Class II cytokine receptors and their ligands: Key antiviral and inflammatory modulators (original) (raw)
Isaacs, A. & Lindenmann, J. Virus interference: 1. The interferon. Proc. R. Soc. Lond. B147, 258–267 (1957). ArticleCASPubMed Google Scholar
Goodbourn, S., Didcock, L. & Randall, R. E. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol.81, 2341–2364 (2000). ArticleCASPubMed Google Scholar
Dalton, D. K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science259, 1739–1742 (1993). ArticleCASPubMed Google Scholar
Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem.67, 227–264 (1998). ArticleCASPubMed Google Scholar
Kotenko, S. V. & Pestka, S. Jak-Stat signal transduction pathway through the eyes of cytokine class II receptor complexes. Oncogene19, 2557–2565 (2000). ArticleCASPubMed Google Scholar
Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.19, 683–765 (2001). ArticleCASPubMed Google Scholar
Walter, M. R. Crystal structures of α-helical cytokine-receptor complexes: we've only scratched the surface. Biotechniques Suppl, S50–S57 (2002).
Kotenko, S. V. The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev.13, 223–240 (2002). ArticleCASPubMed Google Scholar
Dumoutier, L. & Renauld, J. C. Viral and cellular interleukin-10 (IL-10)-related cytokines: from structures to functions. Eur. Cytokine Netw.13, 5–15 (2002). CASPubMed Google Scholar
Fickenscher, H. et al. The interleukin-10 family of cytokines. Trends Immunol.23, 89–96 (2002). ArticleCASPubMed Google Scholar
Jiang, H., Lin, J. J., Su, Z. Z., Goldstein, N. I. & Fisher, P. B. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene11, 2477–2486 (1995). CASPubMed Google Scholar
Knappe, A., Hor, S., Wittmann, S. & Fickenscher, H. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J. Virol.74, 3881–3887 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dumoutier, L., Louahed, J. & Renauld, J. C. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J. Immunol.164, 1814–1819 (2000). ArticleCASPubMed Google Scholar
Gallagher, G. et al. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun.1, 442–450 (2000). ArticleCASPubMed Google Scholar
Blumberg, H. et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell104, 9–19 (2001). This study showed that overexpression of interleukin-20 (IL-20) in transgenic mice results in abnormal differentiation and proliferation of keratinocytes — a phenotype reminiscent of psoriatic skin in humans. ArticleCASPubMed Google Scholar
Sheppard, P. et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nature Immunol.4, 63–68 (2003). This paper described the cloning of IL-28A, IL-28B, IL-29 and their receptor, and shows that they exert antiviral activity. Similar observations were reported by Kotenkoet al. in reference 17. ArticleCAS Google Scholar
Kotenko, S. V. et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunol.4, 69–77 (2003). ArticleCAS Google Scholar
Oritani, K. et al. Limitin: An interferon-like cytokine that preferentially influences B-lymphocyte precursors. Nature Med.6, 659–666 (2000). ArticleCASPubMed Google Scholar
Chang, C. et al. Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. J. Biol. Chem.278, 3308–3313 (2003). ArticleCASPubMed Google Scholar
Nagem, R. A. et al. Crystal structure of recombinant human interleukin-22. Structure (Camb)10, 1051–1062 (2002). ArticleCAS Google Scholar
Karpusas, M. et al. The crystal structure of human interferon β at 2. 2-A resolution. Proc. Natl Acad. Sci. USA94, 11813–11818 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zdanov, A. et al. Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon γ. Structure3, 591–601 (1995). ArticleCASPubMed Google Scholar
Walter, M. R. & Nagabhushan, T. L. Crystal structure of interleukin 10 reveals an interferon γ-like fold. Biochemistry34, 12118–12125 (1995). ArticleCASPubMed Google Scholar
Bazan, J. F. Shared architecture of hormone binding domains in type I and II interferon receptors. Cell61, 753–754 (1990). ArticleCASPubMed Google Scholar
Josephson, K., Logsdon, N. J. & Walter, M. R. Crystal structure of the IL-10/IL-10R1 complex reveals a shared receptor binding site. Immunity15, 35–46 (2001). This study described the crystal structure of IL-10 bound to a soluble form of IL-10 receptor 1 (sIL-10R1), showing that several residues in the IL-10–sIL-10R1 interface are conserved in all IL-10 homologues and their receptors. ArticleCASPubMed Google Scholar
Kotenko, S. V. et al. Identification and functional characterization of a second chain of the interleukin-10 receptor complex. EMBO J16, 5894–5903 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kotenko, S. V. et al. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rβ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J. Biol. Chem.276, 2725–2732 (2001). ArticleCASPubMed Google Scholar
Dumoutier, L., Van Roost, E., Colau, D. & Renauld, J. C. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc. Natl Acad. Sci. USA97, 10144–10149 (2000). This study reported the cloning of human IL-22 and showed its activity as an inducer of the acute-phase response through the IL-10Rβ chain. ArticleCASPubMedPubMed Central Google Scholar
Xie, M. H. et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J. Biol. Chem.275, 31335–31339 (2000). ArticleCASPubMed Google Scholar
Lewerenz, M., Mogensen, K. E. & Uze, G. Shared receptor components but distinct complexes for α and β interferons. J. Mol. Biol.282, 585–599 (1998). ArticleCASPubMed Google Scholar
Riewald, M. & Ruf, W. Orchestration of coagulation protease signaling by tissue factor. Trends Cardiovasc. Med.12, 149–154 (2002). ArticleCASPubMed Google Scholar
Dumoutier, L., Lejeune, D., Colau, D. & Renauld, J. C. Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J. Immunol.166, 7090–7095 (2001). ArticleCASPubMed Google Scholar
Kotenko, S. V. et al. Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J. Immunol.166, 7096–7103 (2001). ArticleCASPubMed Google Scholar
Xu, W. et al. A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc. Natl Acad. Sci. USA98, 9511–9516 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gruenberg, B. H. et al. A novel, soluble homologue of the human IL-10 receptor with preferential expression in placenta. Genes Immun.2, 329–334 (2001). ArticleCASPubMed Google Scholar
Mantovani, A., Locati, M., Vecchi, A., Sozzani, S. & Allavena, P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol.22, 328–336 (2001). ArticleCASPubMed Google Scholar
Lejeune, D. et al. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J. Biol. Chem.277, 33676–33682 (2002). ArticleCASPubMed Google Scholar
Decker, T., Stockinger, S., Karaghiosoff, M., Muller, M. & Kovarik, P. IFNs and STATs in innate immunity to microorganisms. J. Clin. Invest.109, 1271–1277 (2002). ArticleCASPubMedPubMed Central Google Scholar
Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science264, 1918–1921 (1994). ArticleCASPubMed Google Scholar
Dumoutier, L., Lejeune, D., Hor, S., Fickenscher, H. & Renauld, J. C. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem. J.370, 391–396 (2003). ArticleCASPubMedPubMed Central Google Scholar
Schijns, V. E., Wierda, C. M., van Hoeij, M. & Horzinek, M. C. Exacerbated viral hepatitis in IFN-γ receptor-deficient mice is not suppressed by IL-12. J. Immunol.157, 815–821 (1996). CASPubMed Google Scholar
Jouanguy, E. et al. IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Curr. Opin. Immunol.11, 346–351 (1999). ArticleCASPubMed Google Scholar
Katze, M. G., He, Y. & Gale, M., Jr. Viruses and interferon: a fight for supremacy. Nature Rev. Immunol.2, 675–687 (2002). ArticleCAS Google Scholar
Alcami, A. & Smith, G. L. Cytokine receptors encoded by poxviruses: a lesson in cytokine biology. Immunol. Today16, 474–478 (1995). ArticleCASPubMed Google Scholar
Smith, G. L., Symons, J. A. & Alcami, A. Immune modulation by proteins secreted from cells infected by vaccinia virus. Arch. Virol.15, 111–129 (1999). CAS Google Scholar
Symons, J. A., Alcami, A. & Smith, G. L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell81, 551–560 (1995). ArticleCASPubMed Google Scholar
Colamonici, O. R., Domanski, P., Sweitzer, S. M., Larner, A. & Buller, R. M. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon α transmembrane signaling. J. Biol. Chem.270, 15974–15978 (1995). ArticleCASPubMed Google Scholar
Moore, K. W. et al. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein–Barr virus gene BCRFI. Science248, 1230–1234 (1990). ArticleCASPubMed Google Scholar
Hsu, D. H. et al. Expression of interleukin-10 activity by Epstein–Barr virus protein BCRF1. Science250, 830–832 (1990). This study showed that the Epstein–Barr virus BCRF1 protein mimics the activity of IL-10, indicating that BCRF1 might have a role in the interaction of the virus with the host's immune system. ArticleCASPubMed Google Scholar
Liu, Y. et al. The EBV IL-10 homologue is a selective agonist with impaired binding to the IL-10 receptor. J. Immunol.158, 604–613 (1997). CASPubMed Google Scholar
Rode, H. J. et al. The genome of equine herpesvirus type 2 harbors an interleukin 10 (IL10)-like gene. Virus Genes7, 111–116 (1993). ArticleCASPubMed Google Scholar
Fleming, S. B., McCaughan, C. A., Andrews, A. E., Nash, A. D. & Mercer, A. A. A homolog of interleukin-10 is encoded by the poxvirus orf virus. J. Virol.71, 4857–4861 (1997). CASPubMedPubMed Central Google Scholar
Kotenko, S. V., Saccani, S., Izotova, L. S., Mirochnitchenko, O. V. & Pestka, S. Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl Acad. Sci. USA97, 1695–1700 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lockridge, K. M. et al. Primate cytomegaloviruses encode and express an IL-10-like protein. Virology268, 272–280 (2000). ArticleCASPubMed Google Scholar
Lee, H. J., Essani, K. & Smith, G. L. The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology281, 170–192 (2001). ArticleCASPubMed Google Scholar
Burdin, N., Peronne, C., Banchereau, J. & Rousset, F. Epstein–Barr virus transformation induces B lymphocytes to produce human interleukin 10. J. Exp. Med.177, 295–304 (1993). ArticleCASPubMed Google Scholar
Howard, M., Muchamuel, T., Andrade, S. & Menon, S. Interleukin 10 protects mice from lethal endotoxemia. J. Exp. Med.177, 1205–1208 (1993). ArticleCASPubMed Google Scholar
Gerard, C. et al. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J. Exp. Med.177, 547–550 (1993). ArticleCASPubMed Google Scholar
Ishida, H., Hastings, R., Thompson-Snipes, L. & Howard, M. Modified immunological status of anti-IL-10 treated mice. Cell. Immunol.148, 371–384 (1993). ArticleCASPubMed Google Scholar
Heremans, H., Van Damme, J., Dillen, C., Dijkmans, R. & Billiau, A. Interferon-γ, a mediator of lethal lipopolysaccharide-induced Shwartzman-like shock reactions in mice. J. Exp. Med.171, 1853–1869 (1990). ArticleCASPubMed Google Scholar
Rennick, D. M., Fort, M. M. & Davidson, N. J. Studies with IL-10−/− mice: an overview. J. Leukoc. Biol.61, 389–396 (1997). ArticleCASPubMed Google Scholar
Hall, G. L., Compston, A. & Scolding, N. J. β-interferon and multiple sclerosis. Trends Neurosci.20, 63–67 (1997). ArticleCASPubMed Google Scholar
Fiorentino, D. F., Bond, M. W. & Mosmann, T. R. Two types of mouse T helper cell. IV. TH2 clones secrete a factor that inhibits cytokine production by TH1 clones. J. Exp. Med.170, 2081–2095 (1989). ArticleCASPubMed Google Scholar
Fiorentino, D. F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by TH1 cells. J. Immunol.146, 3444–3451 (1991). CASPubMed Google Scholar
Maloy, K. J. & Powrie, F. Regulatory T cells in the control of immune pathology. Nature Immunol.2, 816–822 (2001). ArticleCAS Google Scholar
Maloy, K. J. et al. CD4+CD25+ TR cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med.197, 111–119 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wolk, K., Kunz, S., Asadullah, K. & Sabat, R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J. Immunol.168, 5397–5402 (2002). ArticleCASPubMed Google Scholar
Schaefer, G., Venkataraman, C. & Schindler, U. Cutting edge: FISP (IL-4-induced secreted protein), a novel cytokine-like molecule secreted by TH2 cells. J. Immunol.166, 5859–5863 (2001). ArticleCASPubMed Google Scholar
Liao, Y. C. et al. IL-19 induces production of IL-6 and TNF-α and results in cell apoptosis through TNF-α. J. Immunol.169, 4288–4297 (2002). ArticleCASPubMed Google Scholar
Caudell, E. G. et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J. Immunol.168, 6041–6046 (2002). ArticleCASPubMed Google Scholar
Dinarello, C. A. Interleukin-1 and the pathogenesis of the acute-phase response. N. Engl. J. Med.311, 1413–1418 (1984). ArticleCASPubMed Google Scholar
Aggarwal, S., Xie, M. H., Maruoka, M., Foster, J. & Gurney, A. L. Acinar cells of the pancreas are a target of interleukin-22. J. Interferon Cytokine Res.21, 1047–1053 (2001). ArticleCASPubMed Google Scholar
Wang, M., Tan, Z., Zhang, R., Kotenko, S. V. & Liang, P. Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J. Biol. Chem.277, 7341–7347 (2002). ArticleCASPubMed Google Scholar
Parrish-Novak, J. et al. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J. Biol. Chem.277, 47517–47523 (2002). ArticleCASPubMed Google Scholar
Dumoutier, L., Leemans, C., Lejeune, D., Kotenko, S. V. & Renauld, J. C. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J. Immunol.167, 3545–3549 (2001). This study showed that IL-19, IL-20 and IL-24, also known as melanocyte differentiation antigen 7 (MDA7), share similar receptor complexes, indicating that they should have overlapping activities. ArticleCASPubMed Google Scholar
Kirkwood, J. Cancer immunotherapy: the interferon-α experience. Semin. Oncol.29, 18–26 (2002). ArticleCASPubMed Google Scholar
Ellerhorst, J. A. et al. Loss of MDA-7 expression with progression of melanoma. J. Clin. Oncol.20, 1069–1074 (2002). ArticlePubMed Google Scholar
Ekmekcioglu, S. et al. Downregulated melanoma differentiation associated gene (mda-7) expression in human melanomas. Int. J. Cancer94, 54–59 (2001). ArticleCASPubMed Google Scholar
Lebedeva, I. V. et al. The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene21, 708–718 (2002). ArticleCASPubMed Google Scholar
Sauane, M. et al. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev.14, 35–51 (2003). ArticleCASPubMed Google Scholar
Su, Z. Z. et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc. Natl Acad. Sci. USA95, 14400–14405 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhan, Q. et al. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol.14, 2361–2371 (1994). ArticleCASPubMedPubMed Central Google Scholar
Sarkar, D. et al. mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc. Natl Acad. Sci. USA99, 10054–10059 (2002). ArticleCASPubMedPubMed Central Google Scholar
Su, Z. Z. et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene22, 1164–1180 (2003). ArticleCASPubMed Google Scholar
Pataer, A. et al. Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via upregulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res.62, 2239–2243 (2002). CASPubMed Google Scholar
Huang, E. Y. et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene20, 7051–7063 (2001). ArticleCASPubMed Google Scholar