Regulating Rho GTPases and their regulators (original) (raw)
Vega, F. M. & Ridley, A. J. Rho GTPases in cancer cell biology. FEBS Lett.582, 2093–2101 (2008). CASPubMed Google Scholar
Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol.9, 690–701 (2008). CASPubMed Google Scholar
Rossman, K. L., Der, C. J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol.6, 167–180 (2005). CASPubMed Google Scholar
Liu, M., Bi, F., Zhou, X. & Zheng, Y. Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol.22, 365–373 (2012). CASPubMedPubMed Central Google Scholar
Croft, D. R. & Olson, M. F. Transcriptional regulation of Rho GTPase signaling. Transcription2, 211–215 (2011). PubMedPubMed Central Google Scholar
Berthold, J., Schenkova, K. & Rivero, F. Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol. Sin.29, 285–295 (2008). CASPubMed Google Scholar
Michaelson, D. et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol.152, 111–126 (2001). CASPubMedPubMed Central Google Scholar
Katayama, M. et al. The posttranslationally modified C-terminal structure of bovine aortic smooth muscle rho A p21. J. Biol. Chem.266, 12639–12645 (1991). CASPubMed Google Scholar
Adamson, P., Marshall, C. J., Hall, A. & Tilbrook, P. A. Post-translational modifications of p21rho proteins. J. Biol. Chem.267, 20033–20038 (1992). CASPubMed Google Scholar
Hamel, B. et al. SmgGDS is a guanine nucleotide exchange factor that specifically activates RhoA and RhoC. J. Biol. Chem.286, 12141–12148 (2011). CASPubMedPubMed Central Google Scholar
Berg, T. J. et al. Splice variants of SmgGDS control small GTPase prenylation and membrane localization. J. Biol. Chem.285, 35255–35266 (2010). CASPubMedPubMed Central Google Scholar
Wang, D. A. & Sebti, S. M. Palmitoylated cysteine 192 is required for RhoB tumor-suppressive and apoptotic activities. J. Biol. Chem.280, 19243–19249 (2005). CASPubMed Google Scholar
Perez-Sala, D., Boya, P., Ramos, I., Herrera, M. & Stamatakis, K. The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway. PLoS ONE4, e8117 (2009). PubMedPubMed Central Google Scholar
Berzat, A. C. et al. Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J. Biol. Chem.280, 33055–33065 (2005). CASPubMed Google Scholar
Chenette, E. J., Mitin, N. Y. & Der, C. J. Multiple sequence elements facilitate Chp Rho GTPase subcellular location, membrane association, and transforming activity. Mol. Biol. Cell17, 3108–3121 (2006). CASPubMedPubMed Central Google Scholar
Linder, M. E. & Deschenes, R. J. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol.8, 74–84 (2007). CASPubMed Google Scholar
Rocks, O. et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell141, 458–471 (2010). CASPubMed Google Scholar
Navarro-Lerida, I. et al. A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J.31, 534–551 (2012). CASPubMed Google Scholar
Nishimura, A. & Linder, M. E. Identification of a novel prenyl and palmitoyl modification at the CaaX motif of Cdc42 that regulates RhoGDI binding. Mol. Cell. Biol.33, 1417–1429 (2013). CASPubMedPubMed Central Google Scholar
Lang, P. et al. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J.15, 510–519 (1996). The first paper to demonstrate that a Rho GTPase is modified by phosphorylation. CASPubMedPubMed Central Google Scholar
Tkachenko, E. et al. Protein kinase A governs a RhoA–RhoGDI protrusion–retraction pacemaker in migrating cells. Nat. Cell Biol.13, 660–667 (2011). PubMedPubMed Central Google Scholar
Ellerbroek, S. M., Wennerberg, K. & Burridge, K. Serine phosphorylation negatively regulates RhoA in vivo. J. Biol. Chem.278, 19023–19031 (2003). CASPubMed Google Scholar
Sauzeau, V. et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J. Biol. Chem.275, 21722–21729 (2000). CASPubMed Google Scholar
Forget, M., Desrosiers, R. R., Gingras, D. & Beliveau, R. Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem. J.361, 243–254 (2002). CASPubMedPubMed Central Google Scholar
Takemoto, K., Ishihara, S., Mizutani, T., Kawabata, K. & Haga, H. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway. PLoS ONE10, e0117937 (2015). PubMedPubMed Central Google Scholar
Nusser, N. et al. Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth. Cell Signal18, 704–714 (2006). CASPubMed Google Scholar
Rolli-Derkinderen, M., Toumaniantz, G., Pacaud, P. & Loirand, G. RhoA phosphorylation induces Rac1 release from guanine dissociation inhibitor α and stimulation of vascular smooth muscle cell migration. Mol. Cell. Biol.30, 4786–4796 (2010). CASPubMedPubMed Central Google Scholar
Rolli-Derkinderen, M. et al. Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ. Res.96, 1152–1160 (2005). CASPubMed Google Scholar
Chang, F., Lemmon, C., Lietha, D., Eck, M. & Romer, L. Tyrosine phosphorylation of Rac1: a role in regulation of cell spreading. PLoS ONE6, e28587 (2011). CASPubMedPubMed Central Google Scholar
Kwon, T., Kwon, D. Y., Chun, J., Kim, J. H. & Kang, S. S. Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J. Biol. Chem.275, 423–428 (2000). CASPubMed Google Scholar
Tong, J., Li, L., Ballermann, B. & Wang, Z. Phosphorylation of Rac1 T108 by extracellular signal-regulated kinase in response to epidermal growth factor: a novel mechanism to regulate Rac1 function. Mol. Cell. Biol.33, 4538–4551 (2013). CASPubMedPubMed Central Google Scholar
Navarro-Lerida, I. et al. Rac1 nucleocytoplasmic shuttling drives nuclear shape changes and tumor invasion. Dev. Cell32, 318–334 (2015). CASPubMed Google Scholar
Jamieson, C., Lui, C., Brocardo, M. G., Martino-Echarri, E. & Henderson, B. R. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J. Cell Sci.128, 3933–3946 (2015). CASPubMedPubMed Central Google Scholar
Cuadrado, A., Martin-Moldes, Z., Ye, J. & Lastres-Becker, I. Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J. Biol. Chem.289, 15244–15258 (2014). CASPubMedPubMed Central Google Scholar
Madigan, J. P. et al. Regulation of Rnd3 localization and function by protein kinase Cα-mediated phosphorylation. Biochem. J.424, 153–161 (2009). CASPubMedPubMed Central Google Scholar
Riou, P. et al. 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins. Cell153, 640–653 (2013). Describes how phosphate-binding 14-3-3 proteins function as pseudo-RhoGDIs by interacting with a dual prenyl-phosphorylation motif to extract Rho proteins from membranes. CASPubMedPubMed Central Google Scholar
Alan, J. K., Berzat, A. C., Dewar, B. J., Graves, L. M. & Cox, A. D. Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src. Mol. Cell. Biol.30, 4324–4338 (2010). CASPubMedPubMed Central Google Scholar
Tamehiro, N., Oda, H., Shirai, M. & Suzuki, H. Overexpression of RhoH permits to bypass the pre-TCR checkpoint. PLoS ONE10, e0131047 (2015). PubMedPubMed Central Google Scholar
Gu, Y. et al. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat. Immunol.7, 1182–1190 (2006). CASPubMed Google Scholar
Riou, P., Villalonga, P. & Ridley, A. J. Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression. Bioessays32, 986–992 (2010). CASPubMed Google Scholar
Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res.43, 512–520 (2015). Google Scholar
Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem.81, 203–229 (2012). CASPubMed Google Scholar
Deng, S. & Huang, C. E3 ubiquitin ligases in regulating stress fiber, lamellipodium, and focal adhesion dynamics. Cell Adh. Migr.8, 49–54 (2014). PubMed Google Scholar
Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem.78, 399–434 (2009). CASPubMed Google Scholar
Wei, J. et al. A new mechanism of RhoA ubiquitination and degradation: Roles of SCFFBXL19 E3 ligase and Erk2. Biochim. Biophys. Acta1833, 2757–2764 (2013). CASPubMed Google Scholar
Wang, H. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science302, 1775–1779 (2003). The first paper to demonstrate that the protein turnover of a Rho GTPase is regulated by ubiquitylation. CASPubMed Google Scholar
Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFB receptors controls epithelial cell plasticity. Science307, 1603–1609 (2005). CASPubMed Google Scholar
Tian, M. et al. Binding of RhoA by the C2 domain of E3 ligase Smurf1 is essential for Smurf1-regulated RhoA ubiquitination and cell protrusive activity. FEBS Lett.585, 2199–2204 (2011). CASPubMed Google Scholar
Deglincerti, A. et al. Coupled local translation and degradation regulate growth cone collapse. Nat. Commun.6, 6888 (2015). CASPubMedPubMed Central Google Scholar
Chen, Y. et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol. Cell35, 841–855 (2009). Describes how BTB domain adaptors, named BACURDs, form an ubiquitin ligase complex with cullin to selectively ubiquitylate RhoA. CASPubMed Google Scholar
Ibeawuchi, S. R., Agbor, L. N., Quelle, F. W. & Sigmund, C. D. Hypertension-causing mutations in Cullin3 protein impair RhoA protein ubiquitination and augment the association with substrate adaptors. J. Biol. Chem.290, 19208–19217 (2015). CASPubMedPubMed Central Google Scholar
Yu, L. et al. SND1 acts downstream of TGFβ1 and upstream of Smurf1 to promote breast cancer metastasis. Cancer Res.75, 1275–1286 (2015). CASPubMed Google Scholar
Cheng, P. L., Lu, H., Shelly, M., Gao, H. & Poo, M. M. Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron69, 231–243 (2011). CASPubMed Google Scholar
Wang, M. et al. ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance. Nat. Commun.5, 4901 (2014). CASPubMed Google Scholar
Berthold, J. et al. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes — evidence for an autoregulatory mechanism. Exp. Cell Res.314, 3453–3465 (2008). CASPubMedPubMed Central Google Scholar
Wilkins, A., Ping, Q. & Carpenter, C. L. RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev.18, 856–861 (2004). CASPubMedPubMed Central Google Scholar
Oberoi, T. K. et al. IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. EMBO J.31, 14–28 (2012). CASPubMed Google Scholar
Oberoi-Khanuja, T. K. & Rajalingam, K. IAPs as E3 ligases of Rac1: shaping the move. Small GTPases3, 131–136 (2012). PubMedPubMed Central Google Scholar
Torrino, S. et al. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev. Cell21, 959–965 (2011). CASPubMed Google Scholar
Castillo-Lluva, S., Tan, C. T., Daugaard, M., Sorensen, P. H. & Malliri, A. The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation. Oncogene32, 1735–1742 (2013). CASPubMed Google Scholar
Mettouchi, A. & Lemichez, E. Ubiquitylation of active Rac1 by the E3 ubiquitin-ligase HACE1. Small GTPases3, 102–106 (2012). PubMedPubMed Central Google Scholar
Goka, E. T. & Lippman, M. E. Loss of the E3 ubiquitin ligase HACE1 results in enhanced Rac1 signaling contributing to breast cancer progression. Oncogene34, 5395–5405 (2015). CASPubMedPubMed Central Google Scholar
Zhao, J. et al. SCF E3 ligase F-box protein complex SCFFBXL19 regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J.27, 2611–2619 (2013). CASPubMedPubMed Central Google Scholar
Dong, S. et al. F-box protein complex FBXL19 regulates TGF-β1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation. Mol. Cancer13, 1–13 (2014). Google Scholar
Castillo-Lluva, S. et al. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat. Cell Biol.12, 1078–1085 (2010). The first paper to demonstrate that a Rho GTPase is modified by sumoylation. CASPubMedPubMed Central Google Scholar
Goicoechea, S. M., Awadia, S. & Garcia-Mata, R. I'm coming to GEF you: Regulation of RhoGEFs during cell migration. Cell Adh. Migr.8, 535–549 (2014). PubMedPubMed Central Google Scholar
Laurin, M. & Cote, J. F. Insights into the biological functions of Dock family guanine nucleotide exchange factors. Genes Dev.28, 533–547 (2014). CASPubMedPubMed Central Google Scholar
Bustelo, X. R. Vav family exchange factors: an integrated regulatory and functional view. Small GTPases5, e973757 (2014). PubMed Central Google Scholar
Fujishiro, S. H. et al. ERK1/2 phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA. Biochem. Biophys. Res. Commun.368, 162–167 (2008). CASPubMed Google Scholar
Kakiashvili, E. et al. GEF-H1 mediates tumor necrosis factor-α-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J. Biol. Chem.284, 11454–11466 (2009). CASPubMedPubMed Central Google Scholar
Guilluy, C. et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat. Cell Biol.13, 722–727 (2011). Describes how RhoGEFs can be activated and relocalized to adhesion containing complexes by tensional force-stimulated integrin signalling. PubMedPubMed Central Google Scholar
Zenke, F. T. et al. p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J. Biol. Chem.279, 18392–18400 (2004). CASPubMed Google Scholar
Ngok, S. P., Geyer, R., Kourtidis, A., Storz, P. & Anastasiadis, P. Z. Phosphorylation-mediated 14-3-3 protein binding regulates the function of the Rho-specific guanine nucleotide exchange factor (RhoGEF) Syx. J. Biol. Chem.288, 6640–6650 (2013). CASPubMedPubMed Central Google Scholar
Zhu, G. et al. An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1 that is critical in EGFR-driven tumorigenesis. Oncogene34, 5971–5982 (2015). CASPubMed Google Scholar
O'Toole, T. E., Bialkowska, K., Li, X. & Fox, J. E. Tiam1 is recruited to β1-integrin complexes by 14-3-3ζ where it mediates integrin-induced Rac1 activation and motility. J. Cell. Physiol.226, 2965–2978 (2011). CASPubMedPubMed Central Google Scholar
Magliozzi, R., Kim, J., Low, T. Y., Heck, A. J. & Guardavaccaro, D. Degradation of Tiam1 by casein kinase 1 and the SCFβTrCP ubiquitin ligase controls the duration of mTOR-S6K signaling. J. Biol. Chem.289, 27400–27409 (2014). CASPubMedPubMed Central Google Scholar
Whalley, H. J. et al. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation. Nat. Commun.6, 7437 (2015). CASPubMedPubMed Central Google Scholar
Woodcock, S. A. et al. SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the Rac activator Tiam1. Mol. Cell33, 639–653 (2009). CASPubMed Google Scholar
Birkenfeld, J. et al. GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev. Cell12, 699–712 (2007). CASPubMedPubMed Central Google Scholar
Helms, M. C. et al. Mitotic-dependent phosphorylation of leukemia-associated RhoGEF (LARG) by Cdk1. Cell Signal.28, 43–52 (2015). PubMedPubMed Central Google Scholar
Wu, D., Asiedu, M., Matsumura, F. & Wei, Q. Phosphorylation of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) at threonine 544 by aurora B kinase promotes the binding of polo-like kinase 1 to MyoGEF. J. Biol. Chem.289, 7142–7150 (2014). CASPubMedPubMed Central Google Scholar
Miyamoto, Y. et al. Akt and PP2A reciprocally regulate the guanine nucleotide exchange factor Dock6 to control axon growth of sensory neurons. Sci. Signal.6, 1–12 (2013). Google Scholar
Vaughan, L. et al. HUWE1 ubiquitylates and degrades the RAC activator TIAM1 promoting cell–cell adhesion disassembly, migration, and invasion. Cell Rep.10, 88–102 (2015). CASPubMed Google Scholar
Margolis, S. S. et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell143, 442–455 (2010). CASPubMedPubMed Central Google Scholar
Song, E. H. et al. Acetylation of the RhoA GEF Net1A controls its subcellular localization and activity. J. Cell Sci.128, 913–922 (2015). The first paper to demonstrate that a RhoGEF undergoes acetylation. CASPubMedPubMed Central Google Scholar
Radu, M., Semenova, G., Kosoff, R. & Chernoff, J. PAK signalling during the development and progression of cancer. Nat. Rev. Cancer14, 13–25 (2013). Google Scholar
Tian, Y. et al. Hepatocyte growth factor-induced Asef-IQGAP1 complex controls cytoskeletal remodeling and endothelial barrier. J. Biol. Chem.290, 4097–4109 (2015). CASPubMed Google Scholar
Marei, H. et al. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat. Commun.7, 10664 (2016). CASPubMedPubMed Central Google Scholar
Toret, C. P., Collins, C. & Nelson, W. J. An Elmo–Dock complex locally controls Rho GTPases and actin remodeling during cadherin-mediated adhesion. J. Cell Biol.207, 577–587 (2014). CASPubMedPubMed Central Google Scholar
Carr, H. S., Cai, C., Keinanen, K. & Frost, J. A. Interaction of the RhoA exchange factor Net1 with discs large homolog 1 protects it from proteasome-mediated degradation and potentiates Net1 activity. J. Biol. Chem.284, 24269–24280 (2009). CASPubMedPubMed Central Google Scholar
Garcia-Mata, R. et al. The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol. Cell. Biol.27, 8683–8697 (2007). CASPubMedPubMed Central Google Scholar
Razidlo, G. L. et al. Dynamin 2 potentiates invasive migration of pancreatic tumor cells through stabilization of the Rac1 GEF Vav1. Dev. Cell24, 573–585 (2013). CASPubMedPubMed Central Google Scholar
Chikumi, H. et al. Homo- and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene23, 233–240 (2004). CASPubMed Google Scholar
Baisamy, L., Jurisch, N. & Diviani, D. Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc. J. Biol. Chem.280, 15405–15412 (2005). CASPubMed Google Scholar
Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol.13, 13–22 (2003). CASPubMed Google Scholar
Peck, J., Douglas, G. 4th, Wu, C. H. & Burbelo, P. D. Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships. FEBS Lett.528, 27–34 (2002). CASPubMed Google Scholar
Kim, T. Y. et al. CRL4A-FBXW5-mediated degradation of DLC1 Rho GTPase-activating protein tumor suppressor promotes non-small cell lung cancer cell growth. Proc. Natl Acad. Sci. USA110, 16868–16873 (2013). CASPubMed Google Scholar
Ko, F. C. et al. PKA-induced dimerization of the RhoGAP DLC1 promotes its inhibition of tumorigenesis and metastasis. Nat. Commun.4, 1618 (2013). PubMed Google Scholar
Morishita, Y., Tsutsumi, K. & Ohta, Y. Phosphorylation of serine 402 regulates RacGAP activity of FilGAP. J. Biol. Chem.290, 26328–26338 (2015). CASPubMedPubMed Central Google Scholar
Kannan, M., Lee, S. J., Schwedhelm-Domeyer, N., Nakazawa, T. & Stegmuller, J. p250GAP is a novel player in the Cdh1-APC/Smurf1 pathway of axon growth regulation. PLoS ONE7, e50735 (2012). CASPubMedPubMed Central Google Scholar
Bigarella, C. L. et al. Post-translational modification of the RhoGTPase activating protein 21, ARHGAP21, by SUMO2/3. FEBS Lett.586, 3522–3528 (2012). CASPubMed Google Scholar
Endris, V. et al. SrGAP3 interacts with lamellipodin at the cell membrane and regulates Rac-dependent cellular protrusions. J. Cell Sci.124, 3941–3955 (2011). CASPubMed Google Scholar
Law, A. L. et al. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J. Cell Biol.203, 673–689 (2013). CASPubMedPubMed Central Google Scholar
Zebda, N. et al. Interaction of p190RhoGAP with C-terminal domain of p120-catenin modulates endothelial cytoskeleton and permeability. J. Biol. Chem.288, 18290–18299 (2013). CASPubMedPubMed Central Google Scholar
Shih, Y. P., Sun, P., Wang, A. & Lo, S. H. Tensin1 positively regulates RhoA activity through its interaction with DLC1. Biochim. Biophys. Acta1853, 3258–3265 (2015). CASPubMedPubMed Central Google Scholar
Kawai, K., Kitamura, S. Y., Maehira, K., Seike, J. & Yagisawa, H. START-GAP1/DLC1 is localized in focal adhesions through interaction with the PTB domain of tensin2. Adv. Enzyme Regul.50, 202–215 (2010). PubMed Google Scholar
Chan, L. K., Ko, F. C., Ng, I. O. & Yam, J. W. Deleted in liver cancer 1 (DLC1) utilizes a novel binding site for Tensin2 PTB domain interaction and is required for tumor-suppressive function. PLoS ONE4, e5572 (2009). PubMedPubMed Central Google Scholar
Cao, X. et al. A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration. Nat. Commun.6, 7721 (2015). This study describes how phosphorylation initiates a swap in GAP-containing protein complexes to regulate RAC1 and RhoA activity. PubMedPubMed Central Google Scholar
Campa, C. C., Ciraolo, E., Ghigo, A., Germena, G. & Hirsch, E. Crossroads of PI3K and Rac pathways. Small GTPases6, 71–80 (2015). CASPubMedPubMed Central Google Scholar
Huang, T. Y. et al. A novel Rac1 GAP splice variant relays poly-Ub accumulation signals to mediate Rac1 inactivation. Mol. Biol. Cell24, 194–209 (2013). CASPubMedPubMed Central Google Scholar
Um, K. et al. Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex. Dev. Cell29, 701–715 (2014). CASPubMedPubMed Central Google Scholar
Kutys, M. L. & Yamada, K. M. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration. Nat. Cell Biol.16, 909–917 (2014). This study describes how a GEF–GAP complex maintains suppressive crosstalk between CDC42 and RhoA during cell migration. CASPubMedPubMed Central Google Scholar
Abraham, S. et al. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis. Nat. Commun.6, 7286 (2015). PubMedPubMed Central Google Scholar
Vaughan, E. M., Miller, A. L., Yu, H. Y. & Bement, W. M. Control of local Rho GTPase crosstalk by Abr. Curr. Biol.21, 270–277 (2011). CASPubMedPubMed Central Google Scholar
Garcia-Mata, R., Boulter, E. & Burridge, K. The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol.12, 493–504 (2011). CASPubMedPubMed Central Google Scholar
Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell100, 345–356 (2000). CASPubMed Google Scholar
Johnson, J. L., Erickson, J. W. & Cerione, R. A. New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J. Biol. Chem.284, 23860–23871 (2009). CASPubMedPubMed Central Google Scholar
DerMardirossian, C., Rocklin, G., Seo, J. Y. & Bokoch, G. M. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol. Biol. Cell17, 4760–4768 (2006). CASPubMedPubMed Central Google Scholar
Dovas, A. et al. Serine 34 phosphorylation of Rho guanine dissociation inhibitor (RhoGDIα) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion. J. Biol. Chem.285, 23296–23308 (2010). CASPubMedPubMed Central Google Scholar
Sabbatini, M. E. & Williams, J. A. Cholecystokinin-mediated RhoGDI phosphorylation via PKCα promotes both RhoA and Rac1 signaling. PLoS ONE8, e66029 (2013). CASPubMedPubMed Central Google Scholar
DerMardirossian, C., Schnelzer, A. & Bokoch, G. M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol. Cell15, 117–127 (2004). CASPubMed Google Scholar
Fei, F. et al. The Fer tyrosine kinase regulates interactions of Rho GDP-Dissociation Inhibitor α with the small GTPase Rac. BMC Biochem.11, 48 (2010). CASPubMedPubMed Central Google Scholar
Oishi, A., Makita, N., Sato, J. & Iiri, T. Regulation of RhoA signaling by the cAMP-dependent phosphorylation of RhoGDIα. J. Biol. Chem.287, 38705–38715 (2012). CASPubMedPubMed Central Google Scholar
Yu, J. et al. RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J. Biol. Chem.287, 13752–13760 (2012). CASPubMedPubMed Central Google Scholar
Cao, Z. et al. SUMOylation of RhoGDIα is required for its repression of cyclin D1 expression and anchorage-independent growth of cancer cells. Mol. Oncol.8, 285–296 (2014). CASPubMed Google Scholar
Liu, J. et al. X-linked inhibitor of apoptosis protein (XIAP) mediates cancer cell motility via Rho GDP dissociation inhibitor (RhoGDI)-dependent regulation of the cytoskeleton. J. Biol. Chem.286, 15630–15640 (2011). CASPubMedPubMed Central Google Scholar
Xiao, Y. et al. 14-3-3τ promotes breast cancer invasion and metastasis by inhibiting RhoGDIα. Mol. Cell. Biol.34, 2635–2649 (2014). PubMedPubMed Central Google Scholar
Pu, J. et al. FERM domain containing protein 7 interacts with the Rho GDP dissociation inhibitor and specifically activates Rac1 signaling. PLoS ONE8, e73108 (2013). CASPubMedPubMed Central Google Scholar
Lu, Y. et al. TROY interacts with Rho guanine nucleotide dissociation inhibitor α (RhoGDIα) to mediate Nogo-induced inhibition of neurite outgrowth. J. Biol. Chem.288, 34276–34286 (2013). CASPubMedPubMed Central Google Scholar
Dart, A. E. et al. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. J. Cell Biol.211, 863–879 (2015). This study describes how changes in RhoU protein levels owing to ubiquitylation are crucial in focal adhesion turnover and cell migration, and how the RhoU effector protein PAK4 has a kinase-independent role in protecting RhoU from degradation. CASPubMedPubMed Central Google Scholar
Schuld, N. J. et al. The chaperone protein SmgGDS interacts with small GTPases entering the prenylation pathway by recognizing the last amino acid in the CAAX motif. J. Biol. Chem.289, 6862–6876 (2014). CASPubMedPubMed Central Google Scholar
Ntantie, E. et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci. Signal.6, 1–10 (2013). Google Scholar
Flotho, A. & Melchior, F. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem.82, 357–385 (2013). CASPubMed Google Scholar
Tu, S., Wu, W. J., Wang, J. & Cerione, R. A. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem.278, 49293–49300 (2003). CASPubMed Google Scholar
Okada, S. et al. CDK5-dependent phosphorylation of the Rho family GTPase TC10α regulates insulin-stimulated GLUT4 translocation. J. Biol. Chem.283, 35455–35463 (2008). CASPubMed Google Scholar
Guilluy, C. et al. Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II type 2 receptor activation. Circ. Res.102, 1265–1274 (2008). CASPubMed Google Scholar
Bryan, B. et al. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett.579, 1015–1019 (2005). CASPubMed Google Scholar
Li, H. et al. Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. Cancer Lett.370, 39–55 (2015). PubMed Google Scholar
Tillement, V. et al. Phosphorylation of RhoB by CK1 impedes actin stress fiber organization and epidermal growth factor receptor stabilization. Exp. Cell Res.314, 2811–2821 (2008). CASPubMed Google Scholar
Xu, J. et al. The neddylation–cullin 2–RBX1 E3 ligase axis targets tumor suppressor RhoB for degradation in liver cancer. Mol. Cell. Proteomics14, 499–509 (2015). CASPubMed Google Scholar
Lehman, H. L. et al. Regulation of inflammatory breast cancer cell invasion through Akt1/PKBα phosphorylation of RhoC GTPase. Mol. Cancer. Res.10, 1306–1318 (2012). CASPubMed Google Scholar
Lonjedo, M. et al. The Rho family member RhoE interacts with Skp2 and is degraded at the proteasome during cell cycle progression. J. Biol. Chem.288, 30872–30882 (2013). CASPubMedPubMed Central Google Scholar
Duan, L. et al. Negative regulation of EGFR–Vav2 signaling axis by Cbl ubiquitin ligase controls EGF receptor-mediated epithelial cell adherens junction dynamics and cell migration. J. Biol. Chem.286, 620–633 (2011). CASPubMed Google Scholar
Genau, H. M. et al. CUL3-KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1–RAC1 signaling. Mol. Cell57, 995–1010 (2015). CASPubMed Google Scholar
Chikumi, H., Fukuhara, S. & Gutkind, J. S. Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: evidence of a role for focal adhesion kinase. J. Biol. Chem.277, 12463–12473 (2002). CASPubMed Google Scholar
Yamahashi, Y., Saito, Y., Murata-Kamiya, N. & Hatakeyama, M. Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization. J. Biol. Chem.286, 44576–44584 (2011). CASPubMedPubMed Central Google Scholar
Gupta, M., Qi, X., Thakur, V. & Manor, D. Tyrosine phosphorylation of Dbl regulates GTPase signaling. J. Biol. Chem.289, 17195–17202 (2014). CASPubMedPubMed Central Google Scholar
Kamynina, E., Kauppinen, K., Duan, F., Muakkassa, N. & Manor, D. Regulation of proto-oncogenic Dbl by chaperone-controlled, ubiquitin-mediated degradation. Mol. Cell. Biol.27, 1809–1822 (2007). CASPubMed Google Scholar
Justilien, V., Jameison, L., Der, C. J., Rossman, K. L. & Fields, A. P. Oncogenic activity of Ect2 is regulated through protein kinase Cι-mediated phosphorylation. J. Biol. Chem.286, 8149–8157 (2011). CASPubMed Google Scholar
Liot, C. et al. APCcdh1 mediates degradation of the oncogenic Rho-GEF Ect2 after mitosis. PLoS ONE6, e23676 (2011). CASPubMedPubMed Central Google Scholar
Barac, A. et al. Direct interaction of p21-activated kinase 4 with PDZ-RhoGEF, a G protein-linked Rho guanine exchange factor. J. Biol. Chem.279, 6182–6189 (2004). CASPubMed Google Scholar
Lin, M. Y., Lin, Y. M., Kao, T. C., Chuang, H. H. & Chen, R. H. PDZ-RhoGEF ubiquitination by Cullin3-KLHL20 controls neurotrophin-induced neurite outgrowth. J. Cell Biol.193, 985–994 (2011). CASPubMedPubMed Central Google Scholar
Scholz, R. P. et al. The tumor suppressor protein DLC1 is regulated by PKD-mediated GAP domain phosphorylation. Exp. Cell Res.317, 496–503 (2011). CASPubMed Google Scholar
Ravi, A., Kaushik, S., Ravichandran, A., Pan, C. Q. & Low, B. C. Epidermal growth factor activates the Rho GTPase-activating protein (GAP) Deleted in Liver Cancer 1 via focal adhesion kinase and protein phosphatase 2A. J. Biol. Chem.290, 4149–4162 (2015). CASPubMed Google Scholar
Danek, E. I., Tcherkezian, J., Triki, I., Meriane, M. & Lamarche-Vane, N. Glycogen synthase kinase-3 phosphorylates CdGAP at a consensus ERK1 regulatory site. J. Biol. Chem.282, 3624–3631 (2007). CASPubMed Google Scholar
Tcherkezian, J., Danek, E. I., Jenna, S., Triki, I. & Lamarche-Vane, N. Extracellular signal-regulated kinase 1 interacts with and phosphorylates CdGAP at an important regulatory site. Mol. Cell. Biol.25, 6314–6329 (2005). CASPubMedPubMed Central Google Scholar
Minoshima, Y. et al. Phosphorylation by Aurora B kinase converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell4, 549–560 (2003). CASPubMed Google Scholar
Jiang, W. et al. An FF domain-dependent protein interaction mediates a signaling pathway for growth factor-induced gene expression. Mol. Cell17, 23–35 (2005). CASPubMed Google Scholar
Mori, K. et al. Rho-kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP. J. Biol. Chem.284, 5067–5076 (2009). CASPubMed Google Scholar
Jiang, W. et al. p190A RhoGAP is a glycogen synthase kinase-3-β substrate required for polarized cell migration. J. Biol. Chem.283, 20978–20988 (2008). CASPubMedPubMed Central Google Scholar
Pullikuth, A. K. & Catling, A. D. Extracellular signal-regulated kinase promotes Rho-dependent focal adhesion formation by suppressing p190A RhoGAP. Mol. Cell. Biol.30, 3233–3248 (2010). CASPubMedPubMed Central Google Scholar
Naoe, H. et al. The anaphase-promoting complex/cyclosome activator Cdh1 modulates Rho GTPase by targeting p190 RhoGAP for degradation. Mol. Cell. Biol.30, 3994–4005 (2010). CASPubMedPubMed Central Google Scholar
Su, L., Lineberry, N., Huh, Y., Soares, L. & Fathman, C. G. A novel E3 ubiquitin ligase substrate screen identifies Rho guanine dissociation inhibitor as a substrate of gene related to anergy in lymphocytes. J. Immunol.177, 7559–7566 (2006). CASPubMed Google Scholar
Wu, Y. et al. Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc. Natl Acad. Sci. USA106, 5807–5812 (2009). CASPubMed Google Scholar
Griner, E. M., Churchill, M. E., Brautigan, D. L. & Theodorescu, D. PKCα phosphorylation of RhoGDI2 at Ser31 disrupts interactions with Rac1 and decreases GDI activity. Oncogene32, 1010–1017 (2013). CASPubMed Google Scholar