- Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).
Article CAS PubMed PubMed Central Google Scholar
- Kulkarni, A. B. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA 90, 770–774 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Kaartinen, V. et al. Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial–mesenchymal interaction. Nature Genet. 11, 415–421 (1995).
Article CAS PubMed Google Scholar
- Proetzel, G. et al. Transforming growth factor-β3 is required for secondary palate fusion. Nature Genet. 11, 409–414 (1995).
Article CAS PubMed Google Scholar
- Sanford, L. P. et al. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 124, 2659–2670 (1997).
CAS PubMed Google Scholar
- Schluesener, H., Jung, S. & Salvetti, M. Susceptibility and resistance of human autoimmune T cell activation to the immunoregulatory effects of transforming growth factor (TGF) β1, β2, and β1.2. J. Neuroimmunol. 28, 271–276 (1990).
Article CAS PubMed Google Scholar
- Stoeck, M. et al. Comparison of the immunosuppressive properties of milk growth factor and transforming growth factors β1 and β2. J. Immunol. 143, 3258–3265 (1989).
CAS PubMed Google Scholar
- Kehrl, J. H. et al. Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 163, 1037–1050 (1986).First demonstration of the important role of TGF-β in T-cell regulation.
Article CAS PubMed Google Scholar
- Brabletz, T. et al. Transforming growth factor β and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site. Mol. Cell. Biol. 13, 1155–1162 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371, 257–261 (1994).
Article CAS PubMed Google Scholar
- Datto, M. B. et al. Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc. Natl Acad. Sci. USA 92, 5545–5549 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).
Article CAS PubMed Google Scholar
- Coffey, R. J. Jr. et al. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor β. Mol. Cell. Biol. 8, 3088–3093 (1988).
Article CAS PubMed PubMed Central Google Scholar
- Sad, S. & Mosmann, T. R. Single IL-2-secreting precursor CD4 T cell can develop into either TH1 or TH2 cytokine secretion phenotype. J. Immunol. 153, 3514–3522 (1994).
CAS PubMed Google Scholar
- Swain, S. L., Huston, G., Tonkonogy, S. & Weinberg, A. Transforming growth factor-β and IL-4 cause helper T cell precursors to develop into distinct effector helper cells that differ in lymphokine secretion pattern and cell surface phenotype. J. Immunol. 147, 2991–3000 (1991).
CAS PubMed Google Scholar
- Ranges, G. E., Figari, I. S., Espevik, T. & Palladino, M. A. Jr. Inhibition of cytotoxic T cell development by transforming growth factor β and reversal by recombinant tumor necrosis factor α. J. Exp. Med. 166, 991–998 (1987).
Article CAS PubMed Google Scholar
- Hoehn, P. et al. Opposing effects of TGF-β2 on the TH1 cell development of naive CD4+ T cells isolated from different mouse strains. J. Immunol. 155, 3788–3793 (1995).
CAS PubMed Google Scholar
- Lingnau, K. et al. IL-4 in combination with TGF-β favors an alternative pathway of TH1 development independent of IL-12. J. Immunol. 161, 4709–4718 (1998).
CAS PubMed Google Scholar
- Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89, 1165–1173 (1997).
Article CAS PubMed Google Scholar
- Nakao, A. et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389, 631–635 (1997).
Article CAS PubMed Google Scholar
- Ulloa, L., Doody, J. & Massague, J. Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature 397, 710–713 (1999).
Article CAS PubMed Google Scholar
- Tau, G. Z. et al. Interferon-γ signaling alters the function of T helper type 1 cells. J. Exp. Med. 192, 977–986 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Kitani, A. et al. Treatment of experimental (trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-β1 plasmid: TGF-β1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor β2 chain downregulation. J. Exp. Med. 192, 41–52 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Ludviksson, B. R., Seegers, D., Resnick, A. S. & Strober, W. The effect of TGF-β1 on immune responses of naive versus memory CD4+ TH1/TH2 T cells. Eur. J. Immunol. 30, 2101–2111 (2000).
Article CAS PubMed Google Scholar
- Gorelik, L., Fields, P. E. & Flavell, R. A. Cutting edge: TGF-β inhibits TH type 2 development through inhibition of GATA-3 expression. J. Immunol. 165, 4773–4777 (2000).
Article CAS PubMed Google Scholar
- Heath, V. L., Murphy, E. E., Crain, C., Tomlinson, M. G. & O'Garra, A. TGF-β1 down-regulates TH2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur. J. Immunol. 30, 2639–2649 (2000).
Article CAS PubMed Google Scholar
- Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).Identification of Gata-3 as a crucial factor in T H 2 differentiation.
Article CAS PubMed Google Scholar
- Gorham, J. D., Guler, M. L., Fenoglio, D., Gubler, U. & Murphy, K. M. Low dose TGF-β attenuates IL-12 responsiveness in murine TH cells. J. Immunol. 161, 1664–1670 (1998).
CAS PubMed Google Scholar
- Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).Cloning of a new T-box protein, T-bet, and demonstration of the important role it has in IFN-γ production.
Article CAS PubMed Google Scholar
- Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).Investigated the relative input of T-bet and IL-12 signalling in T H 1 development.
Article CAS PubMed Google Scholar
- Xanthos, J. B., Kofron, M., Wylie, C. & Heasman, J. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128, 167–180 (2001).
CAS PubMed Google Scholar
- Weber, H., Symes, C. E., Walmsley, M. E., Rodaway, A. R. & Patient, R. K. A role for GATA5 in Xenopus endoderm specification. Development 127, 4345–4360 (2000).
CAS PubMed Google Scholar
- Nikaido, M., Tada, M., Takeda, H., Kuroiwa, A. & Ueno, N. In vivo analysis using variants of zebrafish BMPR-IA: range of action and involvement of BMP in ectoderm patterning. Development 126, 181–190 (1999).
CAS PubMed Google Scholar
- Kimelman, D. & Griffin, K. J. Vertebrate mesendoderm induction and patterning. Curr. Opin. Genet. Dev. 10, 350–356 (2000).
Article CAS PubMed Google Scholar
- Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
Article CAS PubMed Google Scholar
- Zhang, X., Giangreco, L., Broome, H. E., Dargan, C. M. & Swain, S. L. Control of CD4 effector fate: transforming growth factor β1 and interleukin 2 synergize to prevent apoptosis and promote effector expansion. J. Exp. Med. 182, 699–709 (1995).
Article CAS PubMed Google Scholar
- Genestier, L., Kasibhatla, S., Brunner, T. & Green, D. R. Transforming growth factor β1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc. J. Exp. Med. 189, 231–239 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).
Article CAS PubMed Google Scholar
- Geiser, A. G. et al. Transforming growth factor β1 (TGF-β1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-β1 null mouse phenotype. Proc. Natl Acad. Sci. USA 90, 9944–9948 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Lucas, P. J., Kim, S. J., Melby, S. J. & Gress, R. E. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor βII receptor. J. Exp. Med. 191, 1187–1196 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Nakao, A. et al. Blockade of transforming growth factor beta/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J. Exp. Med. 192, 151–158 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Vasquez, N. J., Kaye, J. & Hedrick, S. M. In vivo and in vitro clonal deletion of double-positive thymocytes. J. Exp. Med. 175, 1307–1316 (1992).
Article CAS PubMed Google Scholar
- Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).
Article CAS PubMed Google Scholar
- Kullberg, M. C. et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and γ-interferon-dependent mechanism. Infect. Immun. 66, 5157–5166 (1998).
CAS PubMed PubMed Central Google Scholar
- Monteleone, G. et al. Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J. Clin. Invest. 108, 601–609 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).
Article CAS PubMed Google Scholar
- Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).
Article CAS PubMed Google Scholar
- Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent Immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med. 194, 629–644 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).Initial demonstration of the role of CD25+CD4+ T cells in the regulation of autoimmunity.
CAS PubMed Google Scholar
- Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).
Article CAS PubMed Google Scholar
- Shevach, E. M. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423–449 (2000).
Article CAS PubMed Google Scholar
- Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000).
Article CAS PubMed Google Scholar
- Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J. Exp. Med. 183, 2669–2674 (1996).
Article CAS PubMed Google Scholar
- Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).Cloning of the phosphatidylserine specific receptor and demonstration of its role in the TGF-β production by macrophages in response to apoptotic cells.
Article CAS PubMed Google Scholar
- Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–1255 (1999).
Article CAS PubMed Google Scholar
- Chen, W., Frank, M. E., Jin, W. & Wahl, S. M. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 14, 715–725 (2001).
Article CAS PubMed Google Scholar
- Heine, U. I. et al. Localization of transforming growth factor-β1 in mitochondria of murine heart and liver. Cell. Regul. 2, 467–477 (1991).
Article CAS PubMed PubMed Central Google Scholar
- Bogdan, C. & Nathan, C. Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann. N Y Acad. Sci. 685, 713–739 (1993).
Article CAS PubMed Google Scholar
- Vodovotz, Y. & Bogdan, C. Control of nitric oxide synthase expression by transforming growth factor-β: implications for homeostasis. Prog. Growth Factor Res. 5, 341–351 (1994).
Article CAS PubMed Google Scholar
- Yamaguchi, Y., Tsumura, H., Miwa, M. & Inaba, K. Contrasting effects of TGF-β1 and TNF-α on the development of dendritic cells from progenitors in mouse bone marrow. Stem Cells 15, 144–153 (1997).
Article CAS PubMed Google Scholar
- Geissmann, F. et al. TGF-β1 prevents the noncognate maturation of human dendritic Langerhans cells. J. Immunol. 162, 4567–4575 (1999).
CAS PubMed Google Scholar
- Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).
Article CAS PubMed Google Scholar
- Jin, Y. X. et al. TGF-β1 inhibits protracted-relapsing experimental autoimmune encephalomyelitis by activating dendritic cells. J. Autoimmun. 14, 213–220 (2000).
Article CAS PubMed Google Scholar
- Lee, Y. J. et al. TGF-β suppresses IFN-γ induction of class II MHC gene expression by inhibiting class II transactivator messenger RNA expression. J. Immunol. 158, 2065–2075 (1997).
CAS PubMed Google Scholar
- Nandan, D. & Reiner, N. E. TGF-β attenuates the class II transactivator and reveals an accessory pathway of IFN-γ action. J. Immunol. 158, 1095–1101 (1997).
CAS PubMed Google Scholar
- Cazac, B. B. & Roes, J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443–451 (2000).
Article CAS PubMed Google Scholar
- Pasche, B. Role of transforming growth factor β in cancer. J. Cell. Physiol. 186, 153–168 (2001).
Article CAS PubMed Google Scholar
- Chakravarthy, D., Green, A. R., Green, V. L., Kerin, M. J. & Speirs, V. Expression and secretion of TGF-β isoforms and expression of TGF-β-receptors I, II and III in normal and neoplastic human breast. Int. J. Oncol. 15, 187–194 (1999).
CAS PubMed Google Scholar
- van Roozendaal, C. E. et al. Transforming growth factor β secretion from primary breast cancer fibroblasts. Mol. Cell. Endocrinol. 111, 1–6 (1995).
Article CAS PubMed Google Scholar
- Tamada, K. et al. Immunosuppressive activity of cloned natural killer (NK1. 1+) T cells established from murine tumor-infiltrating lymphocytes. J. Immunol. 158, 4846–4854 (1997).
CAS PubMed Google Scholar
- Seo, N., Tokura, Y., Takigawa, M. & Egawa, K. Depletion of IL-10- and TGF-β-producing regulatory γδ T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J. Immunol. 163, 242–249 (1999).
CAS PubMed Google Scholar
- Won, J. et al. Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor β receptor therapy. Cancer Res. 59, 1273–1277 (1999).
CAS PubMed Google Scholar
- Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med. 7, 1118–1122 (2001).
Article CAS PubMed Google Scholar
- Massagué, J. How cells read TGF-β signals. Nature Rev. Mol. Cell Biol. 1, 169–178 (2000).
Article Google Scholar