A comparative genomic view of clostridial sporulation and physiology (original) (raw)

References

  1. Cato, E. P., George, W. L. & Finegold, S. M. in Bergey's Manual of Systematic Bacteriology (eds Sneath, H. A., Mair, N. S., Sharpe, M. E. & Holt, J. G.) 1141–1200 (Williams & Wilkins, Baltimore, 1986).
    Google Scholar
  2. Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. & Flint, H. J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217, 133–139 (2002).
    CAS PubMed Google Scholar
  3. Collins, M. D. et al. The phylogeny of the genus Clostridium — proposal of 5 new genera and 11 new species combinations. Int. J. Syst. Bacteriol. 44, 812–826 (1994).
    CAS PubMed Google Scholar
  4. Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).
    PubMed PubMed Central Google Scholar
  5. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, 1664–1683 (2004). A comprehensive paper about the B. subtilis mother-cell sporulation cascade, comprising its mapping, regulon discovery and main control loops. A milestone that must be read by anyone working on sporulation.
    CAS Google Scholar
  6. Hilbert, D. W. & Piggot, P. J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68, 234–262 (2004).
    CAS PubMed PubMed Central Google Scholar
  7. Errington, J. Regulation of endospore formation in Bacillus subtilis. Nature Rev. Microbiol. 1, 117–126 (2003).
    CAS Google Scholar
  8. Piggot, P. J. & Hilbert, D. W. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7, 579–586 (2004).
    CAS PubMed Google Scholar
  9. Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683–1701 (2003). The mapping of the Spo0A regulon using ChIP-on-chip and transcriptional profiling together with mobility-shift assays and bioinformatics. It shows how new technologies help unravel the mysteries of cell regulation.
    CAS PubMed Google Scholar
  10. Steil, L., Serrano, M., Henriques, A. O. & Volker, U. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151, 399–420 (2005). Published shortly after reference 5, it uses a similar approach to elucidate members of the σ F , σ E , σ G and σ K regulons.
    CAS PubMed Google Scholar
  11. Eichenberger, P. et al. The σE regulon and the identification of additional sporulation genes in Bacillus subtilis. J. Mol. Biol. 327, 945–972 (2003).
    CAS PubMed Google Scholar
  12. Britton, R. A. et al. Genome-wide analysis of the stationary-phase σ factor (σ-H) regulon of Bacillus subtilis. J. Bacteriol. 184, 4881–4890 (2002).
    CAS PubMed PubMed Central Google Scholar
  13. Sonenshein, A. L. in Regulation of Prokaryotic Development (eds Smith, I., Slepecky, R. A. & Setlow, P.) 109–130 (ASM Press, Washington DC, 1989).
    Google Scholar
  14. Jones, D. T. & Woods, D. R. Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484–524 (1986).
    CAS PubMed PubMed Central Google Scholar
  15. Woods, D. R. The genetic engineering of microbial solvent production. Trends Biotechnol. 13, 259–264 (1995).
    CAS PubMed Google Scholar
  16. Meyer, C. L. & Papoutsakis, E. T. Increased levels of Atp and Nadh are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 30, 450–459 (1989).
    CAS Google Scholar
  17. Girbal, L. & Soucaille, P. Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol. 16, 11–16 (1998).
    CAS Google Scholar
  18. Hüsemann, M. H. W. & Papoutsakis, E. T. Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic-acid and proton concentrations. Biotechnol. Bioeng. 32, 843–852 (1988).
    PubMed Google Scholar
  19. Bahl, H., Muller, H., Behrens, S., Joseph, H. & Narberhaus, F. Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol. Rev. 17, 341–348 (1995). Excellent review about the stress-response genes in C. acetobutylicum and some hints about its relationship with solventogenesis and sporulation.
    CAS PubMed Google Scholar
  20. Petit, L., Gibert, M. & Popoff, M. R. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7, 104–110 (1999).
    CAS PubMed Google Scholar
  21. Rood, J. I. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52, 333–360 (1998).
    CAS PubMed Google Scholar
  22. Rupnik, M. et al. Revised nomenclature of Clostridium difficile toxins and associated genes. J. Med. Microbiol. 54, 113–117 (2005).
    CAS PubMed Google Scholar
  23. Ohtani, K., Hayashi, H. & Shimizu, T. The luxS gene is involved in cell–cell signalling for toxin production in Clostridium perfringens. Mol. Microbiol. 44, 171–179 (2002).
    CAS PubMed Google Scholar
  24. Varga, J., Stirewalt, V. L. & Melville, S. B. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J. Bacteriol. 186, 5221–5229 (2004).
    CAS PubMed PubMed Central Google Scholar
  25. Raffestin, S., Dupuy, B., Marvaud, J. C. & Popoff, M. R. BotR/A and TetR are alternative RNA polymerase σ factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol. Microbiol. 55, 235–249 (2005).
    CAS PubMed Google Scholar
  26. Ozutsumi, K., Sugimoto, N. & Matsuda, M. Rapid, simplified method for production and purification of tetanus toxin. Appl. Environ. Microbiol. 49, 939–943 (1985).
    CAS PubMed PubMed Central Google Scholar
  27. Harris, L. M., Welker, N. E. & Papoutsakis, E. T. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J. Bacteriol. 184, 3586–3597 (2002).
    CAS PubMed PubMed Central Google Scholar
  28. Huang, I. H., Waters, M., Grau, R. R. & Sarker, M. R. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol. Lett. 233, 233–240 (2004).
    CAS PubMed Google Scholar
  29. Wilkinson, S. R., Young, D. I., Morris, J. G. & Young, M. Molecular genetics and the initiation of solventogenesis in Clostridium berijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052. FEMS Microbiol. Rev. 17, 275–285 (1995).
    CAS PubMed Google Scholar
  30. Ravagnani, A. et al. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol. Microbiol. 37, 1172–1185 (2000).
    CAS PubMed Google Scholar
  31. Nölling, J. et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183, 4823–4838 (2001).
    PubMed PubMed Central Google Scholar
  32. Stragier, P. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 519–525 (ASM Press, Washington DC, 2002).
    Google Scholar
  33. Dürre, P. & Hollergschwandner, C. Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10, 69–74 (2004). A complete review of the early sporulation events in C. acetobutylicum.
    PubMed Google Scholar
  34. Shimizu, T. et al. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl Acad. Sci. USA 99, 996–1001 (2002).
    CAS PubMed PubMed Central Google Scholar
  35. Brüggemann, H. & Gottschalk, G. Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 10, 53–68 (2004). An in-depth study of the genomic content, including toxin production and general metabolism, in view of the fully sequenced C. tetani genome.
    PubMed Google Scholar
  36. Stephenson, K. & Hoch, J. A. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 46, 297–304 (2002). Studies the high conservation of the phosphorylating domains and the low conservation of the sensing domains involved in the Bacillus sporulation phosphorelay. The common mechanism has been adapted to initiate sporulation according to different signals present in each specific Bacillus species' environment.
    CAS PubMed Google Scholar
  37. Stephenson, K. & Lewis, R. J. Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol. Rev. 29, 281–301 (2005). An excellent and rigorous review of the sporulation phosphorelay and the beginnings of the sporulation process.
    CAS PubMed Google Scholar
  38. Zhao, Y. S., Tomas, C. A., Rudolph, F. B., Papoutsakis, E. T. & Bennett, G. N. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl. Environ. Microbiol. 71, 530–537 (2005). Introduces the idea that butyryl phosphate has a key role in the change from acidogenesis to solventogenesis in C. acetobutylicum.
    CAS PubMed PubMed Central Google Scholar
  39. Lukat, G. S., McCleary, W. R., Stock, A. M. & Stock, J. B. Phosphorylation of bacterial response regulator proteins by low-molecular-weight phospho-donors. Proc. Natl Acad. Sci. USA 89, 718–722 (1992).
    CAS PubMed PubMed Central Google Scholar
  40. Trach, K. A. & Hoch, J. A. Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol. Microbiol. 8, 69–79 (1993).
    CAS PubMed Google Scholar
  41. Fabret, C., Feher, V. A. & Hoch, J. A. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J. Bacteriol. 181, 1975–1983 (1999).
    CAS PubMed PubMed Central Google Scholar
  42. Perego, M. & Hoch, J. A. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 473–481 (ASM Press, Washington DC, 2002).
    Google Scholar
  43. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).
    CAS PubMed Google Scholar
  44. Alsaker, K. V. & Papoutsakis, E. T. The transcriptional program of early sporulation and stationary phase events in Clostridium acetobutylicum. J. Bacteriol. 187, 7103–7118 (2005).
    CAS PubMed PubMed Central Google Scholar
  45. Wolfe, A. J. The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50 (2005). A thorough review of how acetate phosphate (and, therefore, a switch between acetate assimilation and dissimilation) acts as a global switch of gene expression in E. coli.
    CAS PubMed PubMed Central Google Scholar
  46. Green, E. M. et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142, 2079–2086 (1996).
    CAS PubMed Google Scholar
  47. Harris, L. M., Desai, R. P., Welker, N. E. & Papoutsakis, E. T. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioeng. 67, 1–11 (2000).
    CAS PubMed Google Scholar
  48. Clark, S. W., Bennett, G. N. & Rudolph, F. B. Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl. Environ. Microbiol. 55, 970–976 (1989).
    CAS PubMed PubMed Central Google Scholar
  49. Mavrovouniotis, M. L. Estimation of standard Gibbs energy changes of biotransformations. J. Biol. Chem. 266, 14440–14445 (1991).
    CAS PubMed Google Scholar
  50. Mavrovouniotis, M. L. Group contributions for estimating standard Gibbs energies of formation of biochemical-compounds in aqueous solution. Biotechnol. Bioeng. 36, 1070–1082 (1990).
    CAS PubMed Google Scholar
  51. Heyde, M., Laloi, P. & Portalier, R. Involvement of carbon source and acetyl phosphate in the external-pH-dependent expression of porin genes in Escherichia coli. J. Bacteriol. 182, 198–202 (2000).
    CAS PubMed PubMed Central Google Scholar
  52. Nyström, T. The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol. Microbiol. 12, 833–843 (1994).
    PubMed Google Scholar
  53. McCleary, W. R., Stock, J. B. & Ninfa, A. J. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175, 2793–2798 (1993).
    CAS PubMed PubMed Central Google Scholar
  54. Prüß, B. M. & Wolfe, A. J. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol. Microbiol. 12, 973–984 (1994).
    PubMed Google Scholar
  55. Wolfe, A. J. et al. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol. Microbiol. 48, 977–988 (2003).
    CAS PubMed Google Scholar
  56. Strauch, M. A. & Hoch, J. A. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene-expression. Mol. Microbiol. 7, 337–342 (1993).
    CAS PubMed Google Scholar
  57. Piggot, P. J. & Losick, R. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 483–517 (ASM Press, Washington DC, 2002).
    Google Scholar
  58. Onyenwoke, R. U., Brill, J. A., Farahi, K. & Wiegel, J. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Arch. Microbiol. 182, 182–192 (2004).
    CAS PubMed Google Scholar
  59. Santangelo, J. D., Kuhn, A., Treuner-Lange, A. & Dürre, P. Sporulation and time course expression of σ-factor homologous genes in Clostridium acetobutylicum. FEMS Microbiol. Lett. 161, 157–164 (1998).
    CAS PubMed Google Scholar
  60. Weir, J., Predich, M., Dubnau, E., Nair, G. & Smith, I. Regulation of spo0H, a gene coding for the Bacillus subtilis σ-H factor. J. Bacteriol. 173, 521–529 (1991).
    CAS PubMed PubMed Central Google Scholar
  61. Resnekov, O., Driks, A. & Losick, R. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J. Bacteriol. 177, 5628–5635 (1995).
    CAS PubMed PubMed Central Google Scholar
  62. Zuber, P. & Losick, R. Role of AbrB in Spo0A-dependent and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. J. Bacteriol. 169, 2223–2230 (1987).
    CAS PubMed PubMed Central Google Scholar
  63. Long, S., Jones, D. T. & Woods, D. R. Initiation of solvent production, clostridial stage and endospore formation in Clostridium acetobutylicum P262. Appl. Microbiol. Biotechnol. 20, 256–261 (1984).
    CAS Google Scholar
  64. Jones, D. T. et al. Solvent production and morphological changes in Clostridium acetobutylicum. Appl. Environ. Microbiol. 43, 1434–1439 (1982).
    CAS PubMed PubMed Central Google Scholar
  65. York, K. et al. Spo0A controls the σA-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. J. Bacteriol. 174, 2648–2658 (1992).
    CAS PubMed PubMed Central Google Scholar
  66. Scotcher, M. C. & Bennett, G. N. SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824. J. Bacteriol. 187, 1930–1936 (2005).
    CAS PubMed PubMed Central Google Scholar
  67. Stragier, P., Kunkel, B., Kroos, L. & Losick, R. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243, 507–512 (1989).
    CAS PubMed Google Scholar
  68. Haraldsen, J. D. & Sonenshein, A. L. Efficient sporulation in Clostridium difficile requires disruption of the σK gene. Mol. Microbiol. 48, 811–821 (2003).
    CAS PubMed Google Scholar
  69. Scotcher, M. C., Rudolph, F. B. & Bennett, G. N. Expression of abrB310 and sinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71, 1987–1995 (2005).
    CAS PubMed PubMed Central Google Scholar
  70. Mandic-Mulec, I., Doukhan, L. & Smith, I. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J. Bacteriol. 177, 4619–4627 (1995).
    CAS PubMed PubMed Central Google Scholar
  71. Bai, U., Mandic-Mulec, I. & Smith, I. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein–protein interaction. Genes Dev. 7, 139–148 (1993).
    CAS PubMed Google Scholar
  72. Schumann, W., Hecker, M. & Msadek, T. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 359–368 (ASM Press, Washington DC, 2002).
    Google Scholar
  73. Pich, A., Narberhaus, F. & Bahl, H. Induction of heat shock proteins during the initiation of solvent formation in Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 33, 697–704 (1990).
    CAS Google Scholar
  74. Sauer, U. & Dürre, P. Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum. FEMS Microbiol. Lett. 125, 115–120 (1995).
    CAS Google Scholar
  75. Schaffer, S., Isci, N., Zickner, B. & Dürre, P. Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis 23, 110–121 (2002). First publication on proteomic profiling in C. acetobutylicum and the transition from acidogenic and solventogenic conditions.
    CAS PubMed Google Scholar
  76. Terracciano, J. S., Rapaport, E. & Kashket, E. R. Stress and growth-phase associated proteins of Clostridium acetobutylicum. Appl. Environ. Microbiol. 54, 1989–1995 (1988).
    CAS PubMed PubMed Central Google Scholar
  77. Walter, K. A., Mermelstein, L. D. & Papoutsakis, E. T. Host–plasmid interactions in recombinant strains of Clostridium acetobutylicum ATCC 824. FEMS Microbiol. Lett. 123, 335–342 (1994).
    CAS Google Scholar
  78. Tomas, C. A., Welker, N. E. & Papoutsakis, E. T. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and large changes in the cell's transcriptional program. Appl. Environ. Microbiol. 69, 4951–4965 (2003). First clostridial transcriptional microarray platform, it includes the profiling of C. acetobutylicum wild-type and non-solventogenic, asporogenous strains.
    CAS PubMed PubMed Central Google Scholar
  79. Tomas, C. A., Beamish, J. A. & Papoutsakis, E. T. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J. Bacteriol. 186, 2006–2018 (2003).
    Google Scholar
  80. Alsaker, K. V., Spitzer, T. R. & Papoutsakis, E. T. Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress. J. Bacteriol. 186, 1959–1971 (2004).
    CAS PubMed PubMed Central Google Scholar
  81. Hüsemann, M. H. & Papoutsakis, E. T. Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum. Appl. Environ. Microbiol. 56, 1497–1500 (1990).
    PubMed PubMed Central Google Scholar
  82. Fond, O., Matta-Ammouri, G., Petitdemange, H. & Engasser, J. M. The role of acids on the production of acetone and butanol by Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 22, 195–200 (1985).
    CAS Google Scholar
  83. Huang, L., Forsberg, C. W. & Gibbens, L. N. Influence of external pH and fermentation products on Clostridium acetobutylicum intracellular pH and cellular distribution of fermentation products. Appl. Environ. Microbiol. 51, 1230–1234 (1986).
    CAS PubMed PubMed Central Google Scholar
  84. Terracciano, J. S. & Kashket, E. R. Intracellular conditions required for the initiation of solvent production by Clostridium acetobutylicum. Appl. Environ. Microbiol. 52, 86–91 (1986).
    CAS PubMed PubMed Central Google Scholar
  85. Gottwald, M. & Gottschalk, G. The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch. Microbiol. 143, 42–46 (1985).
    CAS Google Scholar
  86. George, H. A. & Chen, J. -S. Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym C. butylicum). Appl. Environ. Microbiol. 46, 321–327 (1983).
    CAS PubMed PubMed Central Google Scholar
  87. Aizawa, S. -I., Zhulin, I. B., Márquez-Magaña, L. & Ordal, G. W. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 437–452 (ASM Press, Washington DC, 2002).
    Google Scholar
  88. Estacio, W., Santa Anna-Arriola, S., Adedipe, M. & Marquez-Magana, L. M. Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis. J. Bacteriol. 180, 3548–3555 (1998).
    CAS PubMed PubMed Central Google Scholar
  89. Tomas, C. A. et al. DNA-array based transcriptional analysis of asporogenous, non-solventogenic Clostridium acetobutylicum strains SKO1 and M5. J. Bacteriol. 185, 4539–4547 (2003). Transcriptional profiling and Western blot analysis of a C. acetobutylicum strain overexpressing the groESL operon. The strain shows important variations in butanol tolerance, solvent production, cell division and sporulation, showing the complex relationships between these processes in C. acetobutylicum.
    CAS PubMed PubMed Central Google Scholar
  90. Cornillot, E., Nair, R. V., Papoutsakis, E. T. & Soucaille, P. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179, 5442–5447 (1997).
    CAS PubMed PubMed Central Google Scholar
  91. Stim-Herndon, K. P., Nair, R., Papoutsakis, E. T. & Bennett, G. N. Analysis of degenerate variants of Clostridium acetobutylicum ATCC 824. Anaerobe 2, 11–18 (1996).
    CAS Google Scholar
  92. Petersen, D. J. & Bennett, G. N. Enzymatic characterization of a nonmotile, nonsolventogenic Clostridium acetobutylicum ATCC824 mutant. Curr. Microbiol. 23, 253–258 (1991).
    CAS Google Scholar
  93. Gutierrez, N. A. & Maddox, I. S. Isolation and partial characterization of a non-motile mutant of Clostridium acetobutylicum. Biotechnol. Lett. 12, 853–856 (1990).
    CAS Google Scholar
  94. Lyristis, M. et al. Cloning, sequencing, and characterization of the gene encoding flagellin, flaC, and the post-translational modification of flagellin, FlaC, from Clostridium acetobutylicum ATCC824. Anaerobe 6, 69–79 (2000).
    CAS Google Scholar
  95. Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257–266 (2002).
    CAS PubMed Google Scholar
  96. Dworkin, J. & Losick, R. Developmental commitment in a bacterium. Cell 121, 401–409 (2005).
    CAS PubMed Google Scholar
  97. Baptista, C. S. et al. DNA microarrays for comparative genomics and analysis of gene expression in Trypanosoma cruzi. Mol. Biochem. Parasitol. 138, 183–194 (2004).
    CAS PubMed Google Scholar
  98. Cassat, J. E. et al. Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J. Bacteriol. 187, 576–592 (2005).
    CAS PubMed PubMed Central Google Scholar
  99. Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).
    CAS PubMed Google Scholar
  100. Paredes, C. J., Rigoutsos, I. & Papoutsakis, E. T. Transcriptional organization of the Clostridium acetobutylicum genome. Nucleic Acids Res. 32, 1973–1981 (2004).
    CAS PubMed PubMed Central Google Scholar
  101. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl Acad. Sci. USA 95, 5857–5864 (1998).
    CAS PubMed PubMed Central Google Scholar
  102. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).
    CAS PubMed PubMed Central Google Scholar
  103. Letunic, I. et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, D142–D144 (2004).
    CAS PubMed PubMed Central Google Scholar
  104. Mulder, N. J. et al. InterPro, progress and status in 2005. Nucleic Acids Res. 33, D201–D205 (2005).
    CAS PubMed Google Scholar
  105. Steen, H. & Pandey, A. Proteomics goes quantitative: measuring protein abundance. Trends Biotechnol. 20, 361–364 (2002).
    CAS PubMed Google Scholar
  106. Lin, D., Tabb, D. L. & Yates, J. R. Large-scale protein identification using mass spectrometry. Biochim. Biophys. Acta 1646, 1–10 (2003).
    CAS PubMed Google Scholar
  107. Brüggemann, H. et al. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl Acad. Sci. USA 100, 1316–1321 (2003).
    PubMed PubMed Central Google Scholar
  108. Hoch, J. A. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol. 47, 441–465 (1993).
    CAS PubMed Google Scholar
  109. Sonenshein, A. L. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3, 561–566 (2000).
    CAS PubMed Google Scholar
  110. Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. & Lipman, D. J. Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS PubMed Google Scholar
  111. Jiang, M., Shao, W. L., Perego, M. & Hoch, J. A. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38, 535–542 (2000).
    CAS PubMed Google Scholar
  112. Dartois, V., Djavakhishvili, T. & Hoch, J. A. Identification of a membrane protein involved in activation of the KinB pathway to sporulation in Bacillus subtilis. J. Bacteriol. 178, 1178–1186 (1996).
    CAS PubMed PubMed Central Google Scholar
  113. LeDeaux, J. R. & Grossman, A. D. Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J. Bacteriol. 177, 166–175 (1995).
    CAS PubMed PubMed Central Google Scholar

Download references