation. Nature Immunol.1, 54–58 (2000). CAS Google Scholar
Grabstein, K. H. et al. Cloning of a T-cell growth factor that interacts with the β-chain of the interleukin-2 receptor. Science264, 965–968 (1994). CASPubMed Google Scholar
Flamand, L., Stefanescu, I. & Menezes, J. Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15. J. Clin. Invest.97, 1373–1381 (1996). CASPubMedPubMed Central Google Scholar
Carson, W. E. et al. Endogenous production of interleukin-15 by activated human monocytes is critical for optimal production of interferon-γ by natural killer cells in vitro. J. Clin. Invest.96, 2578–2582 (1995). CASPubMedPubMed Central Google Scholar
Atedzoe, B. N., Ahmad, A. & Menezes, J. Enhancement of natural killer cell cytotoxicity by the human herpesvirus-7 via IL-15 induction. J. Immunol.159, 4966–4972 (1997). CASPubMed Google Scholar
Doherty, T. M., Seder, R. A. & Sher, A. Induction and regulation of IL-15 expression in murine macrophages. J. Immunol.156, 735–741 (1996). CASPubMed Google Scholar
Mody, C. H., Spurrell, J. C. & Wood, C. J. Interleukin-15 induces antimicrobial activity after release by _Cryptococcus neoformans_-stimulated monocytes. J. Infect. Dis.178, 803–814 (1998). CASPubMed Google Scholar
Nishimura, H. et al. IL-15 is a novel growth factor for murine γδ T cells induced by Salmonella infection. J. Immunol.156, 663–669 (1996). CASPubMed Google Scholar
Becker, T. C. et al. Interleukin-15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med.195, 1541–1548 (2002). CASPubMedPubMed Central Google Scholar
Badovinac, V. P., Porter, B. B. & Harty, J. T. Programmed contraction of CD8+ T cells after infection. Nature Immunol.3, 619–626 (2002). CAS Google Scholar
Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8+ T-cell homeostasis by perforin and interferon-γ. Science290, 1354–1358 (2000). CASPubMed Google Scholar
Dalton, D. K., Haynes, L., Chu, C. Q., Swain, S. L. & Wittmer, S. Interferon-γ eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J. Exp. Med.192, 117–122 (2000). CASPubMedPubMed Central Google Scholar
Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T-cell apoptosis. Immunity8, 615–623 (1998). CASPubMed Google Scholar
Yajima, T. et al. Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure. J. Immunol.168, 1198–1203 (2002). CASPubMed Google Scholar
Maraskovsky, E. et al. Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells. J. Immunol.157, 5315–5323 (1996). CASPubMed Google Scholar
Hassan, J. & Reen, D. J. IL-7 promotes the survival and maturation, but not differentiation of human post-thymic CD4+ T cells. Eur. J. Immunol.28, 3057–3065 (1998). CASPubMed Google Scholar
Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I. L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell89, 1033–1041 (1997). CASPubMed Google Scholar
Maraskovsky, E. et al. Bcl-2 can rescue T-lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant Rag1−/− mice. Cell89, 1011–1019 (1997). CASPubMed Google Scholar
Kim, K., Lee, C. K., Sayers, T. J., Muegge, K. & Durum, S. K. The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2 and T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J. Immunol.160, 5735–5741 (1998). CASPubMed Google Scholar
Schober, S. L. et al. Expression of the transcription factor lung Kruppel-like factor is regulated by cytokines and correlates with survival of memory T cells in vitro and in vivo. J. Immunol.163, 3662–3667 (1999). CASPubMed Google Scholar
Tough, D. F. & Sprent, J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med.179, 1127–1135 (1994). CASPubMed Google Scholar
Tanchot, C., Lemonnier, F. A., Perarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science276, 2057–2062 (1997). CASPubMed Google Scholar
Tough, D. F. & Sprent, J. Lifespan of lymphocytes. Immunol. Res.14, 1–12 (1995). CASPubMed Google Scholar
Bruno, L., von Boehmer, H. & Kirberg, J. Cell division in the compartment of naive and memory T lymphocytes. Eur. J. Immunol.26, 3179–3184 (1996). CASPubMed Google Scholar
Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class-I-deficient mice. Science286, 1377–1381 (1999). CASPubMed Google Scholar
Swain, S. L., Hu, H. & Huston, G. Class-II-independent generation of CD4 memory T cells from effectors. Science286, 1381–1383 (1999). CASPubMed Google Scholar
Kassiotis, G., Garcia, S., Simpson, E. & Stockinger, B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nature Immunol.3, 244–250 (2002). CAS Google Scholar
Kanai, T., Thomas, E. K., Yasutomi, Y. & Letvin, N. L. IL-15 stimulates the expansion of AIDS virus-specific CTL. J. Immunol.157, 3681–3687 (1996). CASPubMed Google Scholar
Kanegane, H. & Tosato, G. Activation of naive and memory T cells by interleukin-15. Blood88, 230–235 (1996). CASPubMed Google Scholar
Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science288, 675–678 (2000). This study shows that IL-2 and IL-15 have contrasting roles in memory CD8+ T-cell proliferation, and thatin vivotreatment with IL-2/IL-15Rβ-specific antibodies causes a decrease in the proliferation of memory-phenotype CD8+ T cells, whereas blocking IL-2 causes an increase in memory CD8+ T-cell proliferation. CASPubMed Google Scholar
Goldrath, A. W. et al. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med.195, 1515–1522 (2002). CASPubMedPubMed Central Google Scholar
Kieper, W. C. et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med.195, 1533–1539 (2002). CASPubMedPubMed Central Google Scholar
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). CASPubMed Google Scholar
Masopust, D., Vezys, V., Marzo, A. L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science291, 2413–2417 (2001). CASPubMed Google Scholar
Geginat, J., Sallusto, F. & Lanzavecchia, A. Cytokine-driven proliferation and differentiation of human naive, central memory and effector memory CD4+ T cells. J. Exp. Med.194, 1711–1719 (2001). CASPubMedPubMed Central Google Scholar
Masopust, D., Jiang, J., Shen, H. & Lefrançois, L. Direct analysis of the dynamics of the intestinal mucosa CD8 T-cell response to systemic virus infection. J. Immunol.166, 2348–2356 (2001). CASPubMed Google Scholar
Choi, E. Y. et al. Quantitative analysis of the immune response to mouse non-MHC transplantation antigens in vivo: the H60 histocompatibility antigen dominates over all others. J. Immunol.166, 4370–4379 (2001). CASPubMed Google Scholar
Grayson, J. M., Harrington, L. E., Lanier, J. G., Wherry, E. J. & Ahmed, R. Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J. Immunol.169, 3760–3770 (2002). CASPubMed Google Scholar
Tough, D. F., Borrow, P. & Sprent, J. Induction of bystander T-cell proliferation by viruses and type I interferon in vivo. Science272, 1947–1950 (1996). CASPubMed Google Scholar
Tough, D. F., Sun, S. & Sprent, J. T-cell stimulation in vivo by lipopolysaccharide (LPS). J. Exp. Med.185, 2089–2094 (1997). CASPubMedPubMed Central Google Scholar
Lodolce, J. P., Burkett, P. R., Boone, D. L., Chien, M. & Ma, A. T-cell-independent interleukin-15Rα signals are required for bystander proliferation. J. Exp. Med.194, 1187–1194 (2001). Whereas most studies have examined direct effects of IL-15 on T cells, this study showed that IL-15 can mediate bystander proliferation of CD8+ T cells through mechanisms that do not require expression of IL-15Rα by T cells, but instead by non-T cells. CASPubMedPubMed Central Google Scholar
Judge, A. D., Zhang, X., Fujii, H., Surh, C. D. & Sprent, J. Interleukin-15 controls both proliferation and survival of a subset of memory-phenotype CD8+ T cells. J. Exp. Med.196, 935–946 (2002). CASPubMedPubMed Central Google Scholar
Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity8, 177–187 (1998). CASPubMed Google Scholar
Andreasen, S. O., Christensen, J. P., Marker, O. & Thomsen, A. R. Virus-induced non-specific signals cause cell-cycle progression of primed CD8+ T cells, but do not induce cell differentiation. Int. Immunol.11, 1463–1473 (1999). CASPubMed Google Scholar
Hodes, R. J. Aging and the immune system. Immunol. Rev.160, 5–8 (1997). CASPubMed Google Scholar
Miller, R. A., Garcia, G., Kirk, C. J. & Witkowski, J. M. Early activation defects in T lymphocytes from aged mice. Immunol. Rev.160, 79–90 (1997). CASPubMed Google Scholar
Linton, P. J., Haynes, L., Tsui, L., Zhang, X. & Swain, S. From naive to effector — alterations with aging. Immunol. Rev.160, 9–18 (1997). CASPubMed Google Scholar
Zhang, X. et al. Aging leads to disturbed homeostasis of memory phenotype CD8+ cells. J. Exp. Med.195, 283–293 (2002). CASPubMedPubMed Central Google Scholar
Freitas, A. A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol.18, 83–111 (2000). CASPubMed Google Scholar
Selin, L. K. et al. Attrition of T-cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity11, 733–742 (1999). CASPubMed Google Scholar
Varga, S. M., Selin, L. K. & Welsh, R. M. Independent regulation of lymphocytic choriomeningitis virus-specific T-cell memory pools: relative stability of CD4 memory under conditions of CD8 memory T-cell loss. J. Immunol.166, 1554–1561 (2001). CASPubMed Google Scholar
Homann, D., Teyton, L. & Oldstone, M. B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nature Med.7, 913–919 (2001). CASPubMed Google Scholar
Giri, J. G. et al. Utilization of the β and γ chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J.13, 2822–2830 (1994). CASPubMedPubMed Central Google Scholar
Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity14, 105–110 (2001). CASPubMed Google Scholar
Lenardo, M. J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature353, 858–861 (1991). CASPubMed Google Scholar
Zheng, L., Trageser, C. L., Willerford, D. M. & Lenardo, M. J. T-cell growth cytokines cause the superinduction of molecules mediating antigen-induced T-lymphocyte death. J. Immunol.160, 763–769 (1998). CASPubMed Google Scholar
Dai, Z., Arakelov, A., Wagener, M., Konieczny, B. T. & Lakkis, F. G. The role of the common cytokine receptor γ-chain in regulating IL-2-dependent, activation-induced CD8+ T-cell death. J. Immunol.163, 3131–3137 (1999). CASPubMed Google Scholar
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155, 1151–1164 (1995). CASPubMed Google Scholar
Murakami, M., Sakamoto, A., Bender, J., Kappler, J. & Marrack, P. CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc. Natl Acad. Sci. USA99, 8832–8837 (2002). CASPubMedPubMed Central Google Scholar
Furtado, G. C., De Lafaille, M. A., Kutchukhidze, N. & Lafaille, J. J. Interleukin-2 signaling is required for CD4+ regulatory T-cell function. J. Exp. Med.196, 851–857 (2002). CASPubMedPubMed Central Google Scholar
Anderson, D. M. et al. Functional characterization of the human interleukin-15 receptor α-chain and close linkage of IL15RA and IL2RA genes. J. Biol. Chem.270, 29862–29869 (1995). CASPubMed Google Scholar
Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity17, 537–547 (2002). A surprising demonstration that IL-15Rα recycles and can present IL-15 to opposing cells expressing the IL-2/IL-15Rβ and common γ-chain subunits, but not IL-15Rα. CASPubMed Google Scholar
Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl Acad. Sci. USA97, 11445–11450 (2000). CASPubMedPubMed Central Google Scholar
Ruchatz, H., Leung, B. P., Wei, X. Q., McInnes, I. B. & Liew, F. Y. Soluble IL-15 receptor α-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology. J. Immunol.160, 5654–5660 (1998). CASPubMed Google Scholar
Saint-Vis, B. et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J. Immunol.160, 1666–1667 (1998). PubMed Google Scholar
Bamford, R. N., Battiata, A. P., Burton, J. D., Sharma, H. & Waldmann, T. A. Interleukin (IL)-15/IL-T production by the adult T-cell leukemia cell line HuT-102 is associated with a human T-cell lymphotrophic virus type I region /IL-15 fusion message that lacks many upstream AUGs that normally attenuates IL-15 mRNA translation. Proc. Natl Acad. Sci. USA93, 2897–2902 (1996). CASPubMedPubMed Central Google Scholar
Tagaya, Y. et al. Generation of secretable and nonsecretable interleukin-15 isoforms through alternate usage of signal peptides. Proc. Natl Acad. Sci. USA94, 14444–14449 (1997). CASPubMedPubMed Central Google Scholar
Giri, J. G. et al. Identification and cloning of a novel IL-15-binding protein that is structurally related to the α-chain of the IL-2 receptor. EMBO J.14, 3654–3663 (1995). CASPubMedPubMed Central Google Scholar
Dubois, S. et al. Natural splicing of exon 2 of human interleukin-15 receptor α-chain mRNA results in a shortened form with a distinct pattern of expression. J. Biol. Chem.274, 26978–26984 (1999). CASPubMed Google Scholar
Tagaya, Y., Burton, J. D., Miyamoto, Y. & Waldmann, T. A. Identification of a novel receptor/signal transduction pathway for IL-15/T in mast cells. EMBO J.15, 4928–4939 (1996). CASPubMedPubMed Central Google Scholar
Tagaya, Y., Bamford, R. N., DeFilippis, A. P. & Waldmann, T. A. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity4, 329–336 (1996). CASPubMed Google Scholar
Masuda, A. et al. Interleukin-15 induces rapid tyrosine phosphorylation of STAT6 and the expression of interleukin-4 in mouse mast cells. J. Biol. Chem.275, 29331–29337 (2000). CASPubMed Google Scholar
Greene, W. C. et al. Stable expression of cDNA encoding the human interleukin-2 receptor in eukaryotic cells. J. Exp. Med.162, 363–368 (1985). CASPubMed Google Scholar
Johnston, J. A., Bacon, C. M., Riedy, M. C. & O'Shea, J. J. Signaling by IL-2 and related cytokines: JAKs, STATs and relationship to immunodeficiency. J. Leukocyte Biol.60, 441–452 (1996). CASPubMed Google Scholar
Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory-phenotype CD8+ cells but are not required for memory-phenotype CD4+ cells. J. Exp. Med.195, 1523–1532 (2002). CASPubMedPubMed Central Google Scholar