Living in the liver: hepatic infections (original) (raw)
Thomson, A. W. & Knolle, P. A. Antigen-presenting cell function in the tolerogenic liver environment. Nature Rev. Immunol.10, 753–766 (2010). ArticleCAS Google Scholar
Schlepper-Schafer, J. et al. Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages. Exp. Cell Res.165, 494–506 (1986). ArticleCASPubMed Google Scholar
Wisse, E., De Zanger, R. B., Charels, K., Van Der Smissen, P. & McCuskey, R. S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology5, 683–692 (1985). ArticleCASPubMed Google Scholar
Tavassoli, M., Kishimoto, T., Soda, R., Kataoka, M. & Harjes, K. Liver endothelium mediates the uptake of iron–transferrin complex by hepatocytes. Exp. Cell. Res.165, 369–379 (1986). ArticleCASPubMed Google Scholar
Mostov, K. E. Transepithelial transport of immunoglobulins. Annu. Rev. Immunol.12, 63–84 (1994). ArticleCASPubMed Google Scholar
Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell91, 385–395 (1997). ArticleCASPubMed Google Scholar
Pradel, G. & Frevert, U. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology33, 1154–1165 (2001). The first report showing that sporozoites target Kupffer cells to overcome the sinusoidal barrier. ArticleCASPubMed Google Scholar
Ishino, T., Yano, K., Chinzei, Y. & Yuda, M. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol.2, e4 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Baer, K. et al. Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cell. Microbiol.9, 397–412 (2007). ArticleCASPubMed Google Scholar
Mota, M. M., Hafalla, J. C. & Rodriguez, A. Migration through host cells activates Plasmodium sporozoites for infection. Nature Med.8, 1318–1322 (2002). ArticleCASPubMed Google Scholar
Coppi, A. et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J. Exp. Med.208, 341–356 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Silvie, O. et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nature Med.9, 93–96 (2003). ArticleCASPubMed Google Scholar
Sturm, A. et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science313, 1287–1290 (2006). ArticleCASPubMed Google Scholar
Bartenschlager, R., Penin, F., Lohmann, V. & Andre, P. Assembly of infectious hepatitis C virus particles. Trends Microbiol.19, 95–103 (2011). ArticleCASPubMed Google Scholar
Bashirova, A. A. et al. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J. Exp. Med.193, 671–678 (2001). ArticlePubMedPubMed CentralCAS Google Scholar
Lai, W. K. et al. Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles. Am. J. Pathol.169, 200–208 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Gardner, J. P. et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc. Natl Acad. Sci. USA100, 4498–4503 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pohlmann, S. et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J. Virol.77, 4070–4080 (2003). References 18 and 19 were the first two reports on the potential role of L-SIGN and DC-SIGN in liver infection by HCV. ArticlePubMedPubMed CentralCAS Google Scholar
Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell100, 587–597 (2000). ArticleCASPubMed Google Scholar
Agnello, V., Abel, G., Elfahal, M., Knight, G. B. & Zhang, Q. X. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl Acad. Sci. USA96, 12766–12771 (1999). ArticleCASPubMedPubMed Central Google Scholar
Scarselli, E. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J.21, 5017–5025 (2002). ArticlePubMedPubMed CentralCAS Google Scholar
Evans, M. J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature446, 801–805 (2007). ArticleCASPubMed Google Scholar
Lupberger, J. et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nature Med.17, 589–595 (2011). ArticleCASPubMed Google Scholar
Blanchet, M. & Sureau, C. Analysis of the cytosolic domains of the hepatitis B virus envelope proteins for their function in viral particle assembly and infectivity. J. Virol.80, 11935–11945 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Salisse, J. & Sureau, C. A function essential to viral entry underlies the hepatitis B virus “a” determinant. J. Virol.83, 9321–9328 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Petersen, J. et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nature Biotech.26, 335–341 (2008). ArticleCAS Google Scholar
Schulze, A., Gripon, P. & Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology46, 1759–1768 (2007). ArticleCASPubMed Google Scholar
Jilbert, A. R., Miller, D. S., Scougall, C. A., Turnbull, H. & Burrell, C. J. Kinetics of duck hepatitis B virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology226, 338–345 (1996). ArticleCASPubMed Google Scholar
Asabe, S. et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J. Virol.83, 9652–9662 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Breiner, K. M., Schaller, H. & Knolle, P. A. Endothelial cell-mediated uptake of a hepatitis B virus: a new concept of liver targeting of hepatotropic microorganisms. Hepatology34, 803–808 (2001). ArticleCASPubMed Google Scholar
Ashida, M. & Hamada, C. Molecular cloning of the hepatitis A virus receptor from a simian cell line. J. Gen. Virol.78, 1565–1569 (1997). ArticleCASPubMed Google Scholar
Kaplan, G. et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J.15, 4282–4296 (1996). ArticlePubMedPubMed CentralCAS Google Scholar
Feigelstock, D., Thompson, P., Mattoo, P., Zhang, Y. & Kaplan, G. G. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. J. Virol.72, 6621–6628 (1998). PubMedPubMed CentralCAS Google Scholar
van Egmond, M. et al. FcαRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nature Med.6, 680–685 (2000). ArticleCASPubMed Google Scholar
Popov, A. et al. Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J. Clin. Invest.116, 3160–3170 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Egen, J. G. et al. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity28, 271–284 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Volkman, H. E. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science327, 466–469 (2010). ArticleCASPubMed Google Scholar
Taylor, J. L. et al. Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect. Immun.74, 6135–6144 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell136, 37–49 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, B. et al. Toll-like receptor activated human and murine hepatic stellate cells are potent regulators of hepatitis C virus replication. J. Hepatol.51, 1037–1045 (2009). ArticleCASPubMed Google Scholar
Wu, J. et al. Hepatitis B virus suppresses Toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology49, 1132–1140 (2009). ArticleCASPubMed Google Scholar
Kern, M. et al. Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology138, 336–346 (2010). ArticleCASPubMed Google Scholar
Saito, T., Owen, D. M., Jiang, F., Marcotrigiano, J. & Gale, M. Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature454, 523–527 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Ebert, G. et al. 5′ triphosphorylated small interfering RNAs control replication of hepatitis B virus and induce an interferon response in human liver cells and mice. Gastroenterology141, 696–706 (2011). ArticleCASPubMed Google Scholar
Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nature Med.13, 1324–1332 (2007). ArticleCASPubMed Google Scholar
Gao, B., Jeong, W. I. & Tian, Z. Liver: an organ with predominant innate immunity. Hepatology47, 729–736 (2008). ArticleCASPubMed Google Scholar
Wu, J. et al. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology46, 1769–1778 (2007). ArticleCASPubMed Google Scholar
Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol.30, 475–487 (2009). ArticleCASPubMed Google Scholar
De Creus, A. et al. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J. Immunol.174, 2037–2045 (2005). ArticleCASPubMed Google Scholar
Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature Med.6, 1348–1354 (2000). ArticleCASPubMed Google Scholar
Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science305, 872–874 (2004). ArticleCASPubMed Google Scholar
Lee, W. Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and _i_NKT cells. Nature Immunol.11, 295–302 (2010). A seminal paper demonstrating the efficient intravascular immune response in the liver against bacteria. ArticleCAS Google Scholar
Dolganiuc, A. et al. Hepatitis C core and nonstructural 3 proteins trigger Toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology127, 1513–1524 (2004). ArticleCASPubMed Google Scholar
Cooper, A., Tal, G., Lider, O. & Shaul, Y. Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. J. Immunol.175, 3165–3176 (2005). ArticleCASPubMed Google Scholar
Hosel, M. et al. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology50, 1773–1782 (2009). ArticleCASPubMed Google Scholar
Klein, C. et al. The IL-6–gp130–STAT3 pathway in hepatocytes triggers liver protection in T cell-mediated liver injury. J. Clin. Invest.115, 860–869 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Gehring, S. et al. Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology130, 810–822 (2006). ArticleCASPubMed Google Scholar
Dunn, C. et al. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology137, 1289–1300 (2009). ArticleCASPubMed Google Scholar
Wieland, S., Thimme, R., Purcell, R. H. & Chisari, F. V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl Acad. Sci. USA101, 6669–6674 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gale, M. Jr & Foy, E. M. Evasion of intracellular host defence by hepatitis C virus. Nature436, 939–945 (2005). ArticleCASPubMed Google Scholar
Qu, L. & Lemon, S. M. Hepatitis A and hepatitis C viruses: divergent infection outcomes marked by similarities in induction and evasion of interferon responses. Semin. Liver Dis.30, 319–332 (2010). ArticleCASPubMed Google Scholar
Ke, P. Y. & Chen, S. S. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Invest.121, 37–56 (2011). ArticleCASPubMed Google Scholar
Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413, 732–738 (2001). ArticleCASPubMed Google Scholar
Li, X. D., Sun, L., Seth, R. B., Pineda, G. & Chen, Z. J. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl Acad. Sci. USA102, 17717–17722 (2005). ArticleCASPubMedPubMed Central Google Scholar
Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature437, 1167–1172 (2005). ArticleCASPubMed Google Scholar
Foy, E. et al. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science300, 1145–1148 (2003). The first report on HCV immune escape blocking IRF3 function. ArticleCASPubMed Google Scholar
Yang, Y. et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl Acad. Sci. USA104, 7253–7258 (2007). ArticleCASPubMedPubMed Central Google Scholar
Qu, L. et al. Disruption of TLR3 signaling due to cleavage of TRIF by the hepatitis A virus protease-polymerase processing intermediate, 3CD. PLoS Pathog.7, e1002169 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Lanford, R. E. et al. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc. Natl Acad. Sci. USA108, 11223–11228 (2011). ArticleCASPubMedPubMed Central Google Scholar
Desai, M. M. et al. Differential, type I interferon-mediated autophagic trafficking of hepatitis C virus proteins in mouse liver. Gastroenterology141, 674–685 (2011). ArticlePubMedCAS Google Scholar
Usynin, I., Klotz, C. & Frevert, U. Malaria circumsporozoite protein inhibits the respiratory burst in Kupffer cells. Cell. Microbiol.9, 2610–2628 (2007). ArticleCASPubMed Google Scholar
Torgler, R. et al. Sporozoite-mediated hepatocyte wounding limits Plasmodium parasite development via MyD88-mediated NF-κB activation and inducible NO synthase expression. J. Immunol.180, 3990–3999 (2008). ArticleCASPubMed Google Scholar
Gowda, D. C. TLR-mediated cell signaling by malaria GPIs. Trends Parasitol.23, 596–604 (2007). ArticleCASPubMed Google Scholar
Taniguchi, M., Seino, K. & Nakayama, T. The NKT cell system: bridging innate and acquired immunity. Nature Immunol.4, 1164–1165 (2003). ArticleCAS Google Scholar
Swain, M. G. Natural killer T cells within the liver: conductors of the hepatic immune orchestra. Dig. Dis.28, 7–13 (2010). ArticleCASPubMed Google Scholar
Klugewitz, K., Adams, D. H., Emoto, M., Eulenburg, K. & Hamann, A. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol.25, 590–594 (2004). ArticleCASPubMed Google Scholar
Polakos, N. K. et al. Early intrahepatic accumulation of CD8+ T cells provides a source of effectors for nonhepatic immune responses. J. Immunol.179, 201–210 (2007). ArticleCASPubMed Google Scholar
Keating, R. et al. Virus-specific CD8+ T cells in the liver: armed and ready to kill. J. Immunol.178, 2737–2745 (2007). ArticleCASPubMed Google Scholar
Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nature Immunol.11, 1127–1135 (2010). A demonstration of a population of CXCR6-expressing intrahepatic NK cells able to mediate antigen-specific memory. ArticleCAS Google Scholar
Schmidt, N. W. et al. Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc. Natl Acad. Sci. USA105, 14017–14022 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kumar, K. A. et al. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature444, 937–940 (2006). ArticleCASPubMed Google Scholar
Chakravarty, S. et al. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nature Med.13, 1035–1041 (2007). A classical paper reporting extrahepatic priming of sporozoite-specific T cells. ArticleCASPubMed Google Scholar
Carvalho, L. H. et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nature Med.8, 166–170 (2002). ArticleCASPubMed Google Scholar
Morrot, A., Hafalla, J. C., Cockburn, I. A., Carvalho, L. H. & Zavala, F. IL-4 receptor expression on CD8+ T cells is required for the development of protective memory responses against liver stages of malaria parasites. J. Exp. Med.202, 551–560 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Overstreet, M. G., Cockburn, I. A., Chen, Y. C. & Zavala, F. Protective CD8 T cells against Plasmodium liver stages: immunobiology of an 'unnatural' immune response. Immunol. Rev.225, 272–283 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Cockburn, I. A. et al. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites. PLoS Pathog.6, e1000877 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Good, M. F. & Doolan, D. L. Malaria vaccine design: immunological considerations. Immunity33, 555–566 (2010). ArticleCASPubMed Google Scholar
Amadei, B. et al. Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology138, 1536–1545 (2010). ArticlePubMedCAS Google Scholar
Canbay, A. et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology38, 1188–1198 (2003). ArticleCASPubMed Google Scholar
McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science330, 362–366 (2010). ArticleCASPubMed Google Scholar
Lang, P. A. et al. Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-I-dependent manner in mice. Hepatology52, 25–32 (2010). ArticleCASPubMed Google Scholar
Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature433, 887–892 (2005). ArticleCASPubMed Google Scholar
Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature458, 899–903 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Veerapu, N. S., Raghuraman, S., Liang, T. J., Heller, T. & Rehermann, B. Sporadic reappearance of minute amounts of hepatitis C virus RNA after successful therapy stimulates cellular immune responses. Gastroenterology140, 676–685 (2011). ArticleCASPubMed Google Scholar
Rehermann, B., Ferrari, C., Pasquinelli, C. & Chisari, F. V. The hepatitis B virus persists for decades after patients' recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nature Med.2, 1104–1108 (1996). A landmark paper demonstrating that HBV is controlled but not eliminated. ArticleCASPubMed Google Scholar
Bertoletti, A. & Ferrari, C. Kinetics of the immune response during HBV and HCV infection. Hepatology38, 4–13 (2003). ArticleCASPubMed Google Scholar
Rehermann, B. & Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nature Rev. Immunol.5, 215–229 (2005). ArticleCAS Google Scholar
Guidotti, L. G. & Chisari, F. V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol.19, 65–91 (2001). A key review on the non-cytolytic antiviral activity of cytokines in HBV-infected transgenic mice. ArticleCASPubMed Google Scholar
Garcia-Rodriguez, M. J., Canales, M. A., Hernandez-Maraver, D. & Hernandez-Navarro, F. Late reactivation of resolved hepatitis B virus infection: an increasing complication post rituximab-based regimens treatment? Am. J. Hematol.83, 673–675 (2008). ArticleCASPubMed Google Scholar
von Hahn, T. et al. Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology132, 667–678 (2007). ArticleCASPubMed Google Scholar
Brimacombe, C. L. et al. Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J. Virol.85, 596–605 (2011). ArticleCASPubMed Google Scholar
Lopes, A. R. et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J. Clin. Invest.118, 1835–1845 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Radziewicz, H. et al. Impaired hepatitis C virus (HCV)-specific effector CD8+ T cells undergo massive apoptosis in the peripheral blood during acute HCV infection and in the liver during the chronic phase of infection. J. Virol.82, 9808–9822 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Bowen, D. G. et al. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J. Clin. Invest.114, 701–712 (2004). A key paper describing that initial priming of T cells in the liver determines the development of peripheral immune tolerance. ArticlePubMedPubMed CentralCAS Google Scholar
Holz, L. E. et al. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology135, 989–997 (2008). ArticlePubMed Google Scholar
Schurich, A. et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-prone CD8 T cells in persistent hepatitis B virus infection. Hepatology53, 1494–1503 (2011). ArticleCASPubMed Google Scholar
Larrubia, J. R. et al. Bim-mediated apoptosis and PD-1/PD-L1 pathway impair reactivity of PD1+/CD127− HCV-specific CD8+ cells targeting the virus in chronic hepatitis C virus infection. Cell. Immunol.269, 104–114 (2011). ArticleCASPubMed Google Scholar
Tinoco, R., Alcalde, V., Yang, Y., Sauer, K. & Zuniga, E. I. Cell-intrinsic transforming growth factor-β signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity31, 145–157 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Benseler, V. et al. Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proc. Natl Acad. Sci. USA108, 16735–16740 (2011). ArticleCASPubMedPubMed Central Google Scholar
Iwai, Y., Terawaki, S., Ikegawa, M., Okazaki, T. & Honjo, T. PD-1 inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med.198, 39–50 (2003). This paper reports the seminal discovery of the essential protective role of PDL1 for the liver. ArticlePubMedPubMed CentralCAS Google Scholar
Dong, H. et al. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity20, 327–336 (2004). ArticleCASPubMed Google Scholar
Isogawa, M., Furuichi, Y. & Chisari, F. V. Oscillating CD8+ T cell effector functions after antigen recognition in the liver. Immunity23, 53–63 (2005). ArticleCASPubMed Google Scholar
Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunol.10, 29–37 (2009). An elegant demonstration of multiple co-inhibitory pathways driving T cell exhaustion. ArticleCAS Google Scholar
Klenerman, P. & Thimme, R. T cell responses in hepatitis C: the good, the bad and the unconventional. Gut 28 Aug 2011 (doi:10.1136/gutjnl-2011-300620).
Fisicaro, P. et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology138, 682–693 (2010). ArticleCASPubMed Google Scholar
He, X. S. et al. Quantitative analysis of hepatitis C virus-specific CD8+ T cells in peripheral blood and liver using peptide–MHC tetramers. Proc. Natl Acad. Sci. USA96, 5692–5697 (1999). ArticleCASPubMedPubMed Central Google Scholar
Maini, M. K. et al. The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med.191, 1269–1280 (2000). ArticlePubMedPubMed CentralCAS Google Scholar
Bengsch, B. et al. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog.6, e1000947 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Blackburn, S. D. et al. Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion. J. Virol.84, 2078–2089 (2010). ArticleCASPubMed Google Scholar
Diehl, L. et al. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology47, 296–305 (2008). ArticleCASPubMed Google Scholar
Yu, M. C. et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology40, 1312–1321 (2004). ArticleCASPubMed Google Scholar
Mühlbauer, M. et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-α and -γ and mediates T cell apoptosis. J. Hepatol.45, 520–528 (2006). ArticleCASPubMed Google Scholar
Zhang, Z. et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B. Gastroenterology134, 1938–1949 (2008). ArticlePubMed Google Scholar
Kassel, R. et al. Chronically inflamed livers up-regulate expression of inhibitory B7 family members. Hepatology50, 1625–1637 (2009). ArticlePubMed Google Scholar
Mengshol, J. A. et al. A crucial role for Kupffer cell-derived galectin-9 in regulation of T cell immunity in hepatitis C infection. PLoS ONE5, e9504 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature439, 682–687 (2006). A seminal report on the role of PD1 in T cell exhaustion during viral infection. ArticleCASPubMed Google Scholar
Doherty, D. G. et al. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J. Immunol.163, 2314–2321 (1999). CASPubMed Google Scholar
Wuensch, S. A., Spahn, J. & Crispe, I. N. Direct, help-independent priming of CD8+ T cells by adeno-associated virus-transduced hepatocytes. Hepatology52, 1068–1077 (2010). ArticlePubMedCAS Google Scholar
Raziorrouh, B. et al. Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. Gastroenterology141, 1422–1431 (2011). ArticleCASPubMed Google Scholar
Manigold, T. & Racanelli, V. T-cell regulation by CD4 regulatory T cells during hepatitis B and C virus infections: facts and controversies. Lancet Infect. Dis.7, 804–813 (2007). ArticleCASPubMed Google Scholar
Franceschini, D. et al. PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J. Clin. Invest.119, 551–564 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Knolle, P. et al. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J. Hepatol.22, 226–229 (1995). ArticleCASPubMed Google Scholar
Ha, S. J., West, E. E., Araki, K., Smith, K. A. & Ahmed, R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol. Rev.223, 317–333 (2008). ArticleCASPubMed Google Scholar
Peppa, D. et al. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog.6, e1001227 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Accapezzato, D. et al. Hepatic expansion of a virus-specific regulatory CD8+ T cell population in chronic hepatitis C virus infection. J. Clin. Invest.113, 963–972 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Abel, M. et al. Intrahepatic virus-specific IL-10-producing CD8 T cells prevent liver damage during chronic hepatitis C virus infection. Hepatology44, 1607–1616 (2006). ArticleCASPubMed Google Scholar
Chang, J. J. et al. The phenotype of hepatitis B virus-specific T cells differ in the liver and blood in chronic hepatitis B virus infection. Hepatology46, 1332–1340 (2007). ArticleCASPubMed Google Scholar
Chisari, F. V. et al. Production of two distinct and independent hepatic immunoregulatory molecules by the perfused rat liver. Hepatology5, 735–743 (1985). ArticleCASPubMed Google Scholar
Dunn, C. et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J. Exp. Med.204, 667–680 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Oliviero, B. et al. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology137, 1151–1160 (2009). ArticleCASPubMed Google Scholar
Sene, D. et al. Hepatitis C virus (HCV) evades NKG2D-dependent NK cell responses through NS5A-mediated imbalance of inflammatory cytokines. PLoS Pathog.6, e1001184 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Billerbeck, E. et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc. Natl Acad. Sci. USA107, 3006–3011 (2010). ArticlePubMedPubMed Central Google Scholar
de Lalla, C. et al. Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J. Immunol.173, 1417–1425 (2004). ArticleCASPubMed Google Scholar
Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell124, 767–782 (2006). ArticleCASPubMed Google Scholar
Rosen, H. R. Clinical practice. Chronic hepatitis C infection. N. Engl. J. Med.364, 2429–2438 (2011). ArticleCASPubMed Google Scholar
Werle-Lapostolle, B. et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology126, 1750–1758 (2004). ArticleCASPubMed Google Scholar
Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature461, 399–401 (2009). ArticleCASPubMed Google Scholar
Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C. Nature Genet.41, 1105–1109 (2009). ArticleCASPubMed Google Scholar
Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nature Genet.41, 1100–1104 (2009). ArticleCASPubMed Google Scholar
Han, Q., Zhang, C., Zhang, J. & Tian, Z. Reversal of hepatitis B virus-induced immune tolerance by an immunostimulatory 3p-HBx-siRNAs in a retinoic acid inducible gene I-dependent manner. Hepatology54, 1179–1189 (2011). ArticleCASPubMed Google Scholar
Bertoletti, A. & Maini, M. K. Protection or damage: a dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection? Curr. Opin. Immunol.12, 403–408 (2000). ArticleCASPubMed Google Scholar
Kakimi, K., Guidotti, L. G., Koezuka, Y. & Chisari, F. V. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med.192, 921–930 (2000). ArticlePubMedPubMed CentralCAS Google Scholar
Loggi, E. et al. Anti-HBs re-seroconversion after liver transplantation in a patient with past HBV infection receiving a HBsAg positive graft. J. Hepatol.50, 625–630 (2009). ArticlePubMed Google Scholar
Maini, M. K. & Schurich, A. The molecular basis of the failed immune response in chronic HBV: therapeutic implications. J. Hepatol.52, 616–619 (2010). ArticleCASPubMed Google Scholar
Kutscher, S., Bauer, T., Dembek, C., Sprinzl, M. & Protzer, U. Design of therapeutic vaccines: hepatitis B as an example. Microb. Biotechnol. 29 Sep 2011 (doi:10.1111/j.1751-7915.2011.00303.x).
McCaffrey, A. P. et al. Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotech.21, 639–644 (2003). ArticleCAS Google Scholar
Klein, C. et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology125, 9–18 (2003). ArticleCASPubMed Google Scholar
Ilan, Y. et al. Ablation of persistent hepatitis B by bone marrow transplantation from a hepatitis B-immune donor. Gastroenterology104, 1818–1821 (1993). ArticleCASPubMed Google Scholar
Hui, C. K. et al. A long-term follow-up study on hepatitis B surface antigen-positive patients undergoing allogeneic hematopoietic stem cell transplantation. Blood106, 464–469 (2005). ArticleCASPubMed Google Scholar
Hawkins, R. E. et al. Development of adoptive cell therapy for cancer: a clinical perspective. Hum. Gene Ther.21, 665–672 (2010). ArticleCASPubMed Google Scholar
Protzer, U. & Abken, H. Can engineered “designer” T cells outsmart chronic hepatitis B? Hepat. Res. Treat.2010, 901216 (2010). PubMedPubMed CentralCAS Google Scholar
Gehring, A. J. et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J. Hepatol.55, 103–110 (2011). ArticleCASPubMed Google Scholar
Bohne, F. et al. T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology134, 239–247 (2008). ArticleCASPubMed Google Scholar
Abken, H., Hombach, A. & Heuser, C. Immune response manipulation: recombinant immunoreceptors endow T-cells with predefined specificity. Curr. Pharm. Des.9, 1992–2001 (2003). ArticleCASPubMed Google Scholar
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med.15, 1170–1178 (2009). ArticleCASPubMed Google Scholar
Das, A. et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J. Exp. Med.205, 2111–2124 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Dazert, E. et al. Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response. J. Clin. Invest.119, 376–386 (2009). An important report demonstrating the link between viral fitness and HLA-B27-restricted T cell immunity. PubMedPubMed CentralCAS Google Scholar
Chisari, F. V. & Ferrari, C. Hepatitis B virus immunopathogenesis. Annu. Rev. Immunol.13, 29–60 (1995). ArticleCASPubMed Google Scholar
Kurts, C., Robinson, B. W. & Knolle, P. A. Cross-priming in health and disease. Nature Rev. Immunol.10, 403–414 (2010). ArticleCAS Google Scholar
Wieland, S. F., Spangenberg, H. C., Thimme, R., Purcell, R. H. & Chisari, F. V. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc. Natl Acad. Sci. USA101, 2129–2134 (2004). ArticleCASPubMedPubMed Central Google Scholar
Murray, J. M., Wieland, S. F., Purcell, R. H. & Chisari, F. V. Dynamics of hepatitis B virus clearance in chimpanzees. Proc. Natl Acad. Sci. USA102, 17780–17785 (2005). ArticleCASPubMedPubMed Central Google Scholar
Summers, J. & Mason, W. S. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell29, 403–415 (1982). ArticleCASPubMed Google Scholar