Molecular and cellular insights into T cell exhaustion (original) (raw)
Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol.12, 749–761 (2012). CASPubMedPubMed Central Google Scholar
Masopust, D. & Schenkel, J. M. The integration of T cell migration, differentiation and function. Nat. Rev. Immunol.13, 309–320 (2013). CASPubMed Google Scholar
Wherry, E. J. T cell exhaustion. Nat. Immunol.131, 492–499 (2011). Google Scholar
Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity37, 1130–1144 (2012).This study shows that memory and exhausted CD8+ T cells have partially non-overlapping modules and centrally connected genes that are thought to be the hubs or foci of biological processes. This reference also indicates that transcription factors have distinct connections in exhausted CD8+ T cells compared with memory CD8+ T cells. CASPubMedPubMed Central Google Scholar
Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol.35, 51–60 (2014). CASPubMed Google Scholar
Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med.188, 2205–2213 (1998). CASPubMedPubMed Central Google Scholar
Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med.187, 1383–1393 (1998). References 6 and 7 describe T cell exhaustion as the dysfunction and subsequent physical deletion of antigen-specific T cells during chronic viral infection. CASPubMedPubMed Central Google Scholar
Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature439, 682–687 (2006). This study shows that exhausted CD8+ T cells can be reinvigorated by blocking PD1 signalling during chronic viral infection in mice. CASPubMed Google Scholar
Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nat. Rev. Immunol.15, 45–56 (2014). Google Scholar
Pauken, K. E. & Wherry, E. J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol.36, 265–276 (2015). CASPubMedPubMed Central Google Scholar
Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science338, 1220–1225 (2012). This study shows the lineage relationships, hierarchy and cooperative maintenance of subpopulations of exhausted CD8+ T cells during chronic infection. CASPubMedPubMed Central Google Scholar
Matloubian, M., Concepcion, R. J. & Ahmed, R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol.68, 8056–8063 (1994). This study shows that CD4+ T cell help is also required to sustain CD8+ T cell responses during chronic viral infection. CASPubMedPubMed Central Google Scholar
Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat. Med.16, 1147–1151 (2010). CASPubMedPubMed Central Google Scholar
Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol.77, 4911–4927 (2003). CASPubMedPubMed Central Google Scholar
Bucks, C. M., Norton, J. A., Boesteanu, A. C., Mueller, Y. M. & Katsikis, P. D. Chronic antigen stimulation alone is sufficient to drive CD8+ T cell exhaustion. J. Immunol.182, 6697–6708 (2009). CASPubMedPubMed Central Google Scholar
Streeck, H. et al. Antigen load and viral sequence diversification determine the functional profile of HIV-1-specific CD8+ T cells. PLoS Med.5, e100 (2008). PubMedPubMed Central Google Scholar
Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol.10, 29–37 (2009). This study shows that inhibitory receptors are co-expressed by exhausted T cells, that their expression is correlated with the severity of T cell exhaustion, and that co-blockade of multiple inhibitory receptors synergistically reinvigorates exhausted T cells. CASPubMed Google Scholar
Brooks, D. G., McGavern, D. B. & Oldstone, M. B. Reprogramming of antiviral T cells prevents inactivation and restores T cell activity during persistent viral infection. J. Clin. Invest.116, 1675–1685 (2006). CASPubMedPubMed Central Google Scholar
Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol.86, 8161–8170 (2012). CASPubMedPubMed Central Google Scholar
Kasprowicz, V. et al. Hepatitis C virus (HCV) sequence variation induces an HCV-specific T-cell phenotype analogous to spontaneous resolution. J. Virol.84, 1656–1663 (2010). CASPubMed Google Scholar
Agnellini, P. et al. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc. Natl Acad. Sci. USA104, 4565–4570 (2007). CASPubMed Google Scholar
Chiu, Y. L. et al. Sprouty-2 regulates HIV-specific T cell polyfunctionality. J. Clin. Invest.124, 198–208 (2014). CASPubMed Google Scholar
Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity42, 265–278 (2015). This study shows that AP-1-independent NFAT activity promotes T cell anergy and exhaustion. CASPubMedPubMed Central Google Scholar
Oestreich, K. J., Yoon, H., Ahmed, R. & Boss, J. M. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol.181, 4832–4839 (2008). CASPubMedPubMed Central Google Scholar
Honda, T. et al. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity40, 235–247 (2014). CASPubMedPubMed Central Google Scholar
Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. & Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol.14, 1212–1218 (2013). CASPubMed Google Scholar
Sharpe, A. H., Wherry, E. J., Ahmed, R. & Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol.8, 239–245 (2007). CASPubMed Google Scholar
Odorizzi, P. M. & Wherry, E. J. Inhibitory receptors on lymphocytes: insights from infections. J. Immunol.188, 2957–2965 (2012). CASPubMedPubMed Central Google Scholar
Araki, K., Youngblood, B. & Ahmed, R. Programmed cell death 1-directed immunotherapy for enhancing T-cell function. Cold Spring Harb. Symp. Quant. Biol.78, 239–247 (2013). PubMed Google Scholar
Pentcheva-Hoang, T., Egen, J. G., Wojnoonski, K. & Allison, J. P. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity21, 401–413 (2004). CASPubMed Google Scholar
Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol.25, 9543–9553 (2005). CASPubMedPubMed Central Google Scholar
Yokosuka, T. et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med.209, 1201–1217 (2012). CASPubMedPubMed Central Google Scholar
Clayton, K. L. et al. T cell Ig and mucin domain-containing protein 3 is recruited to the immune synapse, disrupts stable synapse formation, and associates with receptor phosphatases. J. Immunol.192, 782–791 (2014). CASPubMed Google Scholar
Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H. & Riley, J. L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol.173, 945–954 (2004). CASPubMed Google Scholar
Patsoukis, N. et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci. Signal.5, ra46 (2012). PubMedPubMed Central Google Scholar
Patsoukis, N., Sari, D. & Boussiotis, V. A. PD-1 inhibits T cell proliferation by upregulating p27 and p15 and suppressing Cdc25A. Cell Cycle11, 4305–4309 (2012). CASPubMedPubMed Central Google Scholar
Zinselmeyer, B. H. et al. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med.210, 757–774 (2013). CASPubMedPubMed Central Google Scholar
Duraiswamy, J. et al. Phenotype, function, and gene expression profiles of programmed death-1hi CD8 T cells in healthy human adults. J. Immunol.186, 4200–4212 (2011). CASPubMedPubMed Central Google Scholar
Dolfi, D. V. et al. Increased T-bet is associated with senescence of influenza virus-specific CD8 T cells in aged humans. J. Leukoc. Biol.93, 825–836 (2013). CASPubMedPubMed Central Google Scholar
Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by anti-PD-L1 blockade. Proc. Natl Acad. Sci. USA105, 15016–15021 (2008). This study identifies subsets of exhausted CD8+ T cells and shows that exhausted CD8+ T cells with intermediate expression of PD1 can be reinvigorated by PD1 blockade, whereas a PD1hisubset cannot. CASPubMed Google Scholar
Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature443, 350–354 (2006). CASPubMed Google Scholar
Blattman, J. N., Wherry, E. J., Ha, S. J., van der Most, R. G. & Ahmed, R. Impact of epitope escape on PD-1 expression and CD8 T-cell exhaustion during chronic infection. J. Virol.83, 4386–4394 (2009). CASPubMedPubMed Central Google Scholar
Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat. Immunol.14, 603–610 (2013). CASPubMed Google Scholar
Kaufmann, D. E. et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol.8, 1246–1254 (2007). CASPubMed Google Scholar
Butler, N. S. et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat. Immunol.13, 188–195 (2011). PubMedPubMed Central Google Scholar
Grosso, J. F. et al. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J. Immunol.182, 6659–6669 (2009). CASPubMedPubMed Central Google Scholar
Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. USA107, 7875–7880 (2010). CASPubMed Google Scholar
Jin, H. T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA107, 14733–14738 (2010). CASPubMed Google Scholar
Kassu, A. et al. Regulation of virus-specific CD4+ T cell function by multiple costimulatory receptors during chronic HIV infection. J. Immunol.185, 3007–3018 (2010). CASPubMedPubMed Central Google Scholar
Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med.207, 2187–2194 (2010). CASPubMedPubMed Central Google Scholar
Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med.207, 2175–2186 (2010). CASPubMedPubMed Central Google Scholar
Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med.369, 122–133 (2013). This study shows that co-blockade of PD1 and CTLA4 in humans leads to impressive tumour regression compared with monotherapy in patients with melanoma. CASPubMedPubMed Central Google Scholar
Wang, C. et al. Loss of the signaling adaptor TRAF1 causes CD8+ T cell dysregulation during human and murine chronic infection. J. Exp. Med.209, 77–91 (2012). CASPubMedPubMed Central Google Scholar
Vezys, V. et al. 4-1BB signaling synergizes with programmed death ligand 1 blockade to augment CD8 T cell responses during chronic viral infection. J. Immunol.187, 1634–1642 (2011). CASPubMedPubMed Central Google Scholar
Brooks, D. G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med.12, 1301–1309 (2006). CASPubMedPubMed Central Google Scholar
Ejrnaes, M. et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med.203, 2461–2472 (2006). References 57 and 58 show that the immunoregulatory cytokine IL-10 has an important role in promoting or sustaining T cell exhaustion. CASPubMedPubMed Central Google Scholar
Ng, C. T. & Oldstone, M. B. Infected CD8α− dendritic cells are the predominant source of IL-10 during establishment of persistent viral infection. Proc. Natl Acad. Sci. USA109, 14116–14121 (2012). CASPubMed Google Scholar
Said, E. A. et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med.16, 452–459 (2010). CASPubMedPubMed Central Google Scholar
Richter, K. et al. Macrophage and T cell produced IL-10 promotes viral chronicity. PLoS Pathog.9, e1003735 (2013). PubMedPubMed Central Google Scholar
Parish, I. A. et al. Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1. J. Clin. Invest.124, 3455–3468 (2014). CASPubMedPubMed Central Google Scholar
Brooks, D. G. et al. IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during persistent viral infection. Proc. Natl Acad. Sci. USA105, 20428–20433 (2008). CASPubMed Google Scholar
Tinoco, R., Alcalde, V., Yang, Y., Sauer, K. & Zuniga, E. I. Cell-intrinsic transforming growth factor-β signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity31, 145–157 (2009). CASPubMedPubMed Central Google Scholar
Garidou, L., Heydari, S., Gossa, S. & McGavern, D. B. Therapeutic blockade of transforming growth factor beta fails to promote clearance of a persistent viral infection. J. Virol.86, 7060–7071 (2012). CASPubMedPubMed Central Google Scholar
Boettler, T., Cheng, Y., Ehrhardt, K. & von Herrath, M. TGF-β blockade does not improve control of an established persistent viral infection. Viral Immunol.25, 232–238 (2012). CASPubMedPubMed Central Google Scholar
Sandler, N. G. et al. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature511, 601–605 (2014). CASPubMedPubMed Central Google Scholar
Curtsinger, J. M. & Mescher, M. F. Inflammatory cytokines as a third signal for T cell activation. Curr. Opin. Immunol.22, 333–340 (2010). CASPubMedPubMed Central Google Scholar
Teijaro, J. R. et al. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science340, 207–211 (2013). CASPubMedPubMed Central Google Scholar
Wilson, E. B. et al. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science340, 202–207 (2013). References 69 and 70 show that while acutely antiviral, sustained type I IFN activity has detrimental effects on antiviral T cell immunity and paradoxically fosters viral persistance and T cell exhaustion. CASPubMedPubMed Central Google Scholar
Stelekati, E. et al. Bystander chronic infection negatively impacts development of CD8+ T cell memory. Immunity40, 801–813 (2014). CASPubMedPubMed Central Google Scholar
Harker, J. A., Lewis, G. M., Mack, L. & Zuniga, E. I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science334, 825–829 (2011). CASPubMedPubMed Central Google Scholar
Harker, J. A., Dolgoter, A. & Zuniga, E. I. Cell-intrinsic IL-27 and gp130 cytokine receptor signaling regulates virus-specific CD4+ T cell responses and viral control during chronic infection. Immunity39, 548–559 (2013). CASPubMedPubMed Central Google Scholar
Belkaid, Y. & Tarbell, K. Regulatory T cells in the control of host-microorganism interactions. Annu. Rev. Immunol.27, 551–589 (2009). CASPubMed Google Scholar
Veiga-Parga, T., Sehrawat, S. & Rouse, B. T. Role of regulatory T cells during virus infection. Immunol. Rev.255, 182–196 (2013). PubMedPubMed Central Google Scholar
Penaloza-MacMaster, P. et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J. Exp. Med.211, 1905–1918 (2014). CASPubMedPubMed Central Google Scholar
Ng, C. T., Snell, L. M., Brooks, D. G. & Oldstone, M. B. Networking at the level of host immunity: immune cell interactions during persistent viral infections. Cell Host Microbe13, 652–664 (2013). CASPubMedPubMed Central Google Scholar
Goh, C., Narayanan, S. & Hahn, Y. S. Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? Immunol. Rev.255, 210–221 (2013). PubMedPubMed Central Google Scholar
Waggoner, S. N., Cornberg, M., Selin, L. K. & Welsh, R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature481, 394–398 (2012). CAS Google Scholar
Holderried, T. A., Lang, P. A., Kim, H. J. & Cantor, H. Genetic disruption of CD8+ TReg activity enhances the immune response to viral infection. Proc. Natl Acad. Sci. USA110, 21089–21094 (2013). CASPubMed Google Scholar
Joosten, S. A. et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc. Natl Acad. Sci. USA104, 8029–8034 (2007). CASPubMed Google Scholar
Sevilla, N., McGavern, D. B., Teng, C., Kunz, S. & Oldstone, M. B. A. Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J. Clin. Invest.113, 737–745 (2004). This study shows that DCs can be infected by LCMV and that altered DC development and/or function is associated with reduced antigen presentation and with T cell dysfunction. CASPubMedPubMed Central Google Scholar
Mueller, S. N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl Acad. Sci. USA104, 15430–15435 (2007). CASPubMed Google Scholar
Schacker, T. The role of secondary lymphatic tissue in immune deficiency of HIV infection. AIDS22 (Suppl. 3), 13–18 (2008). Google Scholar
Zeng, M. et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest.121, 998–1008 (2011). CASPubMedPubMed Central Google Scholar
Elsaesser, H., Sauer, K. & Brooks, D. G. IL-21 is required to control chronic viral infection. Science324, 1569–1572 (2009). CASPubMedPubMed Central Google Scholar
Frohlich, A. et al. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science324, 1576–1580 (2009). PubMed Google Scholar
Yi, J. S., Du, M. & Zajac, A. J. A vital role for interleukin-21 in the control of a chronic viral infection. Science324, 1572–1576 (2009). References 87–89 show that IL-21 produced by antigen-specific CD4+ T cells during chronic LCMV infection is needed to sustain antiviral CD8+ T cell responses. CASPubMedPubMed Central Google Scholar
Williams, L. D. et al. Interleukin-21-producing HIV-1-specific CD8 T cells are preferentially seen in elite controllers. J. Virol.85, 2316–2324 (2011). CASPubMed Google Scholar
Chevalier, M. F. et al. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J. Virol.85, 733–741 (2011). CASPubMed Google Scholar
Ackerman, M. E. et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J. Clin. Invest.123, 2183–2192 (2013). CASPubMedPubMed Central Google Scholar
Straub, T. et al. Nucleoprotein-specific nonneutralizing antibodies speed up LCMV elimination independently of complement and FcγR. Eur. J. Immunol.43, 2338–2348 (2013). CASPubMed Google Scholar
Richter, K. & Oxenius, A. Non-neutralizing antibodies protect from chronic LCMV infection independently of activating FcγR or complement. Eur. J. Immunol.43, 2349–2360 (2013). CASPubMed Google Scholar
Fahey, L. M. et al. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med.208, 987–999 (2011). CASPubMedPubMed Central Google Scholar
Crawford, A. et al. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity40, 289–302 (2014). CASPubMedPubMed Central Google Scholar
Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity27, 670–684 (2007). CASPubMed Google Scholar
Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol.6, 1236–1244 (2005). CASPubMed Google Scholar
Brenchley, J. M. et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood101, 2711–2720 (2003). CASPubMed Google Scholar
Akbar, A. N. & Henson, S. M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol.11, 289–295 (2011). CASPubMed Google Scholar
Wirth, T. C. et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8+ T cell differentiation. Immunity33, 128–140 (2010). CASPubMedPubMed Central Google Scholar
Schluns, K. S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol.3, 269–279 (2003). CASPubMed Google Scholar
Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA101, 16004–16009 (2004). CASPubMed Google Scholar
Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med.204, 941–949 (2007). CASPubMedPubMed Central Google Scholar
Garcia, F. et al. The virological and immunological consequences of structured treatment interruptions in chronic HIV-1 infection. AIDS15, F29–F40 (2001). CASPubMed Google Scholar
Ortiz, G. M. et al. Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects. Proc. Natl Acad. Sci. USA98, 13288–13293 (2001). CASPubMed Google Scholar
Altfeld, M. et al. Expansion of pre-existing, lymph node-localized CD8+ T cells during supervised treatment interruptions in chronic HIV-1 infection. J. Clin. Invest.109, 837–843 (2002). CASPubMedPubMed Central Google Scholar
Alter, G. et al. Longitudinal assessment of changes in HIV-specific effector activity in HIV-infected patients starting highly active antiretroviral therapy in primary infection. J. Immunol.171, 477–488 (2003). CASPubMed Google Scholar
Jamieson, B. D. et al. Epitope escape mutation and decay of human immunodeficiency virus type 1-specific CTL responses. J. Immunol.171, 5372–5379 (2003). CASPubMed Google Scholar
Obar, J. J., Crist, S. G., Leung, E. K. & Usherwood, E. J. IL-15-independent proliferative renewal of memory CD8+ T cells in latent gammaherpesvirus infection. J. Immunol.173, 2705–2714 (2004). CASPubMed Google Scholar
Snyder, C. M. et al. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity29, 650–659 (2008). CASPubMedPubMed Central Google Scholar
Blattman, J. N. et al. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat. Med.9, 540–547 (2003). CASPubMed Google Scholar
West, E. E. et al. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest.123, 2604–2615 (2013). CASPubMedPubMed Central Google Scholar
Pellegrini, M. et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell144, 601–613 (2011). CASPubMed Google Scholar
Nanjappa, S. G., Kim, E. H. & Suresh, M. Immunotherapeutic effects of IL-7 during a chronic viral infection in mice. Blood117, 5123–5132 (2011). CASPubMedPubMed Central Google Scholar
Schmitz, I. et al. IL-21 restricts virus-driven TReg cell expansion in chronic LCMV infection. PLoS Pathog.9, e1003362 (2013). CASPubMedPubMed Central Google Scholar
Kao, C. et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat. Immunol.12, 663–671 (2011). This study shows that the transcription factor T-bet is differentially used in memory T cells compared with exhausted T cells and that T-bet directly represses expression of the gene encoding PD1. CASPubMedPubMed Central Google Scholar
Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog.10, e1004251 (2014). PubMedPubMed Central Google Scholar
Vezys, V. et al. Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. J. Exp. Med.203, 2263–2269 (2006). CASPubMedPubMed Central Google Scholar
Wilson, J. J. et al. CD8 T cells recruited early in mouse polyomavirus infection undergo exhaustion. J. Immunol.188, 4340–4348 (2012). CASPubMedPubMed Central Google Scholar
Miller, N. E., Bonczyk, J. R., Nakayama, Y. & Suresh, M. Role of thymic output in regulating CD8 T-cell homeostasis during acute and chronic viral infection. J. Virol.79, 9419–9429 (2005). CASPubMedPubMed Central Google Scholar
Youngblood, B. et al. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8+ T cells. Immunity35, 400–412 (2011). This study provides initial insights into the epigenetic changes that underlie T cell exhaustion. CASPubMedPubMed Central Google Scholar
Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity31, 309–320 (2009). CASPubMedPubMed Central Google Scholar
Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol.14, 1173–1182 (2013). CASPubMedPubMed Central Google Scholar
Staron, M. M. et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. Immunity41, 802–814 (2014). CASPubMedPubMed Central Google Scholar
Stephen, T. L. et al. Transforming growth factor β-mediated suppression of antitumour T cells requires FoxP1 transcription factor expression. Immunity41, 427–439 (2014). CASPubMedPubMed Central Google Scholar
Intlekofer, A. M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med.204, 2015–2021 (2007). CASPubMedPubMed Central Google Scholar
Paley, M. A. et al. Technical advance: fluorescent reporter reveals insights into eomesodermin biology in cytotoxic lymphocytes. J. Leukoc. Biol.93, 307–315 (2013). CASPubMedPubMed Central Google Scholar
Banerjee, A. et al. Cutting edge: the transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche. J. Immunol.185, 4988–4992 (2010). CASPubMedPubMed Central Google Scholar
Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity33, 229–240 (2010). CASPubMedPubMed Central Google Scholar
Mullen, A. C. et al. Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell147, 565–576 (2011). CASPubMedPubMed Central Google Scholar
Trompouki, E. et al. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell147, 577–589 (2011). CASPubMedPubMed Central Google Scholar
Youngblood, B. et al. Cutting edge: prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J. Immunol.191, 540–544 (2013). CASPubMedPubMed Central Google Scholar
Zhang, F. et al. Epigenetic manipulation restores functions of defective CD8+ T cells from chronic viral infection. Mol. Ther.22, 1698–1706 (2014). CASPubMedPubMed Central Google Scholar
Nishimura, T. et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell12, 114–126 (2013). CASPubMed Google Scholar
Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science342, 1242454 (2013). PubMedPubMed Central Google Scholar
Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science283, 857–860 (1999). CASPubMed Google Scholar
Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med.189, 991–998 (1999). CASPubMedPubMed Central Google Scholar
Cornberg, M. et al. Clonal exhaustion as a mechanism to protect against severe immunopathology and death from an overwhelming CD8 T cell response. Front. Immunol.4, 475 (2013). PubMedPubMed Central Google Scholar
Khanna, K. M., Lepisto, A. J., Decman, V. & Hendricks, R. L. Immune control of herpes simplex virus during latency. Curr. Opin. Immunol.16, 463–469 (2004). CASPubMed Google Scholar
Frank, G. M. et al. Early CD4+ T cell help prevents partial CD8+ T cell exhaustion and promotes maintenance of herpes simplex virus 1 latency. J. Immunol.184, 277–286 (2010). CASPubMed Google Scholar
Oxenius, A., Zinkernagel, R. M. & Hengartner, H. Comparison of activation versus induction of unresponsiveness of virus-specific CD4+ and CD8+ T cells upon acute versus persistent viral infection. Immunity9, 449–457 (1998). CASPubMed Google Scholar
Brooks, D. G., Teyton, L., Oldstone, M. B. & McGavern, D. B. Intrinsic functional dysregulation of CD4 T cells occurs rapidly following persistent viral infection. J. Virol.79, 10514–10527 (2005). CASPubMedPubMed Central Google Scholar
Morou, A., Palmer, B. E. & Kaufmann, D. E. Distinctive features of CD4+ T cell dysfunction in chronic viral infections. Curr. Opin. HIV AIDS9, 446–451 (2014). CASPubMedPubMed Central Google Scholar
Schulze Zur Wiesch, J. et al. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. J. Exp. Med.209, 61–75 (2012). CASPubMedPubMed Central Google Scholar
Osokine, I. et al. Type I interferon suppresses de novo virus-specific CD4 Th1 immunity during an established persistent viral infection. Proc. Natl Acad. Sci. USA111, 7409–7414 (2014). CASPubMed Google Scholar
Charles, E. D. & Dustin, L. B. Hepatitis C virus-induced cryoglobulinemia. Kidney Int.76, 818–824 (2009). PubMed Google Scholar
Haas, A., Zimmermann, K. & Oxenius, A. Antigen-dependent and -independent mechanisms of T and B cell hyperactivation during chronic HIV-1 infection. J. Virol.85, 12102–12113 (2011). CASPubMedPubMed Central Google Scholar
Hunziker, L. et al. Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nat. Immunol.4, 343–349 (2003). CASPubMed Google Scholar