Tuning inflammation and immunity by chemokine sequestration: decoys and more (original) (raw)
Luster, A. D. Chemokines — chemotactic cytokines that mediate inflammation. N. Engl. J. Med.338, 436–445 (1998). ArticleCASPubMed Google Scholar
Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med.354, 610–621 (2006). ArticleCASPubMed Google Scholar
Mantovani, A. The chemokine system: redundancy for robust outputs. Immunol. Today20, 254–257 (1999). ArticleCASPubMed Google Scholar
Murphy, P. M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol.12, 593–633 (1994). ArticleCASPubMed Google Scholar
Mantovani, A., Locati, M., Vecchi, A., Sozzani, S. & Allavena, P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol.22, 328–336 (2001). ArticleCASPubMed Google Scholar
Horuk, R. et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science261, 1182–1184 (1993). This paper showed that the Duffy blood group antigen is the erythrocyte receptor for chemokines. ArticleCASPubMed Google Scholar
Bonini, J. A. et al. Cloning, expression, and chromosomal mapping of a novel human CC-chemokine receptor (CCR10) that displays high-affinity binding for MCP-1 and MCP-3. DNA Cell Biol.16, 1249–1256 (1997). ArticleCASPubMed Google Scholar
Nibbs, R. J., Wylie, S. M., Yang, J., Landau, N. R. & Graham, G. J. Cloning and characterization of a novel promiscuous human β-chemokine receptor D6. J. Biol. Chem.272, 32078–32083 (1997). ArticleCASPubMed Google Scholar
Gosling, J. et al. Identification of a novel chemokine receptor that binds dendritic cell- and T cell-active chemokines including ELC, SLC, and TECK. J. Immunol.164, 2851–2856 (2000). ArticleCASPubMed Google Scholar
Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med.295, 302–304 (1976). ArticleCASPubMed Google Scholar
Peiper, S. C. et al. The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J. Exp. Med.181, 1311–1317 (1995). ArticleCASPubMed Google Scholar
Hadley, T. J. & Peiper, S. C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood89, 3077–3091 (1997). ArticleCASPubMed Google Scholar
Rot, A. Contribution of Duffy antigen to chemokine function. Cytokine Growth Factor Rev.16, 687–694 (2005). ArticleCASPubMed Google Scholar
Chaudhuri, A. et al. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl Acad. Sci. USA90, 10793–10797 (1993). ArticleCASPubMedPubMed Central Google Scholar
Choe, H. et al. Sulphated tyrosines mediate association of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Mol. Microbiol.55, 1413–1422 (2005). ArticleCASPubMed Google Scholar
Tournamille, C. et al. Structure–function analysis of the extracellular domains of the Duffy antigen/receptor for chemokines: characterization of antibody and chemokine binding sites. Br. J. Haematol.122, 1014–1023 (2003). ArticleCASPubMed Google Scholar
Chitnis, C. E., Chaudhuri, A., Horuk, R., Pogo, A. O. & Miller, L. H. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J. Exp. Med.184, 1531–1536 (1996). ArticleCASPubMed Google Scholar
Gardner, L., Patterson, A. M., Ashton, B. A., Stone, M. A. & Middleton, J. The human Duffy antigen binds selected inflammatory but not homeostatic chemokines. Biochem. Biophys. Res. Commun.321, 306–312 (2004). ArticleCASPubMed Google Scholar
Neote, K., Mak, J. Y., Kolakowski, L. F. Jr & Schall, T. J. Functional and biochemical analysis of the cloned Duffy antigen: identity with the red blood cell chemokine receptor. Blood84, 44–52 (1994). ArticleCASPubMed Google Scholar
Lee, J. S. et al. Duffy antigen facilitates movement of chemokine across the endothelium in vitro and promotes neutrophil transmigration in vitro and in vivo. J. Immunol.170, 5244–5251 (2003). ArticleCASPubMed Google Scholar
Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell91, 385–395 (1997). ArticleCASPubMed Google Scholar
Dawson, T. C. et al. Exaggerated response to endotoxin in mice lacking the Duffy antigen/receptor for chemokines (DARC). Blood96, 1681–1684 (2000). ArticleCASPubMed Google Scholar
Kashiwazaki, M. et al. A high endothelial venule-expressing promiscuous chemokine receptor DARC can bind inflammatory, but not lymphoid, chemokines and is dispensable for lymphocyte homing under physiological conditions. Int. Immunol.15, 1219–1227 (2003). ArticleCASPubMed Google Scholar
Du, J. et al. Potential role for Duffy antigen chemokine-binding protein in angiogenesis and maintenance of homeostasis in response to stress. J. Leukoc. Biol.71, 141–153 (2002). CASPubMed Google Scholar
Addison, C. L., Belperio, J. A., Burdick, M. D. & Strieter, R. M. Overexpression of the Duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis. BMC Cancer4, 28 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, J. et al. Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene 19 June 2006 (doi:10.1038/sj.onc.1209703). ArticleCASPubMed Google Scholar
Shen, H., Schuster, R., Stringer, K. F., Waltz, S. E. & Lentsch, A. B. The Duffy antigen/receptor for chemokines (DARC) regulates prostate tumor growth. FASEB J.20, 59–64 (2006). ArticleCASPubMed Google Scholar
Bandyopadhyay, S. et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nature Med.12, 933–938 (2006). ArticleCASPubMed Google Scholar
Rios, M. et al. New genotypes in Fy(a− b−) individuals: nonsense mutations (Trp to stop) in the coding sequence of either FY A or FY B. Br. J. Haematol.108, 448–454 (2000). ArticleCASPubMed Google Scholar
Lentsch, A. B. The Duffy antigen/receptor for chemokines (DARC) and prostate cancer. A role as clear as black and white? FASEB J.16, 1093–1095 (2002). ArticleCASPubMed Google Scholar
Segerer, S. et al. When renal allografts turn DARC. Transplantation75, 1030–1034 (2003). ArticlePubMed Google Scholar
Danoff, T. M., Hallows, K. R., Brayman, K. L. & Feldman, H. I. Renal allograft survival in African-Americans: influence of the Duffy blood group. Transplantation67, S8 (1999). Article Google Scholar
Akalin, E. & Neylan, J. F. The influence of Duffy blood group on renal allograft outcome in African Americans. Transplantation75, 1496–1500 (2003). ArticleCASPubMed Google Scholar
Mange, K. C. et al. Duffy antigen receptor and genetic susceptibility of African Americans to acute rejection and delayed function. Kidney Int.66, 1187–1192 (2004). ArticlePubMed Google Scholar
Nibbs, R. J., Wylie, S. M., Pragnell, I. B. & Graham, G. J. Cloning and characterization of a novel murine β chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1α receptors, CCR-1, CCR-3, and CCR-5. J. Biol. Chem.272, 12495–12504 (1997). ArticleCASPubMed Google Scholar
Fra, A. M. et al. Scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J. Immunol.170, 2279–2282 (2003). This paper provided the firstin vitroevidence that D6 acts as a decoy and scavenger receptor for inflammatory CC-chemokines. ArticleCASPubMed Google Scholar
Nibbs, R. J., Yang, J., Landau, N. R., Mao, J. H. & Graham, G. J. LD78β, a non-allelic variant of human MIP-1α (LD78α), has enhanced receptor interactions and potent HIV suppressive activity. J. Biol. Chem.274, 17478–17483 (1999). ArticleCASPubMed Google Scholar
Bonecchi, R. et al. Differential recognition and scavenging of native and truncated macrophage-derived chemokine (MDC/CCL22) by the D6 decoy receptor. J. Immunol.172, 4972–4976 (2004). ArticleCASPubMed Google Scholar
Nibbs, R. J. et al. The β-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am. J. Pathol.158, 867–877 (2001). This is the first study showing D6 expression by human lymphatic endothelial cells. ArticleCASPubMedPubMed Central Google Scholar
Graham, G. J. & McKimmie, C. S. Chemokine scavenging by D6: a movable feast? Trends Immunol.27, 381–386 (2006). ArticleCASPubMed Google Scholar
Martinez de la Torre, Y. et al. Increased inflammation in mice deficient for the chemokine decoy receptor D6. Eur. J. Immunol.35, 1342–1346 (2005). ArticleCASPubMed Google Scholar
Weber, M. et al. The chemokine receptor D6 constitutively traffics to and from the cell surface to internalize and degrade chemokines. Mol. Biol. Cell15, 2492–2508 (2004). ArticleCASPubMedPubMed Central Google Scholar
Galliera, E. et al. β-Arrestin dependent constitutive internalization of the human chemokine decoy receptor D6. J. Biol. Chem.279, 25590–25597 (2004). ArticleCASPubMed Google Scholar
Neil, S. J. et al. The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J. Virol.79, 9618–9624 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jamieson, T. et al. The chemokine receptor D6 limits the inflammatory response in vivo. Nature Immunol.6, 403–411 (2005). References 43 and 48 provided the firstin vivodemonstration that D6 dampens local inflammation. ArticleCAS Google Scholar
Liu, L. et al. The silent chemokine receptor D6 is required for generating T cell responses that mediate experimental autoimmune encephalomyelitis. J. Immunol.177, 17–21 (2006). ArticleCASPubMed Google Scholar
Townson, J. R. & Nibbs, R. J. Characterization of mouse CCX-CKR, a receptor for the lymphocyte-attracting chemokines TECK/mCCL25, SLC/mCCL21 and MIP-3β/mCCL19: comparison to human CCX-CKR. Eur. J. Immunol.32, 1230–1241 (2002). ArticleCASPubMed Google Scholar
Comerford, I., Milasta, S., Morrow, V., Milligan, G. & Nibbs, R. The chemokine receptor CCX-CKR mediates effective scavenging of CCL19 in vitro. Eur. J. Immunol.36, 1904–1916 (2006). ArticleCASPubMed Google Scholar
Muller, G., Hopken, U. E. & Lipp, M. The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol. Rev.195, 117–135 (2003). ArticlePubMed Google Scholar
Sallusto, F. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol.29, 1617–1625 (1999). ArticleCASPubMed Google Scholar
Perrier, P. et al. Distinct transcriptional programs activated by interleukin-10 with or without lipopolysaccharide in dendritic cells: induction of the B cell-activating chemokine, CXC chemokine ligand 13. J. Immunol.172, 7031–7042 (2004). ArticleCASPubMed Google Scholar
Samson, M., Soularue, P., Vassart, G. & Parmentier, M. The genes encoding the human CC-chemokine receptors CC-CKR1 to CC-CKR5 (CMKBR1–CMKBR5) are clustered in the p21.3–p24 region of chromosome 3. Genomics36, 522–526 (1996). ArticleCASPubMed Google Scholar
Fan, P. et al. Cloning and characterization of a novel human chemokine receptor. Biochem. Biophys. Res. Commun.243, 264–268 (1998). ArticleCASPubMed Google Scholar
Migeotte, I., Franssen, J. D., Goriely, S., Willems, F. & Parmentier, M. Distribution and regulation of expression of the putative human chemokine receptor HCR in leukocyte populations. Eur. J. Immunol.32, 494–501 (2002). ArticleCASPubMed Google Scholar
Biber, K., Zuurman, M. W., Homan, H. & Boddeke, H. W. Expression of L-CCR in HEK 293 cells reveals functional responses to CCL2, CCL5, CCL7, and CCL8. J. Leukoc. Biol.74, 243–251 (2003). ArticleCASPubMed Google Scholar
D'Amico, G. et al. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nature Immunol.1, 387–391 (2000). ArticleCAS Google Scholar
Dar, A. et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nature Immunol.6, 1038–1046 (2005). ArticleCAS Google Scholar
Mahad, D. et al. Modulating CCR2 and CCL2 at the blood–brain barrier: relevance for multiple sclerosis pathogenesis. Brain129, 212–223 (2006). ArticlePubMed Google Scholar
Tylaska, L. A. et al. Ccr2 regulates the level of MCP-1/CCL2 in vitro and at inflammatory sites and controls T cell activation in response to alloantigen. Cytokine18, 184–190 (2002). ArticleCASPubMed Google Scholar
Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell124, 767–782 (2006). ArticleCASPubMed Google Scholar
Spriggs, M. K. et al. Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell71, 145–152 (1992). ArticleCASPubMed Google Scholar
Alcami, A. & Smith, G. L. A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell71, 153–167 (1992). ArticleCASPubMed Google Scholar
Smith, C. A. et al. T2 open reading frame from the Shope fibroma virus encodes a soluble form of the TNF receptor. Biochem. Biophys. Res. Commun.176, 335–342 (1991). References 64–66 described the first virally encoded cytokine decoy receptors. ArticleCASPubMed Google Scholar
Upton, C., Mossman, K. & McFadden, G. Encoding of a homolog of the IFN-γ receptor by myxoma virus. Science258, 1369–1372 (1992). ArticleCASPubMed Google Scholar
Colotta, F. et al. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science261, 472–475 (1993). This is the first demonstration of a cellular decoy receptor inhibiting IL-1 activity. ArticleCASPubMed Google Scholar
Murphy, P. M. Viral exploitation and subversion of the immune system through chemokine mimicry. Nature Immunol.2, 116–122 (2001). ArticleCAS Google Scholar
Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. Nature Rev. Immunol.3, 36–50 (2003). ArticleCAS Google Scholar
Boomker, J. M., de Leij, L. F., The, T. H. & Harmsen, M. C. Viral chemokine-modulatory proteins: tools and targets. Cytokine Growth Factor Rev.16, 91–103 (2005). ArticleCASPubMed Google Scholar
Damon, I., Murphy, P. M. & Moss, B. Broad spectrum chemokine antagonistic activity of a human poxvirus chemokine homolog. Proc. Natl Acad. Sci. USA95, 6403–6407 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sozzani, S. et al. The viral chemokine macrophage inflammatory protein-II is a selective TH2 chemoattractant. Blood92, 4036–4039 (1998). ArticleCASPubMed Google Scholar
Lalani, A. S. et al. The purified myxoma virus γ interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J. Virol.71, 4356–4363 (1997). CASPubMedPubMed Central Google Scholar
Mossman, K. et al. Myxoma virus M-T7, a secreted homolog of the interferon-γ receptor, is a critical virulence factor for the development of myxomatosis in European rabbits. Virology215, 17–30 (1996). ArticleCASPubMed Google Scholar
Graham, K. A. et al. The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology229, 12–24 (1997). ArticleCASPubMed Google Scholar
Smith, C. A. et al. Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits β chemokine activity yet lacks sequence homology to known chemokine receptors. Virology236, 316–327 (1997). ArticleCASPubMed Google Scholar
Lucas, A. & McFadden, G. Secreted immunomodulatory viral proteins as novel biotherapeutics. J. Immunol.173, 4765–4774 (2004). ArticleCASPubMed Google Scholar
Alejo, A. et al. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc. Natl Acad. Sci. USA103, 5995–6000 (2006). ArticleCASPubMedPubMed Central Google Scholar
Alexander, J. M. et al. Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell111, 343–356 (2002). ArticleCASPubMed Google Scholar
Alcami, A. Structural basis of the herpesvirus M3–chemokine interaction. Trends Microbiol.11, 191–192 (2003). ArticleCASPubMed Google Scholar
Webb, L. M., Smith, V. P. & Alcami, A. The γherpesvirus chemokine binding protein can inhibit the interaction of chemokines with glycosaminoglycans. FASEB J.18, 571–573 (2004). ArticleCASPubMed Google Scholar
van Berkel, V. et al. Critical role for a high-affinity chemokine-binding protein in γ-herpesvirus-induced lethal meningitis. J. Clin. Invest.109, 905–914 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bridgeman, A., Stevenson, P. G., Simas, J. P. & Efstathiou, S. A secreted chemokine binding protein encoded by murine γherpesvirus-68 is necessary for the establishment of a normal latent load. J. Exp. Med.194, 301–312 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jensen, K. K. et al. Disruption of CCL21-induced chemotaxis in vitro and in vivo by M3, a chemokine-binding protein encoded by murine γherpesvirus 68. J. Virol.77, 624–630 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wang, D., Bresnahan, W. & Shenk, T. Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc. Natl Acad. Sci. USA101, 16642–16647 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bryant, N. A., Davis-Poynter, N., Vanderplasschen, A. & Alcami, A. Glycoprotein G isoforms from some αherpesviruses function as broad-spectrum chemokine binding proteins. EMBO J.22, 833–846 (2003). ArticleCASPubMedPubMed Central Google Scholar
Reading, P. C., Symons, J. A. & Smith, G. L. A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. J. Immunol.170, 1435–1442 (2003). ArticleCASPubMed Google Scholar
Gao, J. L. & Murphy, P. M. Human cytomegalovirus open reading frame US28 encodes a functional β chemokine receptor. J. Biol. Chem.269, 28539–28542 (1994). CASPubMed Google Scholar
Kuhn, D. E., Beall, C. J. & Kolattukudy, P. E. The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem. Biophys. Res. Commun.211, 325–330 (1995). ArticleCASPubMed Google Scholar
Casarosa, P. et al. Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J. Biol. Chem.276, 1133–1137 (2001). ArticleCASPubMed Google Scholar
Bodaghi, B. et al. Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J. Exp. Med.188, 855–866 (1998). This paper shows that human cytomegalovirus encodes a chemokine receptor (US28) that can scavenge chemokines. ArticleCASPubMedPubMed Central Google Scholar
Randolph-Habecker, J. R. et al. The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine19, 37–46 (2002). ArticleCASPubMed Google Scholar
Fraile-Ramos, A. et al. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol. Biol. Cell12, 1737–1749 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mokros, T. et al. Surface expression and endocytosis of the human cytomegalovirus-encoded chemokine receptor US28 is regulated by agonist-independent phosphorylation. J. Biol. Chem.277, 45122–45128 (2002). ArticleCASPubMed Google Scholar
Billstrom, M. A., Johnson, G. L., Avdi, N. J. & Worthen, G. S. Intracellular signaling by the chemokine receptor US28 during human cytomegalovirus infection. J. Virol.72, 5535–5544 (1998). CASPubMedPubMed Central Google Scholar
Droese, J. et al. HCMV-encoded chemokine receptor US28 employs multiple routes for internalization. Biochem. Biophys. Res. Commun.322, 42–49 (2004). ArticleCASPubMed Google Scholar
Fraile-Ramos, A., Kohout, T. A., Waldhoer, M. & Marsh, M. Endocytosis of the viral chemokine receptor US28 does not require β-arrestins but is dependent on the clathrin-mediated pathway. Traffic4, 243–253 (2003). ArticleCASPubMed Google Scholar
Milne, R. S. et al. RANTES binding and down-regulation by a novel human herpesvirus-6 β chemokine receptor. J. Immunol.164, 2396–2404 (2000). ArticleCASPubMed Google Scholar
Smith, P. et al. Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity. J. Exp. Med.202, 1319–1325 (2005). ArticleCASPubMedPubMed Central Google Scholar
Klein, D. E., Nappi, V. M., Reeves, G. T., Shvartsman, S. Y. & Lemmon, M. A. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration. Nature430, 1040–1044 (2004). ArticleCASPubMed Google Scholar
Proudfoot, A. E. Chemokine receptors: multifaceted therapeutic targets. Nature Rev. Immunol.2, 106–115 (2002). ArticleCAS Google Scholar
Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity12, 121–127 (2000). ArticleCASPubMed Google Scholar
Johnson, Z., Proudfoot, A. E. & Handel, T. M. Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev.16, 625–636 (2005). ArticleCASPubMed Google Scholar
Ariel, A. et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nature Immunol.7, 1209–1216 (2006). ArticleCAS Google Scholar