- Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).
Article CAS PubMed Google Scholar
- Thudichum, J. L. W. A Treatise on the Chemical Constitution of the Brain (Archon Books, 1962). This is the first documented isolation of the sphingolipids, and includes the coining of the term 'sphingosin'.
- Hannun, Y. A. & Obeid, L. M. Many ceramides. J. Biol. Chem. 286, 27855–27862 (2011). This review advances the hypothesis that ceramides are indeed a family of distinct molecular species that are products of distinct metabolic enzymes and that the different ceramides may have distinct functions.
Article CAS PubMed PubMed Central Google Scholar
- Schulze, H. & Sandhoff, K. Sphingolipids and lysosomal pathologies. Biochim. Biophys. Acta 1841, 799–810 (2014).
Article CAS PubMed Google Scholar
- Huang, X., Withers, B. R. & Dickson, R. C. Sphingolipids and lifespan regulation. Biochim. Biophys. Acta 1841, 657–664 (2014).
Article CAS PubMed Google Scholar
- Astudillo, L. et al. Human genetic disorders of sphingolipid biosynthesis. J. Inherit. Metab. Dis. 38, 65–76 (2015). This is a comprehensive presentation of the various genetic disorders that are directly caused by defects in sphingolipid metabolism.
Article CAS PubMed Google Scholar
- Bode, H. et al. HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Hum. Mol. Genet. 25, 853–865 (2016).
Article CAS PubMed Google Scholar
- Hornemann, T. et al. The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. J. Biol. Chem. 284, 26322–26330 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Harmon, J. M. et al. Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase. J. Biol. Chem. 288, 10144–10153 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Cingolani, F., Futerman, A. H. & Casas, J. Ceramide synthases in biomedical research. Chem. Phys. Lipids 197, 25–32 (2016).
Article CAS PubMed Google Scholar
- Wegner, M. S., Schiffmann, S., Parnham, M. J., Geisslinger, G. & Grosch, S. The enigma of ceramide synthase regulation in mammalian cells. Prog. Lipid Res. 63, 93–119 (2016). This is a comprehensive presentation of the functions and regulation of the family of CerSs.
Article CAS PubMed Google Scholar
- Sassa, T. & Kihara, A. Metabolism of very long-chain Fatty acids: genes and pathophysiology. Biomol. Ther. 22, 83–92 (2014).
Article CAS Google Scholar
- Grond, S. et al. PNPLA1 deficiency in mice and humans leads to a defect in the synthesis of omega-_O_-acylceramides. J. Invest. Dermatol. 137, 394–402 (2017).
Article CAS PubMed Google Scholar
- Senkal, C. E. et al. Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metab. 25, 686–697 (2017). This study describes a novel pathway by which ceramide can be diverted or stored as O-acyl-ceramide in lipid droplets.
Article CAS PubMed PubMed Central Google Scholar
- Ferreira, N. S. et al. Regulation of very-long acyl chain ceramide synthesis by acyl-CoA binding protein. J. Biol. Chem. 292, 7588–7597 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Wakashima, T., Abe, K. & Kihara, A. Dual functions of the _trans_-2-enoyl-CoA reductase TER in the sphingosine 1-phosphate metabolic pathway and in fatty acid elongation. J. Biol. Chem. 289, 24736–24748 (2014). This study identifies a key enzyme involved in the metabolism and recycling of fatty aldehydes after their generation from the breakdown of S1P.
Article CAS PubMed PubMed Central Google Scholar
- Cabukusta, B. et al. ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain. Sci. Rep. 7, 41290 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Rajagopalan, V. et al. Critical determinants of mitochondria-associated neutral sphingomyelinase (MA-nSMase) for mitochondrial localization. Biochim. Biophys. Acta 1850, 628–639 (2015).
Article CAS PubMed Google Scholar
- Murate, M. et al. Transbilayer distribution of lipids at nano scale. J. Cell Sci. 128, 1627–1638 (2015).
Article CAS PubMed Google Scholar
- Abe, M. & Kobayashi, T. Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy. Biochim. Biophys. Acta 1841, 720–726 (2014).
Article CAS PubMed Google Scholar
- Deng, Y., Rivera-Molina, F. E., Toomre, D. K. & Burd, C. G. Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle. Proc. Natl Acad. Sci. USA 113, 6677–6682 (2016).
Article CAS PubMed Google Scholar
- Nagahashi, M. et al. Sphingosine-1-phosphate transporters as targets for cancer therapy. BioMed Res. Int. 2014, 651727 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Wadsworth, J. M. et al. The chemical basis of serine palmitoyltransferase inhibition by myriocin. J. Am. Chem. Soc. 135, 14276–14285 (2013).
Article CAS PubMed Google Scholar
- Zhou, Y. F. et al. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease. Nat. Commun. 7, 13082 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Gorelik, A., Illes, K., Heinz, L. X., Superti-Furga, G. & Nagar, B. Crystal structure of mammalian acid sphingomyelinase. Nat. Commun. 7, 12196 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Xiong, Z. J., Huang, J., Poda, G., Pomes, R. & Prive, G. G. Structure of human acid sphingomyelinase reveals the role of the saposin domain in activating substrate hydrolysis. J. Mol. Biol. 428, 3026–3042 (2016).
Article CAS PubMed Google Scholar
- Gorelik, A., Liu, F., Illes, K. & Nagar, B. Crystal structure of the human alkaline sphingomyelinase provides insights into substrate recognition. J. Biol. Chem. 292, 7087–7094 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Dvir, H. et al. X-Ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep. 4, 704–709 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Wang, Z. et al. Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 21, 798–809 (2013).
Article CAS PubMed Google Scholar
- Airola, M. V. et al. Structural basis for ceramide recognition and hydrolysis by human neutral ceramidase. Structure 23, 1482–1491 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Zhu, G., Koszelak-Rosenblum, M., Connelly, S. M., Dumont, M. E. & Malkowski, M. G. The crystal structure of an integral membrane fatty acid α-hydroxylase. J. Biol. Chem. 290, 29820–29833 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Vasiliauskaite-Brooks, I. et al. Structural insights into adiponectin receptors suggest ceramidase activity. Nature 544, 120–123 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Hanson, M. A. et al. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012). This study describes the crystal structure of S1PR1.
Article CAS PubMed PubMed Central Google Scholar
- Kudo, N. et al. Crystal structures of the CERT START domain with inhibitors provide insights into the mechanism of ceramide transfer. J. Mol. Biol. 396, 245–251 (2010).
Article CAS PubMed Google Scholar
- Simanshu, D. K. et al. Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature 500, 463–467 (2013). This study describes the crystal structure of the C1P transporter.
Article CAS PubMed PubMed Central Google Scholar
- Samygina, V. R. et al. Enhanced selectivity for sulfatide by engineered human glycolipid transfer protein. Structure 19, 1644–1654 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Sanchez, T. & Hla, T. Structural and functional characteristics of S1P receptors. J. Cell. Biochem. 92, 913–922 (2004).
Article CAS PubMed Google Scholar
- Hait, N. C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009). This study identifies HDACs as direct nuclear targets of S1P.
Article CAS PubMed PubMed Central Google Scholar
- Galadari, S., Rahman, A., Pallichankandy, S. & Thayyullathil, F. Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis 20, 689–711 (2015).
Article CAS PubMed Google Scholar
- Mehra, V. C. et al. Ceramide-activated phosphatase mediates fatty acid-induced endothelial VEGF resistance and impaired angiogenesis. Am. J. Pathol. 184, 1562–1576 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Apostolidis, S. A. et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat. Immunol. 17, 556–564 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Teixeira, V. & Costa, V. Unraveling the role of the target of rapamycin signaling in sphingolipid metabolism. Prog. Lipid Res. 61, 109–133 (2016). This is a comprehensive review of sphingolipid metabolism, function and regulation in yeast.
Article CAS PubMed Google Scholar
- Taniguchi, M. et al. Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis. Cell Death Dis. 6, e1717 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Jain, A., Beutel, O., Ebell, K., Korneev, S. & Holthuis, J. C. Diverting CERT-mediated ceramide transport to mitochondria triggers Bax-dependent apoptosis. J. Cell Sci. 130, 360–371 (2017).
Article CAS PubMed Google Scholar
- Birbes, H. et al. A mitochondrial pool of sphingomyelin is involved in TNFα-induced Bax translocation to mitochondria. Biochem. J. 386, 445–451 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Spiegel, S. & Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11, 403–415 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Chaurasia, B. & Summers, S. A. Ceramides — lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538–550 (2015).
Article CAS PubMed Google Scholar
- Montefusco, D. J., Matmati, N. & Hannun, Y. A. The yeast sphingolipid signaling landscape. Chem. Phys. Lipids 177, 26–40 (2014).
Article CAS PubMed Google Scholar
- Epstein, S. & Riezman, H. Sphingolipid signaling in yeast: potential implications for understanding disease. Front. Biosci. 5, 97–108 (2013).
Article Google Scholar
- Matmati, N. et al. Identification of C18:1-phytoceramide as the candidate lipid mediator for hydroxyurea resistance in yeast. J. Biol. Chem. 288, 17272–17284 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Chauhan, N., Visram, M., Cristobal-Sarramian, A., Sarkleti, F. & Kohlwein, S. D. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression. Proc. Natl Acad. Sci. USA 112, E1077–E1085 (2015).
Article CAS PubMed Google Scholar
- Adada, M. M. et al. Intracellular sphingosine kinase 2-derived sphingosine-1-phosphate mediates epidermal growth factor-induced ezrin-radixin-moesin phosphorylation and cancer cell invasion. FASEB J. 29, 4654–4669 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3, 586–599 (2002).
Article CAS PubMed Google Scholar
- van der Weyden, L. et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541, 233–236 (2017). In an unbiased screen, this study identifies SPNS2, the S1P transporter, as a key regulator of metastasis.
Article CAS PubMed PubMed Central Google Scholar
- Romero-Guevara, R., Cencetti, F., Donati, C. & Bruni, P. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss? Front. Aging Neurosci. 7, 60 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Kitajiri, S. et al. Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J. Cell Biol. 166, 559–570 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Chen, J. et al. Spinster homolog 2 (spns2) deficiency causes early onset progressive hearing loss. PLoS Genet. 10, e1004688 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Canals, D., Roddy, P. & Hannun, Y. A. Protein phosphatase 1α mediates ceramide-induced ERM protein dephosphorylation: a novel mechanism independent of phosphatidylinositol 4, 5-biphosphate (PIP2) and myosin/ERM phosphatase. J. Biol. Chem. 287, 10145–10155 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Carreira, A. C., Ventura, A. E., Varela, A. R. & Silva, L. C. Tackling the biophysical properties of sphingolipids to decipher their biological roles. Biol. Chem. 396, 597–609 (2015).
Article CAS PubMed Google Scholar
- Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008). This study ascribes a key role for ceramide and for nSMase2 in the regulation of exocytosis.
Article CAS PubMed Google Scholar
- Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Guo, B. B., Bellingham, S. A. & Hill, A. F. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J. Biol. Chem. 290, 3455–3467 (2015).
Article CAS PubMed Google Scholar
- Yuyama, K., Sun, H., Mitsutake, S. & Igarashi, Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J. Biol. Chem. 287, 10977–10989 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Shen, H. et al. Coupling between endocytosis and sphingosine kinase 1 recruitment. Nat. Cell Biol. 16, 652–662 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Hayashi, Y. et al. Sphingomyelin synthase 2, but not sphingomyelin synthase 1, is involved in HIV-1 envelope-mediated membrane fusion. J. Biol. Chem. 289, 30842–30856 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Contreras, F. X. et al. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481, 525–529 (2012). This study identifies a specific molecular species of sphingomyelin, C18 sphingomyelin, as a ligand for p24, a component of the COPI secretion machinery.
Article CAS PubMed Google Scholar
- Capasso, S. et al. Sphingolipid metabolic flow controls phosphoinositide turnover at the _trans_-Golgi network. EMBO J. 36, 1736–1754 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Heffernan-Stroud, L. A. et al. Defining a role for sphingosine kinase 1 in p53-dependent tumors. Oncogene 31, 1166–1175 (2012).
Article CAS PubMed Google Scholar
- Wang, Y. et al. Alkaline ceramidase 2 is a novel direct target of p53 and induces autophagy and apoptosis through ROS generation. Sci. Rep. 7, 44573 (2017).
Article PubMed PubMed Central Google Scholar
- Shamseddine, A. A. et al. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest. Cell Death Dis. 6, e1947 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Guillas, I. et al. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J. 20, 2655–2665 (2001). This study identifies the genes encoding CerSs ( lag1 and lac1 ) in yeast and demonstrates that these genes are in fact the first genes to be implicated in regulation of yeast lifespan.
Article CAS PubMed PubMed Central Google Scholar
- Mosbech, M. B. et al. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans. PLoS ONE 8, e70087 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Jazwinski, S. M. et al. HRAS1 and LASS1 with APOE are associated with human longevity and healthy aging. Aging Cell 9, 698–708 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Dany, M. & Ogretmen, B. Ceramide induced mitophagy and tumor suppression. Biochim. Biophys. Acta 1853, 2834–2845 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Siddique, M. M., Li, Y., Chaurasia, B., Kaddai, V. A. & Summers, S. A. Dihydroceramides: from bit players to lead actors. J. Biol. Chem. 290, 15371–15379 (2015). This is an informative summary of the roles of ceramides and dihydroceramides in metabolic pathways.
Article CAS PubMed PubMed Central Google Scholar
- Hernandez-Tiedra, S. et al. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy 12, 2213–2229 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Obeid, L. M., Linardic, C. M., Karolak, L. A. & Hannun, Y. A. Programmed cell death induced by ceramide. Science 259, 1769–1771 (1993).
Article CAS PubMed Google Scholar
- Siskind, L. J. et al. The BCL-2 protein BAK is required for long-chain ceramide generation during apoptosis. J. Biol. Chem. 285, 11818–11826 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Brinkmann, V. & Lynch, K. R. FTY720: targeting G-protein-coupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Curr. Opin. Immunol. 14, 569–575 (2002).
Article CAS PubMed Google Scholar
- Benechet, A. P. et al. T cell-intrinsic S1PR1 regulates endogenous effector T-cell egress dynamics from lymph nodes during infection. Proc. Natl Acad. Sci. USA 113, 2182–2187 (2016).
Article CAS PubMed Google Scholar
- Hla, T., Venkataraman, K. & Michaud, J. The vascular S1P gradient-cellular sources and biological significance. Biochim. Biophys. Acta 1781, 477–482 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Allende, M. L., Dreier, J. L., Mandala, S. & Proia, R. L. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 279, 15396–15401 (2004).
Article CAS PubMed Google Scholar
- Breart, B. et al. Lipid phosphate phosphatase 3 enables efficient thymic egress. J. Exp. Med. 208, 1267–1278 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Blaho, V. A. et al. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature 523, 342–346 (2015). This study demonstrates specific immune functions for HDL-bound S1P in the circulation.
Article CAS PubMed PubMed Central Google Scholar
- Pettus, B. J. et al. The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol. Pharmacol. 68, 330–335 (2005).
Article CAS PubMed Google Scholar
- Xiong, Y. et al. Sphingosine kinases are not required for inflammatory responses in macrophages. J. Biol. Chem. 291, 11465 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Jenkins, R. W. et al. Regulation of CC ligand 5/RANTES by acid sphingomyelinase and acid ceramidase. J. Biol. Chem. 286, 13292–13303 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Kott, M. et al. Acid sphingomyelinase serum activity predicts mortality in intensive care unit patients after systemic inflammation: a prospective cohort study. PLoS ONE 9, e112323 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Hannun, Y. A., Luberto, C., Mao, C. & Obeid, L. M. Bioactive Sphingolipids in Cancer Biology and Therapy (Springer, 2015).
Book Google Scholar
- Morad, S. A. & Cabot, M. C. Ceramide-orchestrated signalling in cancer cells. Nat. Rev. Cancer 13, 51–65 (2013).
Article CAS PubMed Google Scholar
- Pettus, B. J. et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α. FASEB J. 17, 1411–1421 (2003).
Article CAS PubMed Google Scholar
- Tan, S. S. et al. Sphingosine kinase 1 promotes malignant progression in colon cancer and independently predicts survival of patients with colon cancer by competing risk approach in South asian population. Clin. Transl Gastroenterol. 5, e51 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Kawamori, T. et al. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J. 23, 405–414 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Liang, J. et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23, 107–120 (2013).
Article CAS PubMed Google Scholar
- Kohno, M. et al. Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol. Cell. Biol. 26, 7211–7223 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Oskouian, B. et al. Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc. Natl Acad. Sci. USA 103, 17384–17389 (2006).
Article CAS PubMed Google Scholar
- Ju, T., Gao, D. & Fang, Z. Y. Targeting colorectal cancer cells by a novel sphingosine kinase 1 inhibitor PF-543. Biochem. Biophys. Res. Commun. 470, 728–734 (2016).
Article CAS PubMed Google Scholar
- Chumanevich, A. A. et al. Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase. Carcinogenesis 31, 1787–1793 (2010).
Article CAS PubMed PubMed Central Google Scholar
- García-Barros, M. et al. Role of neutral ceramidase in colon cancer. FASEB J. 30, 4159–4171 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Heffernan-Stroud, L. A. & Obeid, L. M. Sphingosine kinase 1 in cancer. Adv. Cancer Res. 117, 201–235 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Galvani, S. et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci. Signal. 8, ra79 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Nagahashi, M. et al. Sphingosine-1-phosphate in chronic intestinal inflammation and cancer. Adv. Biol. Regul. 54, 112–120 (2014).
Article CAS PubMed Google Scholar
- Anelli, V., Gault, C. R., Snider, A. J. & Obeid, L. M. Role of sphingosine kinase-1 in paracrine/transcellular angiogenesis and lymphangiogenesis in vitro. FASEB J. 24, 2727–2738 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Mahdy, A. E. et al. Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer. Mol. Ther. 17, 430–438 (2009).
Article CAS PubMed Google Scholar
- Frohbergh, M., He, X. & Schuchman, E. H. The molecular medicine of acid ceramidase. Biol. Chem. 396, 759–765 (2015).
Article CAS PubMed Google Scholar
- Realini, N. et al. Acid ceramidase in melanoma: expression, localization, and effects of pharmacological inhibition. J. Biol. Chem. 291, 2422–2434 (2016).
Article CAS PubMed Google Scholar
- Bizzozero, L. et al. Acid sphingomyelinase determines melanoma progression and metastatic behaviour via the microphtalmia-associated transcription factor signalling pathway. Cell Death Differ. 21, 507–520 (2014).
Article CAS PubMed Google Scholar
- Sanger, N. et al. Acid ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer. Mol. Oncol. 9, 58–67 (2015).
Article CAS PubMed Google Scholar
- Carpinteiro, A. et al. Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol. Med. 7, 714–734 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Truman, J. P. et al. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS ONE 5, e12310 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Daemen, A. et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc. Natl Acad. Sci. USA 112, E4410–E4417 (2015).
Article CAS PubMed Google Scholar
- Dubois, N. et al. Plasma ceramide, a real-time predictive marker of pulmonary and hepatic metastases response to stereotactic body radiation therapy combined with irinotecan. Radiother. Oncol. 119, 229–235 (2016).
Article CAS PubMed Google Scholar
- Abdul Aziz, N. A. et al. 19-Gene expression signature as a predictor of survival in colorectal cancer. BMC Med. Genom. 9, 58 (2016). This study identifies CERS6 as a key gene component of a 19-gene signature for prediction of survival in colon cancer.
Article CAS Google Scholar
- Kasumov, T. et al. Ceramide as a mediator of non-alcoholic fatty liver disease and associated atherosclerosis. PLoS ONE 10, e0126910 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Boini, K. M., Zhang, C., Xia, M., Poklis, J. L. & Li, P. L. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. J. Pharmacol. Exp. Ther. 334, 839–846 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Choi, S. & Snider, A. J. Sphingolipids in high fat diet and obesity-related diseases. Mediators Inflamm. 2015, 520618 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Hodson, A. E., Tippetts, T. S. & Bikman, B. T. Insulin treatment increases myocardial ceramide accumulation and disrupts cardiometabolic function. Cardiovasc. Diabetol. 14, 153 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Kurek, K. et al. Inhibition of ceramide de novo synthesis with myriocin affects lipid metabolism in the liver of rats with streptozotocin-induced type 1 diabetes. BioMed Res. Int. 2014, 980815 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).
Article CAS PubMed Google Scholar
- Xia, J. Y. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266–278 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Chavez, J. A. et al. Ceramides and glucosylceramides are independent antagonists of insulin signaling. J. Biol. Chem. 289, 723–734 (2014).
Article CAS PubMed Google Scholar
- Li, Z. et al. Reducing plasma membrane sphingomyelin increases insulin sensitivity. Mol. Cell. Biol. 31, 4205–4218 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Yano, M. et al. Increased oxidative stress impairs adipose tissue function in sphingomyelin synthase 1 null mice. PLoS ONE 8, e61380 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Taguchi, Y. et al. Sphingosine-1-phosphate phosphatase 2 regulates pancreatic islet β-cell endoplasmic reticulum stress and proliferation. J. Biol. Chem. 291, 12029–12038 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Chen, J. et al. Deletion of sphingosine kinase 1 ameliorates hepatic steatosis in diet-induced obese mice: role of PPARγ. Biochim. Biophys. Acta 1861, 138–147 (2016).
Article CAS PubMed Google Scholar
- Park, K. et al. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. Proc. Natl Acad. Sci. USA 113, E1334–E1342 (2016).
Article CAS PubMed Google Scholar
- Wong, M. L. et al. Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: A possible link between inflammatory cytokines and atherogenesis. Proc. Natl Acad. Sci. USA 97, 8681–8686 (2000).
Article CAS PubMed Google Scholar
- Fan, J., Wu, B. X. & Crosson, C. E. Suppression of acid sphingomyelinase protects the retina from ischemic injury. Invest. Ophthalmol. Vis. Sci. 57, 4476–4484 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Reforgiato, M. R. et al. Inhibition of ceramide de novo synthesis as a postischemic strategy to reduce myocardial reperfusion injury. Basic Res. Cardiol. 111, 12 (2016).
Article CAS PubMed Google Scholar
- Hammad, S. M. et al. Increased plasma levels of select deoxy-ceramide and ceramide species are associated with increased odds of diabetic neuropathy in type 1 diabetes: a pilot study. Neuromolecular Med. 19, 46–56 (2017).
Article CAS PubMed Google Scholar
- Havulinna, A. S. et al. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 36, 2424–2430 (2016).
Article CAS PubMed Google Scholar
- Cheng, J. M. et al. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Atherosclerosis 243, 560–566 (2015).
Article CAS PubMed Google Scholar
- Sigruener, A. et al. Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS ONE 9, e85724 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Saleem, M. et al. Ceramides predict verbal memory performance in coronary artery disease patients undertaking exercise: a prospective cohort pilot study. BMC Geriatr. 13, 135 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Soltau, I. et al. Serum-sphingosine-1-phosphate concentrations are inversely associated with atherosclerotic diseases in humans. PLoS ONE 11, e0168302 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Othman, A. et al. Plasma 1-deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 3, e000073 (2015).
Article PubMed PubMed Central Google Scholar
- Hama, H. Fatty acid 2-hydroxylation in mammalian sphingolipid biology. Biochim. Biophys. Acta 1801, 405–414 (2010).
Article CAS PubMed Google Scholar
- Edvardson, S. et al. Deficiency of the alkaline ceramidase ACER3 manifests in early childhood by progressive leukodystrophy. J. Med. Genet. 53, 389–396 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Zhao, L. et al. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration. Proc. Natl Acad. Sci. USA 112, 12962–12967 (2015).
Article CAS PubMed Google Scholar
- Vanni, N. et al. Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy. Ann. Neurol. 76, 206–212 (2014).
Article CAS PubMed Google Scholar
- Mosbech, M. B. et al. Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy. Ann. Clin. Transl Neurol. 1, 88–98 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Boustany, R. M. Ceramide center stage in progressive myoclonus epilepsies. Ann. Neurol. 76, 162–164 (2014).
Article CAS PubMed Google Scholar
- Spassieva, S. D. et al. Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc. Natl Acad. Sci. USA 113, 5928–5933 (2016). This study, by using genetic interactions between Cers1 and Cers2 , demonstrates that sphingosine is likely the key lipid species responsible for mediating neurodegeneration in the Cers1 -knockout mouse.
Article CAS PubMed Google Scholar
- Dinkins, M. B. et al. Neutral sphingomyelinase-2 deficiency ameliorates Alzheimer's disease pathology and improves cognition in the 5XFAD mouse. J. Neurosci. 36, 8653–8667 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Novgorodov, S. A. et al. Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury. J. Biol. Chem. 289, 13142–13154 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Jennemann, R. et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21, 586–608 (2012).
Article CAS PubMed Google Scholar
- Behne, M. et al. Omega-hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function. J. Invest. Dermatol. 114, 185–192 (2000).
Article CAS PubMed Google Scholar
- Jennemann, R. et al. Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J. Biol. Chem. 282, 3083–3094 (2007).
Article CAS PubMed Google Scholar
- Westerberg, R. et al. Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J. Biol. Chem. 279, 5621–5629 (2004).
Article CAS PubMed Google Scholar
- Cameron, D. J. et al. Essential role of Elovl4 in very long chain fatty acid synthesis, skin permeability barrier function, and neonatal survival. Int. J. Biol. Sci. 3, 111–119 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Peters, F. et al. Ceramide synthase 4 regulates stem cell homeostasis and hair follicle cycling. J. Invest. Dermatol. 135, 1501–1509 (2015).
Article CAS PubMed Google Scholar
- Liakath-Ali, K. et al. Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure. J. Pathol. 239, 374–383 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Stoffel, W., Jenke, B., Block, B., Zumbansen, M. & Koebke, J. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc. Natl Acad. Sci. USA 102, 4554–4559 (2005).
Article CAS PubMed Google Scholar
- Li, J. et al. Smpd3 expression in both chondrocytes and osteoblasts is required for normal endochondral bone development. Mol. Cell. Biol. 36, 2282–2299 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Kakoi, H. et al. Bone morphogenic protein (BMP) signaling up-regulates neutral sphingomyelinase 2 to suppress chondrocyte maturation via the Akt protein signaling pathway as a negative feedback mechanism. J. Biol. Chem. 289, 8135–8150 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Somenzi, G. et al. Disruption of retinoic acid receptor alpha reveals the growth promoter face of retinoic acid. PLoS ONE 2, e836 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Clarke, C. J. et al. ATRA transcriptionally induces nSMase2 through CBP/p300-mediated histone acetylation. J. Lipid Res. 57, 868–881 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Cowart, L. A. & Hannun, Y. A. Selective substrate supply in the regulation of yeast de novo sphingolipid synthesis. J. Biol. Chem. 282, 12330–12340 (2007).
Article CAS PubMed Google Scholar
- Sun, Y. et al. Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Mol. Biol. Cell 23, 2388–2398 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Muir, A., Ramachandran, S., Roelants, F. M., Timmons, G. & Thorner, J. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. eLife 3, e03779 (2014).
Article CAS PubMed Central Google Scholar
- Novgorodov, S. A. et al. SIRT3 deacetylates ceramide synthases: implications for mitochondrial dysfunction and brain injury. J. Biol. Chem. 291, 1957–1973 (2016).
Article CAS PubMed Google Scholar
- Sassa, T., Hirayama, T. & Kihara, A. Enzyme activities of the ceramide synthases CERS2-6 are regulated by phosphorylation in the C-terminal region. J. Biol. Chem. 291, 7477–7487 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Jensen, S. A. et al. Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc. Natl Acad. Sci. USA 111, 5682–5687 (2014).
Article CAS PubMed Google Scholar
- McNaughton, M., Pitman, M., Pitson, S. M., Pyne, N. J. & Pyne, S. Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget 7, 16663–16675 (2016).
Article PubMed PubMed Central Google Scholar
- Filosto, S., Ashfaq, M., Chung, S., Fry, W. & Goldkorn, T. Neutral sphingomyelinase 2 activity and protein stability are modulated by phosphorylation of five conserved serines. J. Biol. Chem. 287, 514–522 (2012).
Article CAS PubMed Google Scholar
- Shamseddine, A. A., Airola, M. V. & Hannun, Y. A. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Reg. 57, 24–41 (2015).
Article CAS Google Scholar
- Rhein, C. et al. Functional implications of novel human acid sphingomyelinase splice variants. PLoS ONE 7, e35467 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Sasaki, H. et al. Regulation of alkaline ceramidase activity by the c-Src-mediated pathway. Arch. Biochem. Biophys. 550–551, 12–19 (2014).
Article CAS PubMed Google Scholar
- Tanaka, K. et al. Role of down-regulated neutral ceramidase during all-trans retinoic acid-induced neuronal differentiation in SH-SY5Y neuroblastoma cells. J. Biochem. 151, 611–620 (2012).
Article CAS PubMed Google Scholar
- Wu, B. X., Zeidan, Y. H. & Hannun, Y. A. Downregulation of neutral ceramidase by gemcitabine: Implications for cell cycle regulation. Biochim. Biophys. Acta 1791, 730–739 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Rahmaniyan, M. et al. Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J. Biol. Chem. 286, 24754–24764 (2011). This study identifies dihydroceramide desaturase, the enzyme responsible for introducing the 4–5 double bond into ceramide, as a direct target for the action of the chemotherapeutic agent fenretinide (4-HPR).
Article CAS PubMed PubMed Central Google Scholar
- Schnute, M. E. et al. Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem. J. 444, 79–88 (2012).
Article CAS PubMed Google Scholar
- Rex, K. et al. Sphingosine kinase activity is not required for tumor cell viability. PLoS ONE 8, e68328 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Santos, W. L. & Lynch, K. R. Drugging sphingosine kinases. ACS Chem. Biol. 10, 225–233 (2015).
Article CAS PubMed Google Scholar
- Realini, N. et al. Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity. Sci. Rep. 3, 1035 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Sandborn, W. J. et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N. Engl. J. Med. 374, 1754–1762 (2016).
Article CAS PubMed Google Scholar
- Zhang, L. et al. Anti-S1P antibody as a novel therapeutic strategy for VEGFR TKI-resistant renal cancer. Clin. Cancer Res. 21, 1925–1934 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Rollin-Pinheiro, R., Singh, A., Barreto-Bergter, E. & Del Poeta, M. Sphingolipids as targets for treatment of fungal infections. Future Med. Chem. 8, 1469–1484 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Kumagai, K., Kawano-Kawada, M. & Hanada, K. Phosphoregulation of the ceramide transport protein CERT at serine 315 in the interaction with VAMP-associated protein (VAP) for inter-organelle trafficking of ceramide in mammalian cells. J. Biol. Chem. 289, 10748–10760 (2014).
Article CAS PubMed PubMed Central Google Scholar
- D'Angelo, G. et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007). This study identifies that the transfer protein FAPP2 is involved in the selective binding and transport of neutral glycolipids among Golgi cisternae.
Article CAS PubMed Google Scholar