α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles (original) (raw)
Roncarolo, M. & Levings, M. K. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr. Opin. Immunol.12, 676–683 (2000). ArticleCASPubMed Google Scholar
Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today21, 573–583 (2000). ArticleCASPubMed Google Scholar
Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol.2, 557–568 (2002). ArticleCAS Google Scholar
Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. & Wakao, H. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol.21, 483–513 (2003). ArticleCASPubMed Google Scholar
Brigl, M. & Brenner, M. B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol.22, 817–890 (2004). ArticleCASPubMed Google Scholar
Godfrey, D. I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest.114, 1379–1388 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol.15, 535–562 (1997). ArticleCASPubMed Google Scholar
Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. & Van Kaer, L. NKT cells: what's in a name? Nature Rev. Immunol.4, 231–237 (2004). ArticleCAS Google Scholar
Dellabona, P., Padovan, E., Casorati, G., Brockhaus, M. & Lanzavecchia, A. An invariant Vα 24-JαQ/Vβ11 T cell receptor is expressed in all individuals by clonally expanded CD4−8− cells. J. Exp. Med.180, 1171–1176 (1994). ArticleCASPubMed Google Scholar
Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4−8− αβ T cells demonstrates preferential use of several V β genes and an invariant TCR α chain. J. Exp. Med.178, 1–16 (1993). ArticleCASPubMed Google Scholar
Motsinger, A. et al. Identification and simian immunodeficiency virus infection of CD1d-restricted macaque natural killer T cells. J. Virol.77, 8153–8158 (2003). ArticleCASPubMedPubMed Central Google Scholar
Matsuura, A. et al. NKT cells in the rat: organ-specific distribution of NK T cells expressing distinct Vα14 chains. J. Immunol.164, 3140–3148 (2000). ArticleCASPubMed Google Scholar
Shao, H., Van Kaer, L., Sun, S. L., Kaplan, H. J. & Sun, D. Infiltration of the inflamed eye by NKT cells in a rat model of experimental autoimmune uveitis. J. Autoimmun.21, 37–45 (2003). ArticleCASPubMed Google Scholar
Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science268, 863–865 (1995). ArticleCASPubMed Google Scholar
Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science278, 1626–1629 (1997). This study was the first to show that CD1d-restricted iNKT cells react with α-GalCer. ArticleCASPubMed Google Scholar
Schofield, L. et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science283, 225–229 (1999). ArticleCASPubMed Google Scholar
Gumperz, J. E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity12, 211–221 (2000). ArticleCASPubMed Google Scholar
Fischer, K. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl Acad. Sci. USA101, 10685–10690 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wu, D. Y., Segal, N. H., Sidobre, S., Kronenberg, M. & Chapman, P. B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med.198, 173–181 (2003). ArticleCASPubMedPubMed Central Google Scholar
Stanic, A. K. et al. Defective presentation of the CD1d1-restricted natural Vα14Jα18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency. Proc. Natl Acad. Sci. USA100, 1849–1854 (2003). ArticleCASPubMedPubMed Central Google Scholar
Amprey, J. L. et al. A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J. Exp. Med.200, 895–904 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science306, 1786–1789 (2004). ArticleCASPubMed Google Scholar
Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4−8− T cells in mice and humans. J. Exp. Med.180, 1097–1106 (1994). ArticleCASPubMed Google Scholar
Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med.192, 741–754 (2000). ArticleCASPubMedPubMed Central Google Scholar
Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med.191, 1895–1903 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gumperz, J. E., Miyake, S., Yamamura, T. & Brenner, M. B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med.195, 625–636 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ho, L. P., Urban, B. C., Jones, L., Ogg, G. S. & McMichael, A. J. CD4−CD8αα subset of CD1d-restricted NKT cells controls T cell expansion. J. Immunol.172, 7350–7358 (2004). ArticleCASPubMed Google Scholar
Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med.198, 1069–1076 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science278, 1623–1626 (1997). ArticleCASPubMed Google Scholar
Leite-De-Moraes, M. C. et al. IL-4-producing NK T cells are biased towards IFN-γ production by IL-12. Influence of the microenvironment on the functional capacities of NK T cells. Eur. J. Immunol.28, 1507–1515 (1998). ArticleCASPubMed Google Scholar
Gourdy, P. et al. Relevance of sexual dimorphism to regulatory T cells: estradiol promotes IFN-γ production by invariant natural killer T cells. Blood 21 Sep 2004 (doi:10.1182/blood-2004-07-2819).
Arase, H., Arase, N. & Saito, T. Interferon γ production by natural killer (NK) cells and NK1.1+ T cells upon NKR-P1 cross-linking. J. Exp. Med.183, 2391–2396 (1996). ArticleCASPubMed Google Scholar
Hameg, A. et al. IL-7 up-regulates IL-4 production by splenic NK1.1+ and NK1.1− MHC class I-like/CD1-dependent CD4+ T cells. J. Immunol.162, 7067–7074 (1999). CASPubMed Google Scholar
Leite-de-Moraes, M. C. et al. IL-18 enhances IL-4 production by ligand-activated NKT lymphocytes: a pro-TH2 effect of IL-18 exerted through NKT cells. J. Immunol.166, 945–951 (2001). ArticleCASPubMed Google Scholar
Pal, E. et al. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Vα14 NK T cells. J. Immunol.166, 662–668 (2001). ArticleCASPubMed Google Scholar
Hayakawa, Y. et al. Differential regulation of TH1 and TH2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J. Immunol.166, 6012–6018 (2001). ArticleCASPubMed Google Scholar
Hayakawa, Y., Berzins, S. P., Crowe, N. Y., Godfrey, D. I. & Smyth, M. J. Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors. Nature Immunol.5, 590–596 (2004). This paper shows that chronic treatment with α-GalCer induces depletion of peripheral iNKT cells in mice and induces the emergence of thymus-derived iNKT cells with an anergic phenotype. ArticleCAS Google Scholar
Matsuda, J. L. et al. Mouse Vα14_i_ natural killer T cells are resistant to cytokine polarization in vivo. Proc. Natl Acad. Sci. USA100, 8395–8400 (2003). ArticleCASPubMedPubMed Central Google Scholar
Joyce, S. CD1d and natural T cells: how their properties jump-start the immune system. Cell. Mol. Life Sci.58, 442–469 (2001). ArticleCASPubMed Google Scholar
Van Kaer, L. Regulation of immune responses by CD1d-restricted natural killer T cells. Immunol. Res.30, 139–153 (2004). ArticleCASPubMed Google Scholar
Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol.1, 177–186 (2001). ArticleCAS Google Scholar
Gombert, J. M. et al. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol.26, 2989–2998 (1996). ArticleCASPubMed Google Scholar
Baxter, A. G., Kinder, S. J., Hammond, K. J., Scollay, R. & Godfrey, D. I. Association between αβTCR+CD4−CD8− T-cell deficiency and IDDM in NOD/Lt mice. Diabetes46, 572–582 (1997). ArticleCASPubMed Google Scholar
Mieza, M. A. et al. Selective reduction of Vα14+ NK T cells associated with disease development in autoimmune-prone mice. J. Immunol.156, 4035–4040 (1996). CASPubMed Google Scholar
Yoshimoto, T., Bendelac, A., Hu-Li, J. & Paul, W. E. Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc. Natl Acad. Sci. USA92, 11931–11934 (1995). ArticleCASPubMedPubMed Central Google Scholar
Carnaud, C., Gombert, J., Donnars, O., Garchon, H. & Herbelin, A. Protection against diabetes and improved NK/NKT cell performance in NOD.NK1.1 mice congenic at the NK complex. J. Immunol.166, 2404–2411 (2001). ArticleCASPubMed Google Scholar
Esteban, L. M. et al. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J. Immunol.171, 2873–2878 (2003). ArticleCASPubMed Google Scholar
Matsuki, N. et al. Genetic dissection of Vα14Jα18 natural T cell number and function in autoimmune-prone mice. J. Immunol.170, 5429–5437 (2003). ArticleCASPubMed Google Scholar
Shi, F. D. et al. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc. Natl Acad. Sci. USA98, 6777–6782 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, B., Geng, Y. B. & Wang, C. R. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med.194, 313–320 (2001). This paper and references 76, 81 and 82 were the first studies to show the efficacy of α-GalCer for the treatment of autoimmunity, using the NOD mouse model of type 1 diabetes. ArticlePubMedPubMed Central Google Scholar
Teige, A. et al. CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis. J. Immunol.172, 186–194 (2004). ArticleCASPubMed Google Scholar
Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14–Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med.188, 1831–1839 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mars, L. T. et al. Vα14–Jα281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J. Immunol.168, 6007–6011 (2002). ArticleCASPubMed Google Scholar
Hammond, K. J. & Godfrey, D. I. NKT cells: potential targets for autoimmune disease therapy? Tissue Antigens59, 353–363 (2002). ArticleCASPubMed Google Scholar
Wilson, S. B. & Delovitch, T. L. Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nature Rev. Immunol.3, 211–222 (2003). ArticleCAS Google Scholar
Chatenoud, L. Do NKT cells control autoimmunity? J. Clin. Invest.110, 793–748 (2002). Article Google Scholar
Natori, T., Koezuka, Y. & Higa, T. Agelasphins, novel α-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett.34, 5591–5592 (1993). ArticleCAS Google Scholar
Morita, M. et al. Structure–activity relationship of α-galactosylceramides against B16-bearing mice. J. Med. Chem.38, 2176–2187 (1995). ArticleCASPubMed Google Scholar
Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med.188, 1521–1528 (1998). ArticleCASPubMedPubMed Central Google Scholar
Spada, F. M., Koezuka, Y. & Porcelli, S. A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med.188, 1529–1534 (1998). ArticleCASPubMedPubMed Central Google Scholar
Eberl, G. & MacDonald, H. R. Rapid death and regeneration of NKT cells in anti-CD3ε- or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity9, 345–353 (1998). ArticleCASPubMed Google Scholar
Eberl, G. & MacDonald, H. R. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur. J. Immunol.30, 985–992 (2000). ArticleCASPubMed Google Scholar
Wilson, M. T. et al. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl Acad. Sci. USA100, 10913–10918 (2003). ArticleCASPubMedPubMed Central Google Scholar
Crowe, N. Y. et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells. J. Immunol.171, 4020–4027 (2003). ArticleCASPubMed Google Scholar
Harada, M. et al. Down-regulation of the invariant Vα14 antigen receptor in NKT cells upon activation. Int. Immunol.16, 241–247 (2004). References 65–67 show that thein vivodisappearance of iNKT cells in response to stimulation with α-GalCer results from the downregulation of the surface receptors that are used to identify this population of cells. References 65 and 66 also show that iNKT cells are capable of substantialin vivoclonal expansion. ArticleCASPubMed Google Scholar
Parekh, V. V. et al. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J. Immunol.173, 3693–3706 (2004). ArticleCASPubMed Google Scholar
Giaccone, G. et al. A phase I study of natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res.8, 3702–3709 (2002). CASPubMed Google Scholar
Nieda, M. et al. Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood103, 383–389 (2004). ArticleCASPubMed Google Scholar
Singh, N. et al. Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a TH2 phenotype. J. Immunol.163, 2373–2377 (1999). This paper, together with reference 79, shows that α-GalCer promotes TH2 responses in C57BL/6 mice. CASPubMed Google Scholar
Carnaud, C. et al. Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol.163, 4647–4650 (1999). CASPubMed Google Scholar
Diao, H. et al. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity21, 539–550 (2004). ArticleCASPubMed Google Scholar
Nakagawa, R. et al. Antitumor activity of α-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor infiltrating cells. Oncol. Res.12, 51–58 (2000). ArticleCASPubMed Google Scholar
Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med.189, 1121–1128 (1999). ArticleCASPubMedPubMed Central Google Scholar
Naumov, Y. N. et al. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc. Natl Acad. Sci. USA98, 13838–13843 (2001). This paper indicates a role for tolerogenic DCs in disease protection. ArticleCASPubMedPubMed Central Google Scholar
Kitamura, H. et al. α-Galactosylceramide induces early B-cell activation through IL-4 production by NKT cells. Cell. Immunol.199, 37–42 (2000). ArticleCASPubMed Google Scholar
Nishimura, T. et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int. Immunol.12, 987–994 (2000). ArticleCASPubMed Google Scholar
Burdin, N., Brossay, L. & Kronenberg, M. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards TH2 cytokine synthesis. Eur. J. Immunol.29, 2014–2025 (1999). ArticleCASPubMed Google Scholar
Nagayama, Y., Watanabe, K., Niwa, M., McLachlan, S. M. & Rapoport, B. Schistosoma mansoni and α-galactosylceramide: prophylactic effect of TH1 immune suppression in a mouse model of Graves' hyperthyroidism. J. Immunol.173, 2167–2173 (2004). ArticleCASPubMed Google Scholar
Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med.7, 1052–1056 (2001). ArticleCASPubMed Google Scholar
Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nature Med.7, 1057–1062 (2001). References 81 and 82 provide evidence for a role of deviation to a TH2 response in disease protection. ArticleCASPubMed Google Scholar
Fujii, S., Shimizu, K., Kronenberg, M. & Steinman, R. M. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nature Immunol.3, 867–874 (2002). ArticleCAS Google Scholar
Yang, J. -Q. et al. Repeated α-galactosylceramide administration results in expansion of Vα14 NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J. Immunol.171, 4439–4446 (2003). This study shows that α-GalCer ameliorates inflammatory dermatitis but not SLE nephritis in the MRL-lpr/lprmouse model of SLE. Repeated administration of α-GalCer to these animals induced the clonal expansion of iNKT cells, indicating that CD95–CD95-ligand interactions have a role in the depletion of peripheral iNKT cells after chronic treatment of CD95-sufficient animals with α-GalCer. ArticleCASPubMed Google Scholar
Stanic, A. K. et al. Another view of T cell antigen recognition: co-operative engagement of glycolipid antigens by Vα14Jα18 natural T cell receptor. J. Immunol.171, 4539–4551 (2003). ArticleCASPubMed Google Scholar
Cantu, C., Benlagha, K., Savage, P. B., Bendelac, A. & Teyton, L. The paradox of immune molecular recognition of α-galactosylceramide: low affinity, low specificity for CD1d, high affinity for αβ TCRs. J. Immunol.170, 4673–4682 (2003). ArticleCASPubMed Google Scholar
Sidobre, S. et al. The Vα14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J. Immunol.169, 1340–1348 (2002). ArticleCASPubMed Google Scholar
Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature413, 531–534 (2001). This paper, together with references 98, 99 and 100, shows that α-GalCer and its structural analogue OCH can prevent EAE, in a mechanism that involves deviation to a TH2 response. ArticleCASPubMed Google Scholar
Oki, S., Chiba, A., Yamamura, T. & Miyake, S. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest.113, 1631–1640 (2004). ArticleCASPubMedPubMed Central Google Scholar
Goff, R. D. et al. Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc.126, 13602–13603 (2004). ArticleCASPubMed Google Scholar
Schmieg, J., Yang, G., Franck, R. W. & Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide. J. Exp. Med.198, 1631–1641 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ortaldo, J. R. et al. Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J. Immunol.172, 943–953 (2004). ArticleCASPubMed Google Scholar
Wilson, M. T., Singh, A. K. & Van Kaer, L. Immunotherapy with ligands of natural killer T cells. Trends Mol. Med.8, 225–231 (2002). ArticleCASPubMed Google Scholar
Delovitch, T. L. & Singh, B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity7, 727–738 (1997). ArticleCASPubMed Google Scholar
Yasunami, R. & Bach, J. F. Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur. J. Immunol.18, 481–484 (1988). ArticleCASPubMed Google Scholar
Mi, Q. -S., Ly, D., Zucker, P., McGarry, M. & Delovitch, T. L. Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T cells. Diabetes53, 1303–1310 (2004). ArticleCASPubMed Google Scholar
Bollyky, P. L. & Wilson, S. B. CD1d-restricted T-cell subsets and dendritic cell function in autoimmunity. Immunol. Cell. Biol.82, 307–314 (2004). ArticlePubMed Google Scholar
Jahng, A. W. et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med.194, 1789–1799 (2001). This paper, together with reference 100, shows that the protocol for administering α-GalCer can considerably impact the treatment outcome. ArticleCASPubMedPubMed Central Google Scholar
Singh, A. K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med.194, 1801–1811 (2001). This paper shows that the efficacy of treatment with α-GalCer is genetically controlled. ArticleCASPubMedPubMed Central Google Scholar
Furlan, R. et al. Activation of invariant NKT cells by α-GalCer administration protects mice from MOG35–55 induced EAE: critical roles for administration route and IFN-γ. Eur. J. Immunol.33, 1830–1838 (2003). This paper indicates an unexpected role for IFN-γ in disease protection. ArticleCASPubMed Google Scholar
Chiba, A. et al. Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of α-galactosylceramide. Arthritis Rheum.50, 305–313 (2004). This paper shows that α-GalCer moderately protects C57BL/6 mice, but not SJL/J mice, against the development of collagen-induced arthritis. It also shows that the α-GalCer analogue OCH, which elicits a TH2-biased cytokine response from iNKT cells, can prevent disease in both C57BL/6 and SJL/J mice. ArticleCASPubMed Google Scholar
Zeng, D., Liu, Y., Sidobre, S., Kronenberg, M. & Strober, S. Activation of natural killer T cells in NZB/W mice induces TH1-type immune responses exacerbating lupus. J. Clin. Invest.112, 1211–1222 (2003). This paper indicates that α-GalCer exacerbates disease in the NZB/W mouse model of SLE when treatment is initiated in adult animals. Disease exacerbation in these animals was associated with the unusual induction of TH1 responses by α-GalCer, instead of the TH2 response that is induced in most other mouse strains. ArticleCASPubMedPubMed Central Google Scholar
Saubermann, L. J. et al. Activation of natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterol.119, 119–128 (2000). ArticleCAS Google Scholar
Powrie, F. & Coffman, R. L. Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol. Today14, 270–274 (1993). ArticleCASPubMed Google Scholar
Pearson, C. I. & McDevitt, H. O. Redirecting TH1 and TH2 responses in autoimmune disease. Curr. Top. Microbiol. Immunol.238, 79–122 (1999). CASPubMed Google Scholar
Li, L. et al. IL-4 utilizes an alternative receptor to drive apoptosis of TH1 cells and skews neonatal immunity toward TH2. Immunity20, 429–440 (2004). ArticlePubMed Google Scholar
Beaudoin, L., Laloux, V., Novak, J., Lucas, B. & Lehuen, A. NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic β cells. Immunity17, 725–736 (2002). ArticleCASPubMed Google Scholar
Mars, L. T., Novak, J., Liblau, R. S. & Lehuen, A. Therapeutic manipulation of iNKT cells in autoimmunity: modes of action and potential risks. Trends Immunol.25, 471–476 (2004). ArticleCASPubMed Google Scholar
Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature383, 787–793 (1996). ArticleCASPubMed Google Scholar
Bocek, P., Foucras, G. & Paul, W. E. Interferon γ enhances both in vitro and in vivo priming of CD4+ T cells for IL-4 production. J. Exp. Med.199, 1619–1630 (2004). ArticleCASPubMedPubMed Central Google Scholar
Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003). ArticleCASPubMed Google Scholar
Serreze, D. V. et al. TH1 to TH2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, rather than the cause, of diabetes resistance elicited by immunostimulation. J. Immunol.166, 1352–1359 (2001). ArticleCASPubMed Google Scholar
Osman, Y. et al. Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur. J. Immunol.30, 1919–1928 (2000). ArticleCASPubMed Google Scholar
Bilenki, L., Yang, J., Fan, Y., Wang, S. & Yang, X. Natural killer T cells contribute to airway eosinophilic inflammation induced by ragweed through enhanced IL-4 and eotaxin production. Eur. J. Immunol.34, 345–354 (2004). ArticleCASPubMed Google Scholar
Nakai, Y. et al. Natural killer T cells accelerate atherogenesis in mice. Blood104, 2051–2059 (2004). ArticleCASPubMed Google Scholar
Major, A. S. et al. Quantitative and qualitative differences in pro-atherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol.24, 2351–2357 (2004). ArticleCASPubMed Google Scholar
Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). ArticleCASPubMed Google Scholar
Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature422, 164–169 (2003). ArticleCASPubMed Google Scholar
Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nature Immunol.5, 597–605 (2004). ArticleCAS Google Scholar