Antigen-presenting cell function in the tolerogenic liver environment (original) (raw)
Breiner, K. M., Schaller, H. & Knolle, P. A. Endothelial cell-mediated uptake of a hepatitis B virus: a new concept of liver targeting of hepatotropic microorganisms. Hepatology34, 803–808 (2001). CASPubMed Google Scholar
Cormier, E. G. et al. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc. Natl Acad. Sci. USA101, 14067–14072 (2004). CASPubMedPubMed Central Google Scholar
Pradel, G. & Frevert, U. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology33, 1154–1165 (2001). CASPubMed Google Scholar
van Egmond, M. et al. FcαRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nature Med.6, 680–685 (2000). CASPubMed Google Scholar
Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell124, 915–927 (2006). ArticleCASPubMed Google Scholar
Inatsu, A. et al. Novel mechanism of C-reactive protein for enhancing mouse liver innate immunity. Hepatology49, 2044–2054 (2009). CASPubMed Google Scholar
Knolle, P. A. & Gerken, G. Local control of the immune response in the liver. Immunol. Rev.174, 21–34 (2000). CASPubMed Google Scholar
Das, A. et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J. Exp. Med.205, 2111–2124 (2008). CASPubMedPubMed Central Google Scholar
Ball, H. J., Yuasa, H. J., Austin, C. J., Weiser, S. & Hunt, N. H. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int. J. Biochem. Cell Biol.41, 467–471 (2009). CASPubMed Google Scholar
Steptoe, R. J., Patel, R. K., Subbotin, V. M. & Thomson, A. W. Comparative analysis of dendritic cell density and total number in commonly transplanted organs: morphometric estimation in normal mice. Transpl. Immunol.8, 49–56 (2000). CASPubMed Google Scholar
Woo, J. et al. Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells. Transplantation58, 484–491 (1994). CASPubMedPubMed Central Google Scholar
Steptoe, R. J. et al. Augmentation of dendritic cells in murine organ donors by Flt3 ligand alters the balance between transplant tolerance and immunity. J. Immunol.159, 5483–5491 (1997). CASPubMed Google Scholar
Lu, L. et al. Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen. J. Exp. Med.179, 1823–1834 (1994). Together with references 14 and 64, these findings provide insight into the regulation of liver DC maturation and are congruent with the possibility that the migration of immature DCs from liver grafts may explain their inherent tolerogenicity. CASPubMed Google Scholar
Rastellini, C. et al. Granulocyte/macrophage colony-stimulating factor-stimulated hepatic dendritic cell progenitors prolong pancreatic islet allograft survival. Transplantation60, 1366–1370 (1995). CASPubMedPubMed Central Google Scholar
Thomson, A. W. & Lu, L. Are dendritic cells the key to liver transplant tolerance? Immunol. Today20, 27–32 (1999). CASPubMed Google Scholar
Bamboat, Z. M. et al. Human liver dendritic cells promote T cell hyporesponsiveness. J. Immunol.182, 1901–1911 (2009). These observations show that human liver DCs secrete substantial amounts of IL-10, induce T cell hyporesponsiveness and generate TRegcells by an IL-10-dependent mechanism. CASPubMed Google Scholar
Xia, S. et al. Hepatic microenvironment programs hematopoietic progenitor differentiation into regulatory dendritic cells, maintaining liver tolerance. Blood112, 3175–3185 (2008). This study provides evidence that the liver microenvironment is crucial for programming haematopoietic progenitor cells to develop into tolerogenic DCsin situ, a process that may contribute to the maintenance of hepatic tolerance. CASPubMedPubMed Central Google Scholar
Li, G., Kim, Y. J. & Broxmeyer, H. E. Macrophage colony-stimulating factor drives cord blood monocyte differentiation into IL-10highIL-12absent dendritic cells with tolerogenic potential. J. Immunol.174, 4706–4717 (2005). CASPubMed Google Scholar
Rutella, S. et al. Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood108, 218–227 (2006). CASPubMed Google Scholar
Xia, G., He, J. & Leventhal, J. R. _Ex vivo_-expanded natural CD4+CD25+ regulatory T cells synergize with host T-cell depletion to promote long-term survival of allografts. Am. J. Transplant.8, 298–306 (2008). CASPubMed Google Scholar
Cabillic, F. et al. Hepatic environment elicits monocyte differentiation into a dendritic cell subset directing TH2 response. J. Hepatology44, 552–559 (2006). CAS Google Scholar
Lian, Z. X. et al. Heterogeneity of dendritic cells in the mouse liver: identification and characterization of four distinct populations. J. Immunol.170, 2323–2330 (2003). CASPubMed Google Scholar
Pillarisetty, V. G., Shah, A. B., Miller, G., Bleier, J. I. & DeMatteo, R. P. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J. Immunol.172, 1009–1017 (2004). CASPubMed Google Scholar
O'Connell, P. J., Morelli, A. E., Logar, A. J. & Thomson, A. W. Phenotypic and functional characterization of mouse hepatic CD8α+ lymphoid-related dendritic cells. J. Immunol.165, 795–803 (2000). CASPubMed Google Scholar
Swiecki, M. & Colonna, M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol. Rev.234, 142–162 (2010). CASPubMedPubMed Central Google Scholar
Shortman, K. & Naik, S. H. Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol.7, 19–30 (2007). CAS Google Scholar
Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature Immunol.8, 1217–1226 (2007). CAS Google Scholar
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell140, 805–820 (2010). CASPubMed Google Scholar
Bosma, B. et al. Characterization of human liver dendritic cells in liver grafts and perfusates. Liver Transpl.12, 384–393 (2006). PubMed Google Scholar
Tanis, W. et al. Human hepatic lymph nodes contain normal numbers of mature myeloid dendritic cells but few plasmacytoid dendritic cells. Clin. Immunol.110, 81–88 (2004). CASPubMed Google Scholar
Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med.193, 35–50 (2000). Google Scholar
Matsuno, K., Nomiyama, H., Yoneyama, H. & Uwatoku, R. Kupffer cell-mediated recruitment of dendritic cells to the liver crucial for a host defense. Dev. Immunol.9, 143–149 (2002). CASPubMedPubMed Central Google Scholar
Uwatoku, R. et al. Kupffer cell-mediated recruitment of rat dendritic cells to the liver: roles of _N_-acetylgalactosamine-specific sugar receptors. Gastroenterology121, 1460–1472 (2001). CASPubMed Google Scholar
Matsuno, K., Ezaki, T., Kudo, S. & Uehara, Y. A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis and translocation from the liver to the draining lymph. J. Exp. Med.183, 1865–1878 (1996). CASPubMed Google Scholar
Sato, T., Yamamoto, H., Sasaki, C. & Wake, K. Maturation of rat dendritic cells during intrahepatic translocation evaluated using monoclonal antibodies and electron microscopy. Cell Tissue Res.294, 503–514 (1998). CASPubMed Google Scholar
Kudo, S., Matsuno, K., Ezaki, T. & Ogawa, M. A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J. Exp. Med.185, 777–784 (1997). CASPubMedPubMed Central Google Scholar
Yrlid, U. et al. Plasmacytoid dendritic cells do not migrate in intestinal or hepatic lymph. J. Immunol.177, 6115–6121 (2006). CASPubMed Google Scholar
Abe, M., Zahorchak, A. F., Colvin, B. L. & Thomson, A. W. Migratory responses of murine hepatic myeloid, lymphoid-related, and plasmacytoid dendritic cells to CC chemokines. Transplantation78, 762–765 (2004). CASPubMed Google Scholar
van den Oord, J. J. et al. Distribution of non-lymphoid, inflammatory cells in chronic HBV infection. J. Pathol.160, 223–230 (1990). CASPubMed Google Scholar
Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med.193, 35–49 (2001). CASPubMedPubMed Central Google Scholar
Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol.30, 475–487 (2009). CASPubMed Google Scholar
Abe, M., Tokita, D., Raimondi, G. & Thomson, A. W. Endotoxin modulates the capacity of CpG-activated liver myeloid DC to direct Th1-type responses. Eur. J. Immunol.36, 2483–2493 (2006). CASPubMed Google Scholar
De Creus, A. et al. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J. Immunol.174, 2037–2045 (2005). CASPubMed Google Scholar
Chen, Y. et al. Distinct response of liver myeloid dendritic cells to endotoxin is mediated by IL-27. J. Hepatol.51, 510–519 (2009). CASPubMedPubMed Central Google Scholar
Khanna, A. et al. Effects of liver-derived dendritic cell progenitors on Th1- and Th2-like cytokine responses in vitro and in vivo. J. Immunol.164, 1346–1354 (2000). CASPubMed Google Scholar
Jinushi, M. et al. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4+ CD25+ T cells with PD-1-dependent regulatory activities. Immunology120, 73–82 (2007). CASPubMedPubMed Central Google Scholar
Kingham, T. P. et al. Murine liver plasmacytoid dendritic cells become potent immunostimulatory cells after Flt-3 ligand expansion. Hepatology45, 445–454 (2007). CASPubMed Google Scholar
Villadangos, J. A. & Young, L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity29, 352–361 (2008). CASPubMed Google Scholar
Castellaneta, A., Sumpter, T. L., Chen, L., Tokita, D. & Thomson, A. W. NOD2 ligation subverts IFN-α production by liver plasmacytoid dendritic cells and inhibits their T cell allostimulatory activity via B7-H1 up-regulation. J. Immunol.183, 6922–6932 (2009). CASPubMed Google Scholar
Jomantaite, I. et al. Hepatic dendritic cell subsets in the mouse. Eur. J. Immunol.34, 355–365 (2004). CASPubMed Google Scholar
Fritz, J. H., Ferrero, R. L., Philpott, D. J. & Girardin, S. E. Nod-like proteins in immunity, inflammation and disease. Nature Immunol.7, 1250–1257 (2006). CAS Google Scholar
Tokita, D. et al. Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells. J. Hepatol.49, 1008–1018 (2008). CASPubMedPubMed Central Google Scholar
Goubier, A. et al. Plasmacytoid dendritic cells mediate oral tolerance. Immunity29, 464–475 (2008). Evidence that liver pDCs induce efficient CD4+ and CD8+ T cell tolerance to orally administered antigens that reach the liver through the blood. CASPubMedPubMed Central Google Scholar
Watanabe, T. et al. A liver tolerates a portal antigen by generating CD11c+ cells, which select Fas ligand+ TH2 cells via apoptosis. Hepatology38, 403–412 (2003). CASPubMed Google Scholar
Crispe, I. N. Hepatic T cells and liver tolerance. NatureRev. Immunol.3, 51–62 (2003). A detailed account of T cell biology in the liver and of the mechanisms that promote T cell inactivation, tolerance and apoptosis following local antigen presentation in the liver. CAS Google Scholar
Tsoulfas, G. et al. Activation of the lipopolysaccharide signaling pathway in hepatic transplantion preservation injury. Transplantation74, 7–13 (2002). CASPubMed Google Scholar
Zhai, Y. et al. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J. Immunol.173, 7115–7119 (2004). CASPubMed Google Scholar
Tsung, A. et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J. Immunol.175, 7661–7668 (2005). CASPubMed Google Scholar
Loi, P. et al. The fate of dendritic cells in a mouse model of liver ischemia/reperfusion injury. Transplant. Proc.36, 1275–1279 (2004). CASPubMed Google Scholar
Bamboat, Z. M. et al. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J. Clin. Invest.120, 559–569 (2010). CASPubMedPubMed Central Google Scholar
Tsung, A. et al. Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J. Leuk. Biol.81, 1–10 (2007). Google Scholar
Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol.8, 487–496 (2007). CAS Google Scholar
Calne, R. Y. et al. Induction of immunological tolerance by porcine liver allografts. Nature223, 472–476 (1969). CASPubMed Google Scholar
Lu, L. et al. Growth of donor-derived dendritic cells from the bone marrow of murine liver allograft recipients in response to granulocyte/macrophage colony stimulating factor. J. Exp. Med.182, 379–387 (1995). CASPubMed Google Scholar
Drakes, M. L., Lu, L., Subbotin, V. M. & Thomson, A. W. In vivo administration of flt3 ligand markedly stimulates generation of dendritic cell progenitors from mouse liver. J. Immunol.159, 4268–4278 (1997). CASPubMed Google Scholar
Morelli, A. E. et al. Preferential induction of TH1 responses by functionally mature hepatic (CD8α− and CD8α+) dendritic cells: association with conversion from liver transplant tolerance to acute rejection. Transplantation69, 2647–2657 (2000). CASPubMed Google Scholar
Li, W. et al. IL-12 antagonism enhances apoptotic death of T cells within hepatic allografts from Flt3 ligand-treated donors and promotes graft acceptance. J. Immunol.166, 5619–5628 (2001). CASPubMed Google Scholar
Wysocka, M., Montaner, L. J. & Karp, C. L. Flt3 ligand treatment reverses endotoxin tolerance-related immunoparalysis. J. Immunol.174, 7398–7402 (2005). CASPubMed Google Scholar
Chen, S. et al. Absence of CD83-positive mature and activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: relevance to hepatocarcinogenesis. Cancer Lett.148, 49–57 (2000). CASPubMed Google Scholar
Zhang, Z. et al. Increased infiltration of intrahepatic DC subsets closely correlate with viral control and liver injury in immune active pediatric patients with chronic hepatitis B. Clin. Immunol.122, 173–180 (2007). CASPubMed Google Scholar
Lai, W. K. et al. Hepatitis C is associated with perturbation of intrahepatic myeloid and plasmacytoid dendritic cell function. J. Hepatol.47, 338–347 (2007). CASPubMed Google Scholar
Lau, D. T. et al. Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients. Hepatology47, 799–809 (2008). CASPubMed Google Scholar
Takahashi, K. et al. Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc. Natl Acad. Sci. USA107, 7431–7436 (2010). CASPubMedPubMed Central Google Scholar
Kinoshita, M. et al. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J. Hepatol.53, 903–910 (2010). CASPubMed Google Scholar
Hardonk, M. J., Dijkhuis, F. W., Grond, J., Koudstaal, J. & Poppema, S. Evidence for a migratory capability of rat Kupffer cells to portal tracts and hepatic lymph nodes. Virchows Arch. B. Cell Pathol. Incl. Mol. Pathol.51, 429–442 (1986). CASPubMed Google Scholar
Ju, C., McCoy, J. P., Chung, C. J., Graf, M. L. & Pohl, L. R. Tolerogenic role of Kupffer cells in allergic reactions. Chem. Res. Toxicol.16, 1514–1519 (2003). CASPubMed Google Scholar
Callery, M. P., Kamei, T. & Flye, M. W. Kupffer cell blockade inhibits induction of tolerance by the portal venous route. Transplantation47, 1092–1094 (1989). CASPubMed Google Scholar
Sato, K., Yabuki, K., Haba, T. & Maekawa, T. Role of Kupffer cells in the induction of tolerance after liver transplantation. J. Surg. Res.63, 433–438 (1996). CASPubMed Google Scholar
You, Q., Cheng, L., Kedl, R. M. & Ju, C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology48, 978–990 (2008). CASPubMed Google Scholar
Knolle, P. A. et al. Interleukin-10 expression is autoregulated at the transcriptional level in human and murine Kupffer cells. Hepatology27, 93–99 (1998). CASPubMed Google Scholar
Bissell, D. M., Wang, S. S., Jarnagin, W. R. & Roll, F. J. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J. Clin. Invest.96, 447–455 (1995). CASPubMedPubMed Central Google Scholar
Breous, E., Somanathan, S., Vandenberghe, L. H. & Wilson, J. M. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology50, 612–621 (2009). This report and references 79 and 80 describe mechanisms whereby Kupffer cells support systemic T cell tolerance towards circulating and hepatocyte-derived antigens. CASPubMed Google Scholar
Wiegard, C. et al. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology42, 193–199 (2005). CASPubMed Google Scholar
Kuniyasu, Y., Marfani, S. M., Inayat, I. B., Sheikh, S. Z. & Mehal, W. Z. Kupffer cells required for high affinity peptide-induced deletion, not retention, of activated CD8+ T cells by mouse liver. Hepatology39, 1017–1027 (2004). Evidence that Kupffer cells are required for the deletion, not retention, of activated CD8+ T cells in the liver. PubMed Google Scholar
Polakos, N. K. et al. Kupffer cell-dependent hepatitis occurs during influenza infection. Am. J. Pathol.168, 1169–1178 (2006). CASPubMedPubMed Central Google Scholar
Montalvo-Jave, E. E., Escalante-Tattersfield, T., Ortega-Salgado, J. A., Pina, E. & Geller, D. A. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J. Surg. Res.147, 153–159 (2008). CASPubMed Google Scholar
Giakoustidis, D. E. et al. Blockade of Kupffer cells by gadolinium chloride reduces lipid peroxidation and protects liver from ischemia/reperfusion injury. Hepatogastroenterology50, 1587–1592 (2003). CASPubMed Google Scholar
Ellett, J. D. et al. Murine Kupffer cells are protective in total hepatic ischemia/reperfusion injury with bowel congestion through IL-10. J. Immunol.184, 5849–5858 (2010). CASPubMed Google Scholar
Schmieg, J., Yang, G., Franck, R. W., Van Rooijen, N. & Tsuji, M. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc. Natl Acad. Sci. USA102, 1127–1132 (2005). CASPubMedPubMed Central Google Scholar
Beattie, L. et al. Dynamic imaging of experimental _Leishmania donovani_-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells. PLoS Pathog.6, e1000805 (2010). PubMedPubMed Central Google Scholar
Lee, W. Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nature Immunol.11, 295–302 (2010). This article reports a major advance in imaging technology for visualizing the interaction of hepatic APCs with pathogens. The new technology has revealed a novel role for Kupffer cells in cooperation with hepatic NKT cells in antibacterial immunity. CAS Google Scholar
Giannandrea, M., Pierce, R. H. & Crispe, I. N. Indirect action of tumor necrosis factor-α in liver injury during the CD8+ T cell response to an adeno-associated virus vector in mice. Hepatology49, 2010–2020 (2009). CASPubMed Google Scholar
Knolle, P. A. et al. Induction of cytokine production in naive CD4+ T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward TH1 cells. Gastroenterology116, 1428–1440 (1999). This report provides early evidence and the basis for further work showing that LSECs present antigen and promote T cell tolerance. CASPubMed Google Scholar
Lohse, A. W. et al. Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology110, 1175–1181 (1996). CASPubMed Google Scholar
Knolle, P. A. et al. Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J. Immunol.162, 1401–1407 (1999). CASPubMed Google Scholar
Onoe, T. et al. Liver sinusoidal endothelial cells tolerize T cells across MHC barriers in mice. J. Immunol.175, 139–146 (2005). CASPubMed Google Scholar
Tokita, D. et al. Liver sinusoidal endothelial cells that endocytose allogeneic cells suppress T cells with indirect allospecificity. J. Immunol.177, 3615–3624 (2006). CASPubMed Google Scholar
Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature Med.6, 1348–1354 (2000). This report indicates that the outcome of soluble exogenous antigen cross-presentation by LSECs to CD8+ T cells is tolerance rather than immunity. CASPubMed Google Scholar
Burgdorf, S., Kautz, A., Bohnert, V., Knolle, P. A. & Kurts, C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science316, 612–616 (2007). CASPubMed Google Scholar
Schurich, A. et al. Distinct kinetics and dynamics of cross-presentation in liver sinusoidal endothelial cells compared to dendritic cells. Hepatology50, 909–919 (2009). CASPubMed Google Scholar
Diehl, L. et al. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology47, 296–305 (2008). CASPubMed Google Scholar
Limmer, A. et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur. J. Immunol.35, 2970–2981 (2005). CASPubMed Google Scholar
Berg, M. et al. Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8+ T cell tolerance. Eur.J. Immunol.36, 2960–2970 (2006). CAS Google Scholar
Schurich, A. et al. Dynamic regulation of CD8 T cell tolerance induction by liver sinusoidal endothelial cells. J. Immunol.184, 4107–4114 (2010). CASPubMed Google Scholar
Pohlmann, S. et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J. Virol.77, 4070–4080 (2003). CASPubMedPubMed Central Google Scholar
Kern, M. et al. Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology138, 336–346 (2010). CASPubMed Google Scholar
Jacob, A. I., Goldberg, P. K., Bloom, N., Degenshein, G. A. & Kozinn, P. J. Endotoxin and bacteria in portal blood. Gastroenterology72, 1268–1270 (1977). CASPubMed Google Scholar
Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R. M. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med.198, 267–279 (2003). CASPubMedPubMed Central Google Scholar
Bashirova, A. A. et al. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J. Exp. Med.193, 671–678 (2001). CASPubMedPubMed Central Google Scholar
Liu, W. et al. Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J. Biol. Chem.279, 18748–18758 (2004). CASPubMed Google Scholar
Geijtenbeek, T. B. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nature Rev. Immunol.9, 465–479 (2009). CAS Google Scholar
Tang, L. et al. Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response. Gastroenterology137, 1498–1508 (2009). These findings reveal that LSECtin, which is expressed by LSECs, is a new negative regulator of hepatic T cell function. CASPubMed Google Scholar
Dong, H. et al. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity20, 327–336 (2004). Evidence that the co-inhibitory molecule B7-H1 selectively regulates the accumulation and deletion of CD8+ T cells in the liver. CASPubMed Google Scholar
Schildberg, F. A. et al. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur. J. Immunol.38, 957–967 (2008). CASPubMed Google Scholar
Warren, A. et al. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology44, 1182–1190 (2006). CASPubMed Google Scholar
Bertolino, P., Trescol-Biemont, M. C. & Rabourdin-Combe, C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur. J. Immunol.28, 221–236 (1998). CASPubMed Google Scholar
Holz, L. E. et al. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology135, 989–997 (2008). PubMed Google Scholar
Bowen, D. G. et al. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J. Clin. Invest.114, 701–712 (2004). References 116–118 provide evidence that intrahepatic T cell activation by hepatocytes leads to (BIM-dependent) death and promotes intrahepatic tolerance. CASPubMedPubMed Central Google Scholar
Wahl, C., Bochtler, P., Schirmbeck, R. & Reimann, J. Type I IFN-producing CD4 Vα14 iNKT cells facilitate priming of IL-10-producing CD8 T cells by hepatocytes. J. Immunol.178, 2083–2093 (2007). CASPubMed Google Scholar
Herkel, J. et al. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocytes. Hepatology37, 1079–1085 (2003). CASPubMed Google Scholar
Wiegard, C. et al. Defective T helper response of hepatocyte-stimulated CD4 T cells impairs antiviral CD8 response and viral clearance. Gastroenterology133, 2010–2018 (2007). CASPubMed Google Scholar
Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell117, 515–526 (2004). CASPubMed Google Scholar
Dikopoulos, N. et al. Recently primed CD8+ T cells entering the liver induce hepatocytes to interact with naive CD8+ T cells in the mouse. Hepatology39, 1256–1266 (2004). CASPubMed Google Scholar
Wuensch, S. A., Pierce, R. H. & Crispe, I. N. Local intrahepatic CD8+ T cell activation by a non-self-antigen results in full functional differentiation. J. Immunol.177, 1689–1697 (2006). CASPubMed Google Scholar
Vinas, O. et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology38, 919–929 (2003). CASPubMed Google Scholar
Winau, F. et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity26, 117–129 (2007). CASPubMed Google Scholar
Yu, M. C. et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology40, 1312–1321 (2004). CASPubMed Google Scholar
Yang, H. R. et al. A critical role of TRAIL expressed on cotransplanted hepatic stellate cells in prevention of islet allograft rejection. Microsurgery30, 332–337 (2010). PubMedPubMed Central Google Scholar
Jiang, G. et al. Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner. Transplantation86, 1492–1502 (2008). CASPubMedPubMed Central Google Scholar
Yang, H. R. et al. Mechanistic insights into immunomodulation by hepatic stellate cells in mice: a critical role of interferon-γ signaling. Hepatology50, 1981–1991 (2009). CASPubMed Google Scholar
Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nature Med.12, 342–347 (2006). CASPubMed Google Scholar
Mingozzi, F. et al. CD8+ T-cell responses to adeno-associated virus capsid in humans. Nature Med.13, 419–422 (2007). CASPubMed Google Scholar
Pien, G. C. et al. Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. J. Clin. Invest.119, 1688–1695 (2009). CASPubMedPubMed Central Google Scholar
Cooper, M. et al. Improved induction of immune tolerance to factor IX by hepatic AAV-8 gene transfer. Hum. Gene Ther.20, 767–776 (2009). CASPubMedPubMed Central Google Scholar
Mingozzi, F. et al. Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood110, 2334–2341 (2007). CASPubMedPubMed Central Google Scholar
Kren, B. T. et al. Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia A mice. J. Clin. Invest.119, 2086–2099 (2009). CASPubMedPubMed Central Google Scholar
Feng, S. Long-term management of immunosuppression after pediatric liver transplantation: is minimization or withdrawal desirable or possible or both? Curr. Opin. Organ Transplant.13, 506–512 (2008). PubMedPubMed Central Google Scholar
Orlando, G., Soker, S. & Wood, K. Operational tolerance after liver transplantation. J. Hepatol.50, 1247–1257 (2009). PubMed Google Scholar
Horstmann, B., Zinser, E., Turza, N., Kerek, F. & Steinkasserer, A. MCS-18, a novel natural product isolated from Helleborus purpurascens, inhibits dendritic cell activation and prevents autoimmunity as shown in vivo using the EAE model. Immunobiology212, 839–853 (2007). CASPubMed Google Scholar
Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193, 233–238 (2001). CASPubMedPubMed Central Google Scholar
Luth, S. et al. Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. J. Clin. Invest.118, 3403–3410 (2008). An encouraging report showing that ectopic expression of an autoantigen in the liver can promote liver-induced tolerance and suppress extrahepatic autoimmune disease. PubMedPubMed Central Google Scholar
Junt, T., Scandella, E. & Ludewig, B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nature Rev. Immunol.8, 764–775 (2008). CAS Google Scholar
MacPhee, P. J., Schmidt, E. E. & Groom, A. C. Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. Am. J. Physiol.269, G692–G698 (1995). CASPubMed Google Scholar
Wong, J. et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J. Clin. Invest.99, 2782–2790 (1997). CASPubMedPubMed Central Google Scholar
Bertolino, P., Bowen, D. G., McCaughan, G. W. & Fazekas de St. Groth, B. Antigen-specific primary activation of CD8+ T cells within the liver. J. Immunol.166, 5430–5438 (2001). CASPubMed Google Scholar
von Oppen, N. et al. Systemic antigen cross-presented by liver sinusoidal endothelial cells induces liver-specific CD8 T-cell retention and tolerization. Hepatology49, 1664–1672 (2009). CASPubMed Google Scholar
Uwatoku, R. et al. Kupffer cell-mediated recruitment of rat dendritic cells to the liver: roles of _N_-acetylgalactosamine-specific sugar receptors. Gastroenterology121, 1460–1472 (2001). CASPubMed Google Scholar
Schrage, A. et al. Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines. Hepatology48, 1262–1272 (2008). PubMed Google Scholar
Oo, Y. H. & Adams, D. H. The role of chemokines in the recruitment of lymphocytes to the liver. J. Autoimmun.34, 45–54 (2010). CASPubMed Google Scholar
Bonder, C. S. et al. Rules of recruitment for TH1 and TH2 lymphocytes in inflamed liver: a role for α4 integrin and vascular adhesion protein-1. Immunity23, 153–163 (2005). CASPubMed Google Scholar
John, B. & Crispe, I. N. Passive and active mechanisms trap activated CD8+ T cells in the liver. J. Immunol.172, 5222–5229 (2004). CASPubMed Google Scholar
Oo, Y. H. et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J. Immunol.184, 2886–2898 (2010). CASPubMed Google Scholar
Adams, D. H. & Eksteen, B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nature Rev. Immunol.6, 244–251 (2006). CAS Google Scholar
Kruse, N. et al. Priming of CD4+ T cells by liver sinusoidal endothelial cells induces CD25low forkhead box protein 3− regulatory T cells suppressing autoimmune hepatitis. Hepatology50, 1904–1913 (2009). CASPubMed Google Scholar
Huehn, J. & Hamann, A. Homing to suppress: address codes for Treg migration. Trends Immunol.26, 632–636 (2005). CASPubMed Google Scholar
Braet, F. & Wisse, E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp. Hepatol.1, 1 (2002). PubMedPubMed Central Google Scholar
Crispe, I. N. The liver as a lymphoid organ. Annu. Rev. Immunol.27, 147–163 (2009). CASPubMed Google Scholar
Adams, D. H., Eksteen, B. & Curbishley, S. M. Immunology of the gut and liver: a love/hate relationship. Gut57, 838–848 (2008). CASPubMed Google Scholar
Lunz, J. G., Specht, S. M., Murase, N., Isse, K. & Demetris, A. J. Gut-derived commensal bacterial products inhibit liver dendritic cell maturation by stimulating hepatic interleukin-6/signal transducer and activator of transcription 3 activity. Hepatology46, 1946–1959 (2007). CASPubMed Google Scholar
Chu, C. L. et al. Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcRγ. Eur. J. Immunol.38, 166–173 (2008). CASPubMedPubMed Central Google Scholar
Sumpter, T. L., Lunz, J. G., Demetris, A. J. & Thomson, A. W. Molecular regulation of hepatic dendritic cell function and its relation to liver transplant outcome. Transplantation88, S40–S44 (2009). CASPubMedPubMed Central Google Scholar
Wahl, C., Bochtler, P., Chen, L., Schirmbeck, R. & Reimann, J. B7-H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology135, 980–988 (2008). CASPubMed Google Scholar
O'Connell, P. J. et al. Type-1 polarized nature of mouse liver CD8α− and CD8α+ dendritic cells: tissue-dependent differences offset CD8α-related dendritic cell heterogeneity. Eur. J. Immunol.33, 2007–2013 (2003). CASPubMed Google Scholar
Dubois, B. et al. Sequential role of plasmacytoid dendritic cells and regulatory T cells in oral tolerance. Gastroenterology137, 1019–1028 (2009). CASPubMed Google Scholar
Bertolino, P., Heath, W. R., Hardy, C. L., Morahan, G. & Miller, J. F. Peripheral deletion of autoreactive CD8+ T cells in transgenic mice expressing H-2Kb in the liver. Eur. J. Immunol.25, 1932–1942 (1995). CASPubMed Google Scholar