Proximal events in Wnt signal transduction (original) (raw)
Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol.20, 781–810 (2004). ArticleCASPubMed Google Scholar
Rijsewijk, F. et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell50, 649–657 (1987). CASPubMed Google Scholar
McMahon, A. P. & Moon, R. T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell58, 1075–1084 (1989). The initial demonstration that Wnt signalling is functionally important in vertebrate development. CASPubMed Google Scholar
Stoick-Cooper, C. L., Moon, R. T. & Weidinger, G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev.21, 1292–1315 (2007). CASPubMed Google Scholar
Stoick-Cooper, C. L. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development134, 479–489 (2007). CASPubMed Google Scholar
Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature382, 225–230 (1996). The first study to directly implicate Frizzled proteins as receptors for Wnt ligands. CASPubMed Google Scholar
Yang-Snyder, J., Miller, J. R., Brown, J. D., Lai, C. J. & Moon, R. T. A Frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr. Biol.6, 1302–1306 (1996). Implicates vertebrate Frizzled proteins as receptors for Wnt ligands. CASPubMed Google Scholar
Bjarnadottir, T. K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics88, 263–273 (2006). CASPubMed Google Scholar
Angers, S., Salahpour, A. & Bouvier, M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol.42, 409–435 (2002). CASPubMed Google Scholar
Kaykas, A. et al. Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nature Cell Biol.6, 52–58 (2004). CASPubMed Google Scholar
Hikasa, H., Shibata, M., Hiratani, I. & Taira, M. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Development129, 5227–5239 (2002). CASPubMed Google Scholar
Yoshikawa, S., McKinnon, R. D., Kokel, M. & Thomas, J. B. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature422, 583–588 (2003). Identifies the Tyr kinase receptor Derailed (D. melanogasterRYK homologue) as a non-Frizzled receptor for Wnt, which is important in commisural axon guidance. CASPubMed Google Scholar
Lu, W., Yamamoto, V., Ortega, B. & Baltimore, D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell119, 97–108 (2004). CASPubMed Google Scholar
Inoue, T. et al. C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell118, 795–806 (2004). CASPubMed Google Scholar
Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nature Rev. Genet.5, 691–701 (2004). CASPubMed Google Scholar
Clevers, H. Wnt/β-catenin signaling in development and disease. Cell127, 469–480 (2006). CASPubMed Google Scholar
Kimelman, D. & Xu, W. β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene25, 7482–7491 (2006). CASPubMed Google Scholar
Dabdoub, A. et al. Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development130, 2375–2384 (2003). CASPubMed Google Scholar
Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature405, 76–81 (2000). Provides genetic evidence that links a specific Wnt to the regulation of gastrulation movements. CASPubMed Google Scholar
Winklbauer, R., Medina, A., Swain, R. K. & Steinbeisser, H. Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature413, 856–860 (2001). CASPubMed Google Scholar
Westfall, T. A. et al. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity. J. Cell Biol.162, 889–898 (2003). CASPubMedPubMed Central Google Scholar
Torres, M. A. et al. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol.133, 1123–1137 (1996). CASPubMed Google Scholar
Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J. Cell Biol.162, 899–908 (2003). CASPubMedPubMed Central Google Scholar
Liang, H. et al. Noncanonical Wnt signaling promotes apoptosis in thymocyte development. J. Exp. Med.204, 3077–3084 (2007). CASPubMedPubMed Central Google Scholar
Slusarski, D. C., Corces, V. G. & Moon, R. T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature390, 410–413 (1997). CASPubMed Google Scholar
Liu, T., Liu, X., Wang, H., Moon, R. T. & Malbon, C. C. Activation of rat frizzled-1 promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via pathways that require Gαq and Gαo function. J. Biol. Chem.274, 33539–33544 (1999). CASPubMed Google Scholar
Liu, X., Rubin, J. S. & Kimmel, A. R. Rapid, Wnt-induced changes in GSK3β associations that regulate β-catenin stabilization are mediated by Gα proteins. Curr. Biol.15, 1989–1997 (2005). CASPubMed Google Scholar
Katanaev, V. L., Ponzielli, R., Semeriva, M. & Tomlinson, A. Trimeric G protein-dependent frizzled signaling in Drosophila. Cell120, 111–122 (2005). CASPubMed Google Scholar
Slusarski, D. C., Yang-Snyder, J., Busa, W. B. & Moon, R. T. Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev. Biol.182, 114–120 (1997). CASPubMed Google Scholar
Dejmek, J., Safholm, A., Kamp Nielsen, C., Andersson, T. & Leandersson, K. Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes–Cdc42–casein kinase 1α signaling in human mammary epithelial cells. Mol. Cell. Biol.26, 6024–6036 (2006). CASPubMedPubMed Central Google Scholar
Kremenevskaja, N. et al. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene24, 2144–2154 (2005). CASPubMed Google Scholar
Schleiffarth, J. R. et al. Wnt5a is required for cardiac outflow tract septation in mice. Pediatr. Res.61, 386–391 (2007). PubMed Google Scholar
Ma, L. & Wang, H. Y. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway. J. Biol. Chem.281, 30990–31001 (2006). CASPubMed Google Scholar
Saneyoshi, T., Kume, S., Amasaki, Y. & Mikoshiba, K. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature417, 295–299 (2002). CASPubMed Google Scholar
Pereira, C., Schaer, D. J., Bachli, E. B., Kurrer, M. O. & Schoedon, G. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler. Thromb. Vasc. Biol.28, 504–510 (2008). CASPubMed Google Scholar
Dissanayake, S. K. et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem.282, 17259–17271 (2007). CASPubMed Google Scholar
Weeraratna, A. T. et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell1, 279–288 (2002). CASPubMed Google Scholar
Kilian, B. et al. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech. Dev.120, 467–476 (2003). CASPubMed Google Scholar
Tada, M. & Smith, J. C. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development127, 2227–2238 (2000). CASPubMed Google Scholar
Penzo-Mendez, A., Umbhauer, M., Djiane, A., Boucaut, J. C. & Riou, J. F. Activation of Gβγ signaling downstream of Wnt-11/Xfz7 regulates Cdc42 activity during Xenopus gastrulation. Dev. Biol.257, 302–314 (2003). CASPubMed Google Scholar
Angers, S. et al. The KLHL12–cullin-3 ubiquitin ligase negatively regulates the Wnt–β-catenin pathway by targeting Dishevelled for degradation. Nature Cell Biol.8, 348–357 (2006). CASPubMed Google Scholar
Dohlman, H. G. & Thorner, J. W. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu. Rev. Biochem.70, 703–754 (2001). CASPubMed Google Scholar
Chen, A. E., Ginty, D. D. & Fan, C. M. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature433, 317–322 (2005). CASPubMed Google Scholar
Tu, X. et al. Noncanonical Wnt signaling through G protein-linked PKCδ activation promotes bone formation. Dev. Cell12, 113–127 (2007). CASPubMedPubMed Central Google Scholar
DeCamp, D. L., Thompson, T. M., de Sauvage, F. J. & Lerner, M. R. Smoothened activates Gαi-mediated signaling in frog melanophores. J. Biol. Chem.275, 26322–26327 (2000). CASPubMed Google Scholar
Philipp, M. & Caron, M. G. Hedgehog signaling: is Smo a G protein-coupled receptor? Curr. Biol.19, R125–R127 (2009). CASPubMed Google Scholar
Ogden, S. K. et al. G protein Gαi functions immediately downstream of Smoothened in Hedgehog signalling. Nature456, 967–970 (2008). CASPubMedPubMed Central Google Scholar
Wehrli, M. et al. Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature407, 527–530 (2000). CASPubMed Google Scholar
Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature407, 530–535 (2000). References 48 and 49 describe the identification of Arrow inD. melanogasterand LRP5 in vertebrates as co-receptors for Wnt signal transduction. CASPubMed Google Scholar
Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell7, 801–809 (2001). CASPubMed Google Scholar
Willert, K., Shibamoto, S. & Nusse, R. Wnt-induced dephosphorylation of axin releases β-catenin from the axin complex. Genes Dev.13, 1768–1773 (1999). CASPubMedPubMed Central Google Scholar
Lee, E., Salic, A., Kruger, R., Heinrich, R. & Kirschner, M. W. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol.1, E10 (2003). PubMedPubMed Central Google Scholar
Tamai, K. et al. A mechanism for Wnt coreceptor activation. Mol. Cell13, 149–156 (2004). CASPubMed Google Scholar
Wolf, J., Palmby, T. R., Gavard, J., Williams, B. O. & Gutkind, J. S. Multiple PPPS/TP motifs act in a combinatorial fashion to transduce Wnt signaling through LRP6. FEBS Lett.582, 255–261 (2008). CASPubMed Google Scholar
Davidson, G. et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature438, 867–872 (2005). CASPubMed Google Scholar
Zeng, X. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature438, 873–877 (2005). References 55 and 56 identify GSK3 and CK1γ as kinases that are important for the phosphorylation of LRP5 or LRP6 in response to Wnt. This phosphorylation creates a signal for Axin to be recruited to the C terminus of LRP5 or LRP6. CASPubMedPubMed Central Google Scholar
Siegfried, E., Wilder, E. L. & Perrimon, N. Components of wingless signalling in Drosophila. Nature367, 76–80 (1994). CASPubMed Google Scholar
Smalley, M. J. et al. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J.18, 2823–2835 (1999). CASPubMedPubMed Central Google Scholar
Kishida, S. et al. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol. Cell. Biol.19, 4414–4422 (1999). CASPubMedPubMed Central Google Scholar
Zeng, X. et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development135, 367–375 (2008). CASPubMed Google Scholar
Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science316, 1619–1622 (2007). Introduces the concept of signalosomes to Wnt signalling. CASPubMed Google Scholar
Schwarz-Romond, T., Merrifield, C., Nichols, B. J. & Bienz, M. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J. Cell Sci.118, 5269–5277 (2005). CASPubMed Google Scholar
Wong, H. C. et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol. Cell12, 1251–1260 (2003). CASPubMedPubMed Central Google Scholar
Xu, Y. K. & Nusse, R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol.8, R405–R406 (1998). CASPubMed Google Scholar
Forrester, W. C., Kim, C. & Garriga, G. The Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration. Genetics168, 1951–1962 (2004). CASPubMedPubMed Central Google Scholar
Oishi, I. et al. Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes Cells4, 41–56 (1999). CASPubMed Google Scholar
Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells8, 645–654 (2003). Identifies the receptor Tyr kinase ROR2 as a non-Frizzled receptor that is important for signalling through a β-catenin-independent pathway. CASPubMed Google Scholar
Schambony, A. & Wedlich, D. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev. Cell12, 779–792 (2007). CASPubMed Google Scholar
Unterseher, F. et al. Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J.23, 3259–3269 (2004). CASPubMedPubMed Central Google Scholar
Ishitani, T. et al. The TAK1–NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Mol. Cell. Biol.23, 131–139 (2003). CASPubMedPubMed Central Google Scholar
Ishitani, T. et al. The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature399, 798–802 (1999). CASPubMed Google Scholar
Mikels, A. J. & Nusse, R. Purified Wnt5a protein activates or inhibits β-catenin–TCF signaling depending on receptor context. PLoS Biol.4, e115 (2006). Shows that ROR2 is a receptor for WNT5A, which is required to antagonize the β-catenin pathway. PubMedPubMed Central Google Scholar
Itasaki, N. et al. Wise, a context-dependent activator and inhibitor of Wnt signalling. Development130, 4295–4305 (2003). CASPubMed Google Scholar
Cselenyi, C. S. & Lee, E. Context-dependent activation or inhibition of Wnt–β-catenin signaling by Kremen. Sci. Signal.1, pe10 (2008). PubMed Google Scholar
Verkaar, F., van Rosmalen, J. W., Smits, J. F., Blankesteijn, W. M. & Zaman, G. J. Stably overexpressed human Frizzled-2 signals through the β-catenin pathway and does not activate Ca2+-mobilization in human embryonic kidney 293 cells. Cell Signal.21, 22–33 (2009). CASPubMed Google Scholar
Hovens, C. M. et al. RYK, a receptor tyrosine kinase-related molecule with unusual kinase domain motifs. Proc. Natl Acad. Sci. USA89, 11818–11822 (1992). CASPubMedPubMed Central Google Scholar
Bonkowsky, J. L., Yoshikawa, S., O'Keefe, D. D., Scully, A. L. & Thomas, J. B. Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature402, 540–544 (1999). CASPubMed Google Scholar
Wouda, R. R., Bansraj, M. R., de Jong, A. W., Noordermeer, J. N. & Fradkin, L. G. Src family kinases are required for WNT5 signaling through the Derailed/RYK receptor in the Drosophila embryonic central nervous system. Development135, 2277–2287 (2008). CASPubMed Google Scholar
Lyu, J., Yamamoto, V. & Lu, W. Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev. Cell15, 773–780 (2008). CASPubMed Google Scholar
Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science297, 365–369 (2002). CASPubMed Google Scholar
Zechner, D. et al. β-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol.258, 406–418 (2003). CASPubMed Google Scholar
Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science313, 629–633 (2006). CASPubMed Google Scholar
Eliasson, R., Mossberg, B., Camner, P. & Afzelius, B. A. The immotile-cilia syndrome. A congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. N. Engl. J. Med.297, 1–6 (1977). CASPubMed Google Scholar
Hou, X. et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J. Clin. Invest.109, 533–540 (2002). CASPubMedPubMed Central Google Scholar
Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L. & Witman, G. B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol.12, R378–R380 (2002). CASPubMed Google Scholar
Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genet.33, 129–137 (2003). CASPubMed Google Scholar
Ansley, S. J. et al. Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature425, 628–633 (2003). CASPubMed Google Scholar
Eggenschwiler, J. T. & Anderson, K. V. Cilia and developmental signaling. Annu. Rev. Cell Dev. Biol.23, 345–373 (2007). CASPubMedPubMed Central Google Scholar
Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nature Genet.37, 537–543 (2005). CASPubMed Google Scholar
Otto, E. A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left–right axis determination. Nature Genet.34, 413–420 (2003). CASPubMed Google Scholar
Ross, A. J. et al. Disruption of Bardet–Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genet.37, 1135–1140 (2005). CASPubMed Google Scholar
Gerdes, J. M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nature Genet.39, 1350–1360 (2007). CASPubMed Google Scholar
Corbit, K. C. et al. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nature Cell Biol.10, 70–76 (2008). CASPubMed Google Scholar
Kishimoto, N., Cao, Y., Park, A. & Sun, Z. Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways. Dev. Cell14, 954–961 (2008). CASPubMed Google Scholar
Park, T. J., Mitchell, B. J., Abitua, P. B., Kintner, C. & Wallingford, J. B. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nature Genet.40, 871–879 (2008). CASPubMed Google Scholar
DasGupta, R., Kaykas, A., Moon, R. T. & Perrimon, N. Functional genomic analysis of the Wnt-wingless signaling pathway. Science308, 826–833 (2005). CASPubMed Google Scholar
Major, M. B. et al. New regulators of Wnt/β-catenin signaling revealed by integrative molecular screening. Sci. Signal.1, ra12 (2008). PubMed Google Scholar
Tang, W. et al. A genome-wide RNAi screen for Wnt/β-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc. Natl Acad. Sci. USA105, 9697–9702 (2008). CASPubMedPubMed Central Google Scholar
Major, M. B. et al. Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science316, 1043–1046 (2007). CASPubMed Google Scholar