- Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).
CAS PubMed Google Scholar
- Cournil, A. & Kirkwood, T. B. If you would live long, choose your parents well. Trends Genet. 17, 233–235 (2001).
CAS PubMed Google Scholar
- Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span — from yeast to humans. Science 328, 321–326 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Remolina, S. C. & Hughes, K. A. Evolution and mechanisms of long life and high fertility in queen honey bees. Age 30, 177–185 (2008).
PubMed PubMed Central Google Scholar
- Libert, S., Bonkowski, M. S., Pointer, K., Pletcher, S. D. & Guarente, L. Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell 11, 794–800 (2012).
CAS PubMed Google Scholar
- Waddington, C. H. The epigenotype. Int. J. Epidemiol. 41, 10–13 (2012).
CAS PubMed Google Scholar
- Zahn, J. M. et al. AGEMAP: a gene expression database for aging in mice. PLoS Genet. 3, e201 (2007).
PubMed PubMed Central Google Scholar
- Southworth, L. K., Owen, A. B. & Kim, S. K. Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet. 5, e1000776 (2009). This study was the first genome-wide investigation of the effect of ageing on the robustness of transcriptional networks in mice.
PubMed PubMed Central Google Scholar
- Gut, P. & Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature 502, 489–498 (2013).
CAS PubMed Google Scholar
- Vaquero, A. & Reinberg, D. Calorie restriction and the exercise of chromatin. Genes Dev. 23, 1849–1869 (2009).
CAS PubMed PubMed Central Google Scholar
- Seong, K. H., Li, D., Shimizu, H., Nakamura, R. & Ishii, S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061 (2011).
CAS PubMed Google Scholar
- Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).
CAS PubMed PubMed Central Google Scholar
- Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
CAS Google Scholar
- Cruickshanks, H. A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506 (2013).
CAS PubMed PubMed Central Google Scholar
- Wilson, V. L. & Jones, P. A. DNA methylation decreases in aging but not in immortal cells. Science 220, 1055–1057 (1983).
CAS PubMed Google Scholar
- Day, K. et al. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 14, R102 (2013).
PubMed PubMed Central Google Scholar
- Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).
CAS PubMed PubMed Central Google Scholar
- Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010).
CAS PubMed PubMed Central Google Scholar
- Zou, J., Lippert, C., Heckerman, D., Aryee, M. & Listgarten, J. Epigenome-wide association studies without the need for cell-type composition. Nat. Methods 11, 309–311 (2014).
CAS PubMed Google Scholar
- Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).
CAS PubMed Google Scholar
- Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014). This was the first extensive study of the epigenomic landscape (several histone marks and DNA methylation) in purified stem cells (HSCs) from young and old mice.
CAS PubMed PubMed Central Google Scholar
- Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).
PubMed PubMed Central Google Scholar
- Greer, E. L. et al. DNA methylation on _N_6-adenine in C. elegans. Cell 161, 868–878 (2015).
CAS PubMed PubMed Central Google Scholar
- Fu, Y. et al. _N_6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161, 879–892 (2015).
CAS PubMed PubMed Central Google Scholar
- Zhang, G. et al. _N_6-methyladenine DNA modification in Drosophila. Cell 161, 893–906 (2015).
CAS PubMed Google Scholar
- Weidner, C. I. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, R24 (2014).
PubMed PubMed Central Google Scholar
- Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).
CAS PubMed Google Scholar
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013). This study is the most extensive demonstration that DNA methylation levels at specific loci are predictive of age across a range of cells and tissues.
PubMed PubMed Central Google Scholar
- Capuano, F., Mulleder, M., Kok, R., Blom, H. J. & Ralser, M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal. Chem. 86, 3697–3702 (2014).
CAS PubMed PubMed Central Google Scholar
- Simpson, V. J., Johnson, T. E. & Hammen, R. F. Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucleic Acids Res. 14, 6711–6719 (1986).
CAS PubMed PubMed Central Google Scholar
- Lin, M. J., Tang, L. Y., Reddy, M. N. & Shen, C. K. DNA methyltransferase gene dDnmt2 and longevity of Drosophila. J. Biol. Chem. 280, 861–864 (2005).
CAS PubMed Google Scholar
- Phalke, S. et al. Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2. Nat. Genet. 41, 696–702 (2009).
CAS PubMed Google Scholar
- Schaefer, M. & Lyko, F. Lack of evidence for DNA methylation of Invader4 retroelements in Drosophila and implications for Dnmt2-mediated epigenetic regulation. Nat. Genet. 42, 920–921; author reply 921 (2010).
CAS PubMed Google Scholar
- Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat. Struct. Mol. Biol. 20, 290–299 (2013).
CAS PubMed PubMed Central Google Scholar
- Feser, J. & Tyler, J. Chromatin structure as a mediator of aging. FEBS Lett. 585, 2041–2048 (2011).
CAS PubMed Google Scholar
- Hu, Z. et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev. 28, 396–408 (2014).
CAS PubMed PubMed Central Google Scholar
- O'Sullivan, R. J., Kubicek, S., Schreiber, S. L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 17, 1218–1225 (2010).
CAS PubMed PubMed Central Google Scholar
- Liu, L. et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 4, 189–204 (2013). This was the first genome-wide study of age-dependent changes in histone modifications in purified adult stem cells.
CAS PubMed PubMed Central Google Scholar
- Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).
CAS PubMed PubMed Central Google Scholar
- Feser, J. et al. Elevated histone expression promotes life span extension. Mol. Cell 39, 724–735 (2010). This study provided the first evidence that the expression level of core histones may directly affect lifespan.
CAS PubMed PubMed Central Google Scholar
- Das, C. & Tyler, J. K. Histone exchange and histone modifications during transcription and aging. Biochim. Biophys. Acta 1819, 332–342 (2013).
PubMed PubMed Central Google Scholar
- Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).
CAS PubMed PubMed Central Google Scholar
- Tsurumi, A. & Li, W. X. Global heterochromatin loss: a unifying theory of aging? Epigenetics 7, 680–688 (2012).
CAS PubMed PubMed Central Google Scholar
- Dechat, T. et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853 (2008).
CAS PubMed PubMed Central Google Scholar
- Zhang, W. et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160–1163 (2015).
CAS PubMed PubMed Central Google Scholar
- Jin, C. et al. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab. 14, 161–172 (2011).
CAS PubMed Google Scholar
- Maures, T. J., Greer, E. L., Hauswirth, A. G. & Brunet, A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10, 980–990 (2011).
CAS PubMed Google Scholar
- Ni, Z., Ebata, A., Alipanahiramandi, E. & Lee, S. S. Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 11, 315–325 (2012).
CAS PubMed Google Scholar
- Siebold, A. P. et al. Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc. Natl Acad. Sci. USA 107, 169–174 (2010).
CAS PubMed Google Scholar
- Baumgart, M. et al. RNA-seq of the aging brain in the short-lived fish N. furzeri — conserved pathways and novel genes associated with neurogenesis. Aging Cell 13, 965–974 (2014).
CAS PubMed PubMed Central Google Scholar
- Pu, M. et al. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev. 29, 718–731 (2015).
CAS PubMed PubMed Central Google Scholar
- Benayoun, B. A. et al. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158, 673–688 (2014).
CAS PubMed PubMed Central Google Scholar
- Greer, E. L. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466, 383–387 (2010). This study links histone methylation to lifespan extension for the first time in a metazoan.
CAS PubMed PubMed Central Google Scholar
- Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81, 65–95 (2012).
CAS PubMed PubMed Central Google Scholar
- Li, L., Greer, C., Eisenman, R. N. & Secombe, J. Essential functions of the histone demethylase lid. PLoS Genet. 6, e1001221 (2010).
PubMed PubMed Central Google Scholar
- Lee, S. S., Kennedy, S., Tolonen, A. C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647 (2003).
CAS PubMed Google Scholar
- Alvares, S. M., Mayberry, G. A., Joyner, E. Y., Lakowski, B. & Ahmed, S. H3K4 demethylase activities repress proliferative and postmitotic aging. Aging Cell 13, 245–253 (2014).
CAS PubMed Google Scholar
- Sen, P. et al. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 29, 1362–1376 (2015).
CAS PubMed PubMed Central Google Scholar
- Dang, W. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807 (2009). This study, which was the first experimental swap of histone residues, shows that H4K16 itself has a role in yeast replicative ageing.
CAS PubMed PubMed Central Google Scholar
- Krishnan, V. et al. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc. Natl Acad. Sci. USA 108, 12325–12330 (2011).
CAS PubMed PubMed Central Google Scholar
- Hargreaves, D. C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).
CAS PubMed PubMed Central Google Scholar
- Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010).
CAS PubMed Google Scholar
- Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000). This study was the first demonstration that longevity-promoting sirtuins are HDACs.
CAS PubMed Google Scholar
- Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).
CAS PubMed PubMed Central Google Scholar
- Kugel, S. & Mostoslavsky, R. Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem. Sci. 39, 72–81 (2014).
CAS PubMed PubMed Central Google Scholar
- Burnett, C. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011).
CAS PubMed PubMed Central Google Scholar
- Satoh, A. et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430 (2013).
CAS PubMed PubMed Central Google Scholar
- Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492–496 (2008).
CAS PubMed PubMed Central Google Scholar
- Toiber, D. et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell 51, 454–468 (2013).
CAS PubMed PubMed Central Google Scholar
- Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).
CAS PubMed Google Scholar
- Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012). Studies 70 and 71 were the first to link a member of the sirtuin family with ageing and lifespan in mammals.
CAS PubMed Google Scholar
- Van Meter, M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).
CAS PubMed Google Scholar
- Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008).
CAS PubMed PubMed Central Google Scholar
- Wang, R. H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312–323 (2008).
CAS PubMed PubMed Central Google Scholar
- Love, D. C. et al. Dynamic _O_-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc. Natl Acad. Sci. USA 107, 7413–7418 (2010).
CAS PubMed PubMed Central Google Scholar
- Rahman, M. M. et al. Intracellular protein glycosylation modulates insulin mediated lifespan in C. elegans. Aging 2, 678–690 (2010).
CAS PubMed PubMed Central Google Scholar
- Bartholomew, B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83, 671–696 (2014).
CAS PubMed PubMed Central Google Scholar
- Pegoraro, G. et al. Ageing-related chromatin defects through loss of the NURD complex. Nat. Cell Biol. 11, 1261–1267 (2009).
CAS PubMed PubMed Central Google Scholar
- Dang, W. et al. Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response. Cell Metab. 19, 952–966 (2014).
CAS PubMed PubMed Central Google Scholar
- Riedel, C. G. et al. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat. Cell Biol. 15, 491–501 (2013).
CAS PubMed PubMed Central Google Scholar
- Janssen, I., Carson, V., Lee, I. M., Katzmarzyk, P. T. & Blair, S. N. Years of life gained due to leisure-time physical activity in the U.S.. Am. J. Prev. Med. 44, 23–29 (2013).
PubMed PubMed Central Google Scholar
- Maures, T. J. et al. Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science 343, 541–544 (2014). Together with references 123 and 124, this study was the first to investigate the mechanistic bases of the effects ofsex interactions on lifespan and also identifies a link with a chromatin modifier, UTX-1.
CAS PubMed Google Scholar
- Orozco-Solis, R. & Sassone-Corsi, P. Circadian clock: linking epigenetics to aging. Curr. Opin. Genet. Dev. 26, 66–72 (2014).
CAS PubMed PubMed Central Google Scholar
- Heydari, A. R., Unnikrishnan, A., Lucente, L. V. & Richardson, A. Caloric restriction and genomic stability. Nucleic Acids Res. 35, 7485–7496 (2007).
CAS PubMed PubMed Central Google Scholar
- Jiang, N. et al. Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging. Aging 5, 813–824 (2013).
CAS PubMed PubMed Central Google Scholar
- Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl Acad. Sci. USA 111, 15538–15543 (2014).
CAS PubMed PubMed Central Google Scholar
- Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).
CAS PubMed Google Scholar
- Hatta, M., Liu, F. & Cirillo, L. A. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1. Biochem. Biophys. Res. Commun. 379, 1005–1008 (2009).
CAS PubMed Google Scholar
- Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004).
CAS PubMed PubMed Central Google Scholar
- Boily, G. et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3, e1759 (2008).
PubMed PubMed Central Google Scholar
- Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113–127 (2009).
CAS PubMed Google Scholar
- Stenesen, D. et al. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab. 17, 101–112 (2013).
CAS PubMed PubMed Central Google Scholar
- Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).
PubMed Google Scholar
- Abate, G. et al. Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S. cerevisiae ADY2 promoter. Biochim. Biophys. Acta 1819, 419–427 (2012).
CAS PubMed PubMed Central Google Scholar
- McGee, S. L. et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57, 860–867 (2008).
CAS PubMed Google Scholar
- Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).
CAS PubMed PubMed Central Google Scholar
- Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201–1205 (2010).
CAS PubMed PubMed Central Google Scholar
- Lau, A. W., Liu, P., Inuzuka, H. & Gao, D. SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am. J. Cancer Res. 4, 245–255 (2014).
PubMed PubMed Central Google Scholar
- Xu, Q. et al. AMPK regulates histone H2B _O_-GlcNAcylation. Nucleic Acids Res. 42, 5594–5604 (2014).
CAS PubMed PubMed Central Google Scholar
- Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, E296 (2004).
PubMed PubMed Central Google Scholar
- Hachinohe, M. et al. A reduction in age-enhanced gluconeogenesis extends lifespan. PLoS ONE 8, e54011 (2013).
CAS PubMed PubMed Central Google Scholar
- Zheng, L., Roeder, R. G. & Luo, Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114, 255–266 (2003).
CAS PubMed Google Scholar
- Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).
CAS PubMed PubMed Central Google Scholar
- Salminen, A., Kauppinen, A., Hiltunen, M. & Kaarniranta, K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res. Rev. 16, 45–65 (2014).
CAS PubMed Google Scholar
- Williams, D. S., Cash, A., Hamadani, L. & Diemer, T. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell 8, 765–768 (2009).
CAS PubMed Google Scholar
- Edwards, C. B., Copes, N., Brito, A. G., Canfield, J. & Bradshaw, P. C. Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS ONE 8, e58345 (2013).
CAS PubMed PubMed Central Google Scholar
- Chin, R. M. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 509, 397–401 (2014).
Google Scholar
- Froy, O. Circadian rhythms, aging, and life span in mammals. Physiology 26, 225–235 (2011).
CAS PubMed Google Scholar
- Hurd, M. W. & Ralph, M. R. The significance of circadian organization for longevity in the golden hamster. J. Biol. Rhythms 13, 430–436 (1998).
CAS PubMed Google Scholar
- Rakshit, K. & Giebultowicz, J. M. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila. Aging Cell 12, 752–762 (2013).
CAS PubMed Google Scholar
- Aguilar-Arnal, L. & Sassone-Corsi, P. The circadian epigenome: how metabolism talks to chromatin remodeling. Curr. Opin. Cell Biol. 25, 170–176 (2013).
CAS PubMed PubMed Central Google Scholar
- Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006). This study demonstrates that the molecular circadian clock is an epigenetic regulator.
CAS PubMed Google Scholar
- Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).
CAS PubMed PubMed Central Google Scholar
- Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).
CAS PubMed Google Scholar
- Bellet, M. M. et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc. Natl Acad. Sci. USA 110, 3333–3338 (2013).
CAS PubMed PubMed Central Google Scholar
- Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).
CAS PubMed PubMed Central Google Scholar
- Wu, C. W. et al. Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J. Appl. Physiol. 105, 1585–1594 (2008).
PubMed Google Scholar
- Lugert, S. et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6, 445–456 (2010).
CAS PubMed Google Scholar
- Li, L. et al. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students. PLoS ONE 9, e99222 (2014).
PubMed PubMed Central Google Scholar
- Gremeaux, V. et al. Exercise and longevity. Maturitas 73, 312–317 (2012).
PubMed Google Scholar
- Koltai, E. et al. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech. Ageing Dev. 131, 21–28 (2010).
CAS PubMed Google Scholar
- McGee, S. L., Fairlie, E., Garnham, A. P. & Hargreaves, M. Exercise-induced histone modifications in human skeletal muscle. J. Physiol. 587, 5951–5958 (2009).
CAS PubMed PubMed Central Google Scholar
- Shi, C. & Murphy, C. T. Mating induces shrinking and death in Caenorhabditis mothers. Science 343, 536–540 (2014).
CAS PubMed Google Scholar
- Gendron, C. M. et al. Drosophila life span and physiology are modulated by sexual perception and reward. Science 343, 544–548 (2014).
CAS PubMed Google Scholar
- Edison, A. S. Caenorhabditis elegans pheromones regulate multiple complex behaviors. Curr. Opin. Neurobiol. 19, 378–388 (2009).
CAS PubMed PubMed Central Google Scholar
- Ludewig, A. H. et al. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl Acad. Sci. USA 110, 5522–5527 (2013).
CAS PubMed PubMed Central Google Scholar
- Wiench, M., Miranda, T. B. & Hager, G. L. Control of nuclear receptor function by local chromatin structure. FEBS J. 278, 2211–2230 (2011).
CAS PubMed PubMed Central Google Scholar
- Osmanbeyoglu, H. U. et al. Estrogen represses gene expression through reconfiguring chromatin structures. Nucleic Acids Res. 41, 8061–8071 (2013).
CAS PubMed PubMed Central Google Scholar
- Kanungo, M. S. & Thakur, M. K. Modulation of acetylation of histones and transcription of chromatin by butyric acid and 17β-estradiol in the brain of rats of various ages. Biochem. Biophys. Res. Commun. 87, 266–271 (1979).
CAS PubMed Google Scholar
- Deroo, B. J. & Korach, K. S. Estrogen receptors and human disease. J. Clin. Invest. 116, 561–570 (2006).
CAS PubMed PubMed Central Google Scholar
- Chong, S., Youngson, N. A. & Whitelaw, E. Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nat. Genet. 39, 574–575; author reply 575–576 (2007).
CAS PubMed Google Scholar
- Holliday, R. The inheritance of epigenetic defects. Science 238, 163–170 (1987).
CAS PubMed Google Scholar
- Vijg, J. & Suh, Y. Genome instability and aging. Annu. Rev. Physiol. 75, 645–668 (2013).
CAS PubMed Google Scholar
- Burgess, R. C., Misteli, T. & Oberdoerffer, P. DNA damage, chromatin, and transcription: the trinity of aging. Curr. Opin. Cell Biol. 24, 724–730 (2012).
CAS PubMed PubMed Central Google Scholar
- Vyjayanti, V. N. & Rao, K. S. DNA double strand break repair in brain: reduced NHEJ activity in aging rat neurons. Neurosci. Lett. 393, 18–22 (2006).
CAS PubMed Google Scholar
- Burtner, C. R. & Kennedy, B. K. Progeria syndromes and ageing: what is the connection? Nat. Rev. Mol. Cell Biol. 11, 567–578 (2010).
CAS PubMed Google Scholar
- Liu, J., Kim, J. & Oberdoerffer, P. Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Front. Genet. 4, 182 (2013).
PubMed PubMed Central Google Scholar
- Kidwell, M. G. Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49–63 (2002).
CAS PubMed Google Scholar
- Maxwell, P. H., Burhans, W. C. & Curcio, M. J. Retrotransposition is associated with genome instability during chronological aging. Proc. Natl Acad. Sci. USA 108, 20376–20381 (2011).
CAS PubMed PubMed Central Google Scholar
- Ross, R. J., Weiner, M. M. & Lin, H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505, 353–359 (2014).
CAS PubMed PubMed Central Google Scholar
- Wood, J. G. & Helfand, S. L. Chromatin structure and transposable elements in organismal aging. Front. Genet. 4, 274 (2013).
PubMed PubMed Central Google Scholar
- Dennis, S., Sheth, U., Feldman, J. L., English, K. A. & Priess, J. R. C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog. 8, e1002591 (2012).
PubMed PubMed Central Google Scholar
- Li, W. et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat. Neurosci. 16, 529–531 (2013).
CAS PubMed PubMed Central Google Scholar
- De Cecco, M. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging 5, 867–883 (2013).
CAS PubMed PubMed Central Google Scholar
- Reilly, M. T., Faulkner, G. J., Dubnau, J., Ponomarev, I. & Gage, F. H. The role of transposable elements in health and diseases of the central nervous system. J. Neurosci. 33, 17577–17586 (2013).
CAS PubMed PubMed Central Google Scholar
- De Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).
CAS PubMed Google Scholar
- Vinuela, A., Snoek, L. B., Riksen, J. A. & Kammenga, J. E. Genome-wide gene expression regulation as a function of genotype and age in C. elegans. Genome Res. 20, 929–937 (2010).
CAS PubMed PubMed Central Google Scholar
- Wang, Q. et al. The spatial association of gene expression evolves from synchrony to asynchrony and stochasticity with age. PLoS ONE 6, e24076 (2011).
CAS PubMed PubMed Central Google Scholar
- Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).
CAS PubMed Google Scholar
- Warren, L. A. et al. Transcriptional instability is not a universal attribute of aging. Aging Cell 6, 775–782 (2007). References 149 and 150 were pioneering studies that investigated the effects of ageing on cell-to-cell noise at selected genes.
CAS PubMed Google Scholar
- Busuttil, R. A. et al. Intra-organ variation in age-related mutation accumulation in the mouse. PLoS ONE 2, e876 (2007).
PubMed PubMed Central Google Scholar
- Weinberger, L. et al. Expression noise and acetylation profiles distinguish HDAC functions. Mol. Cell 47, 193–202 (2012).
CAS PubMed PubMed Central Google Scholar
- Jones, D. L. Aging and the germ line: where mortality and immortality meet. Stem Cell Rev. 3, 192–200 (2007).
CAS PubMed Google Scholar
- Lim, J. P. & Brunet, A. Bridging the transgenerational gap with epigenetic memory. Trends Genet. 29, 176–186 (2013).
CAS PubMed PubMed Central Google Scholar
- Ragunathan, K., Jih, G. & Moazed, D. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699 (2015).
PubMed Google Scholar
- Gaydos, L. J., Wang, W. & Strome, S. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345, 1515–1518 (2014).
CAS PubMed PubMed Central Google Scholar
- Radford, E. J. et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).
PubMed PubMed Central Google Scholar
- Kelly, W. G. Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenetics Chromatin 7, 6 (2014).
PubMed PubMed Central Google Scholar
- Katz, D. J., Edwards, T. M., Reinke, V. & Kelly, W. G. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009).
CAS PubMed PubMed Central Google Scholar
- Greer, E. L. et al. A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep. 7, 113–126 (2014).
CAS PubMed PubMed Central Google Scholar
- Xiao, Y. et al. Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. Proc. Natl Acad. Sci. USA 108, 8305–8310 (2011).
CAS PubMed PubMed Central Google Scholar
- Kerr, S. C., Ruppersburg, C. C., Francis, J. W. & Katz, D. J. SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state during passage through the germ line. Proc. Natl Acad. Sci. USA 111, 9509–9514 (2014).
CAS PubMed PubMed Central Google Scholar
- Robert, V. J. et al. The SET-2/SET1 histone H3K4 methyltransferase maintains pluripotency in the Caenorhabditis elegans germline. Cell Rep. 9, 443–450 (2014).
CAS PubMed Google Scholar
- Buckley, B. A. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447–451 (2012).
CAS PubMed PubMed Central Google Scholar
- Simon, M. et al. Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants. Cell Rep. 7, 762–773 (2014).
CAS PubMed PubMed Central Google Scholar
- Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).
CAS PubMed PubMed Central Google Scholar
- Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287 (2014).
CAS PubMed PubMed Central Google Scholar
- Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).
CAS PubMed PubMed Central Google Scholar
- Tauffenberger, A. & Parker, J. A. Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans. PLoS Genet. 10, e1004346 (2014).
PubMed PubMed Central Google Scholar
- Stern, S., Fridmann-Sirkis, Y., Braun, E. & Soen, Y. Epigenetically heritable alteration of fly development in response to toxic challenge. Cell Rep. 1, 528–542 (2012).
CAS PubMed Google Scholar
- Hojfeldt, J. W., Agger, K. & Helin, K. Histone lysine demethylases as targets for anticancer therapy. Nat. Rev. Drug Discov. 12, 917–930 (2013).
CAS PubMed Google Scholar
- Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).
CAS PubMed Google Scholar
- Graff, J. et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222–226 (2012).
PubMed PubMed Central Google Scholar
- Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
CAS PubMed PubMed Central Google Scholar
- Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).
CAS PubMed PubMed Central Google Scholar
- Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).
CAS PubMed Google Scholar
- Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).
CAS PubMed Google Scholar
- Maze, I., Noh, K. M., Soshnev, A. A. & Allis, C. D. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15, 259–271 (2014).
CAS PubMed PubMed Central Google Scholar
- Bhaumik, S. R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016 (2007).
CAS PubMed Google Scholar
- Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).
CAS PubMed Google Scholar
- Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).
CAS PubMed PubMed Central Google Scholar
- Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495 (2015).
CAS PubMed PubMed Central Google Scholar
- Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).
PubMed PubMed Central Google Scholar
- Tsygankov, D., Liu, Y., Sanoff, H. K., Sharpless, N. E. & Elston, T. C. A quantitative model for age-dependent expression of the p16INK4a tumor suppressor. Proc. Natl Acad. Sci. USA 106, 16562–16567 (2009).
CAS PubMed PubMed Central Google Scholar
- Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA 101, 17312–17315 (2004).
CAS PubMed PubMed Central Google Scholar
- Kellinger, M. W. et al. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 19, 831–833 (2012).
CAS PubMed PubMed Central Google Scholar
- Kirkwood, T. B. & Holliday, R. The evolution of ageing and longevity. Proc. R. Soc. Lond. B 205, 531–546 (1979).
CAS PubMed Google Scholar
- Mahmoudi, S. & Brunet, A. Aging and reprogramming: a two-way street. Curr. Opin. Cell Biol. 24, 744–756 (2012).
CAS PubMed PubMed Central Google Scholar
- Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
CAS PubMed Google Scholar
- Wahlestedt, M. et al. An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 121, 4257–4264 (2013).
CAS PubMed Google Scholar
- Jenkins, T. G., Aston, K. I., Pflueger, C., Cairns, B. R. & Carrell, D. T. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 10, e1004458 (2014).
PubMed PubMed Central Google Scholar
- Shao, G. B. et al. Aging alters histone H3 lysine 4 methylation in mouse germinal vesicle stage oocytes. Reprod. Fertil. Dev. 27, 419–426 (2014).
Google Scholar
- Manosalva, I. & Gonzalez, A. Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology 74, 1539–1547 (2010).
CAS PubMed Google Scholar
- Hamatani, T. et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13, 2263–2278 (2004).
CAS PubMed Google Scholar