A comparative genomic view of clostridial sporulation and physiology (original) (raw)
References
Cato, E. P., George, W. L. & Finegold, S. M. in Bergey's Manual of Systematic Bacteriology (eds Sneath, H. A., Mair, N. S., Sharpe, M. E. & Holt, J. G.) 1141–1200 (Williams & Wilkins, Baltimore, 1986). Google Scholar
Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. & Flint, H. J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett.217, 133–139 (2002). CASPubMed Google Scholar
Collins, M. D. et al. The phylogeny of the genus Clostridium — proposal of 5 new genera and 11 new species combinations. Int. J. Syst. Bacteriol.44, 812–826 (1994). CASPubMed Google Scholar
Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol.4, 44 (2004). PubMedPubMed Central Google Scholar
Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol.2, 1664–1683 (2004). A comprehensive paper about theB. subtilismother-cell sporulation cascade, comprising its mapping, regulon discovery and main control loops. A milestone that must be read by anyone working on sporulation. CAS Google Scholar
Hilbert, D. W. & Piggot, P. J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev.68, 234–262 (2004). CASPubMedPubMed Central Google Scholar
Errington, J. Regulation of endospore formation in Bacillus subtilis. Nature Rev. Microbiol.1, 117–126 (2003). CAS Google Scholar
Piggot, P. J. & Hilbert, D. W. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol.7, 579–586 (2004). CASPubMed Google Scholar
Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol.50, 1683–1701 (2003). The mapping of the Spo0A regulon using ChIP-on-chip and transcriptional profiling together with mobility-shift assays and bioinformatics. It shows how new technologies help unravel the mysteries of cell regulation. CASPubMed Google Scholar
Steil, L., Serrano, M., Henriques, A. O. & Volker, U. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology151, 399–420 (2005). Published shortly after reference 5, it uses a similar approach to elucidate members of the σF, σE, σGand σKregulons. CASPubMed Google Scholar
Eichenberger, P. et al. The σE regulon and the identification of additional sporulation genes in Bacillus subtilis. J. Mol. Biol.327, 945–972 (2003). CASPubMed Google Scholar
Britton, R. A. et al. Genome-wide analysis of the stationary-phase σ factor (σ-H) regulon of Bacillus subtilis. J. Bacteriol.184, 4881–4890 (2002). CASPubMedPubMed Central Google Scholar
Sonenshein, A. L. in Regulation of Prokaryotic Development (eds Smith, I., Slepecky, R. A. & Setlow, P.) 109–130 (ASM Press, Washington DC, 1989). Google Scholar
Woods, D. R. The genetic engineering of microbial solvent production. Trends Biotechnol.13, 259–264 (1995). CASPubMed Google Scholar
Meyer, C. L. & Papoutsakis, E. T. Increased levels of Atp and Nadh are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol.30, 450–459 (1989). CAS Google Scholar
Girbal, L. & Soucaille, P. Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol.16, 11–16 (1998). CAS Google Scholar
Hüsemann, M. H. W. & Papoutsakis, E. T. Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic-acid and proton concentrations. Biotechnol. Bioeng.32, 843–852 (1988). PubMed Google Scholar
Bahl, H., Muller, H., Behrens, S., Joseph, H. & Narberhaus, F. Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol. Rev.17, 341–348 (1995). Excellent review about the stress-response genes inC. acetobutylicumand some hints about its relationship with solventogenesis and sporulation. CASPubMed Google Scholar
Petit, L., Gibert, M. & Popoff, M. R. Clostridium perfringens: toxinotype and genotype. Trends Microbiol.7, 104–110 (1999). CASPubMed Google Scholar
Rood, J. I. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol.52, 333–360 (1998). CASPubMed Google Scholar
Rupnik, M. et al. Revised nomenclature of Clostridium difficile toxins and associated genes. J. Med. Microbiol.54, 113–117 (2005). CASPubMed Google Scholar
Ohtani, K., Hayashi, H. & Shimizu, T. The luxS gene is involved in cell–cell signalling for toxin production in Clostridium perfringens. Mol. Microbiol.44, 171–179 (2002). CASPubMed Google Scholar
Varga, J., Stirewalt, V. L. & Melville, S. B. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J. Bacteriol.186, 5221–5229 (2004). CASPubMedPubMed Central Google Scholar
Raffestin, S., Dupuy, B., Marvaud, J. C. & Popoff, M. R. BotR/A and TetR are alternative RNA polymerase σ factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol. Microbiol.55, 235–249 (2005). CASPubMed Google Scholar
Ozutsumi, K., Sugimoto, N. & Matsuda, M. Rapid, simplified method for production and purification of tetanus toxin. Appl. Environ. Microbiol.49, 939–943 (1985). CASPubMedPubMed Central Google Scholar
Harris, L. M., Welker, N. E. & Papoutsakis, E. T. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J. Bacteriol.184, 3586–3597 (2002). CASPubMedPubMed Central Google Scholar
Huang, I. H., Waters, M., Grau, R. R. & Sarker, M. R. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol. Lett.233, 233–240 (2004). CASPubMed Google Scholar
Wilkinson, S. R., Young, D. I., Morris, J. G. & Young, M. Molecular genetics and the initiation of solventogenesis in Clostridium berijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052. FEMS Microbiol. Rev.17, 275–285 (1995). CASPubMed Google Scholar
Ravagnani, A. et al. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol. Microbiol.37, 1172–1185 (2000). CASPubMed Google Scholar
Nölling, J. et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol.183, 4823–4838 (2001). PubMedPubMed Central Google Scholar
Stragier, P. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 519–525 (ASM Press, Washington DC, 2002). Google Scholar
Dürre, P. & Hollergschwandner, C. Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe10, 69–74 (2004). A complete review of the early sporulation events inC. acetobutylicum. PubMed Google Scholar
Shimizu, T. et al. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl Acad. Sci. USA99, 996–1001 (2002). CASPubMedPubMed Central Google Scholar
Brüggemann, H. & Gottschalk, G. Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe10, 53–68 (2004). An in-depth study of the genomic content, including toxin production and general metabolism, in view of the fully sequencedC. tetanigenome. PubMed Google Scholar
Stephenson, K. & Hoch, J. A. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol.46, 297–304 (2002). Studies the high conservation of the phosphorylating domains and the low conservation of the sensing domains involved in theBacillussporulation phosphorelay. The common mechanism has been adapted to initiate sporulation according to different signals present in each specificBacillusspecies' environment. CASPubMed Google Scholar
Stephenson, K. & Lewis, R. J. Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol. Rev.29, 281–301 (2005). An excellent and rigorous review of the sporulation phosphorelay and the beginnings of the sporulation process. CASPubMed Google Scholar
Zhao, Y. S., Tomas, C. A., Rudolph, F. B., Papoutsakis, E. T. & Bennett, G. N. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl. Environ. Microbiol.71, 530–537 (2005). Introduces the idea that butyryl phosphate has a key role in the change from acidogenesis to solventogenesis inC. acetobutylicum. CASPubMedPubMed Central Google Scholar
Lukat, G. S., McCleary, W. R., Stock, A. M. & Stock, J. B. Phosphorylation of bacterial response regulator proteins by low-molecular-weight phospho-donors. Proc. Natl Acad. Sci. USA89, 718–722 (1992). CASPubMedPubMed Central Google Scholar
Trach, K. A. & Hoch, J. A. Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol. Microbiol.8, 69–79 (1993). CASPubMed Google Scholar
Fabret, C., Feher, V. A. & Hoch, J. A. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J. Bacteriol.181, 1975–1983 (1999). CASPubMedPubMed Central Google Scholar
Perego, M. & Hoch, J. A. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 473–481 (ASM Press, Washington DC, 2002). Google Scholar
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol.305, 567–580 (2001). CASPubMed Google Scholar
Alsaker, K. V. & Papoutsakis, E. T. The transcriptional program of early sporulation and stationary phase events in Clostridium acetobutylicum. J. Bacteriol.187, 7103–7118 (2005). CASPubMedPubMed Central Google Scholar
Wolfe, A. J. The acetate switch. Microbiol. Mol. Biol. Rev.69, 12–50 (2005). A thorough review of how acetate phosphate (and, therefore, a switch between acetate assimilation and dissimilation) acts as a global switch of gene expression inE. coli. CASPubMedPubMed Central Google Scholar
Green, E. M. et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology142, 2079–2086 (1996). CASPubMed Google Scholar
Harris, L. M., Desai, R. P., Welker, N. E. & Papoutsakis, E. T. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioeng.67, 1–11 (2000). CASPubMed Google Scholar
Clark, S. W., Bennett, G. N. & Rudolph, F. B. Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl. Environ. Microbiol.55, 970–976 (1989). CASPubMedPubMed Central Google Scholar
Mavrovouniotis, M. L. Estimation of standard Gibbs energy changes of biotransformations. J. Biol. Chem.266, 14440–14445 (1991). CASPubMed Google Scholar
Mavrovouniotis, M. L. Group contributions for estimating standard Gibbs energies of formation of biochemical-compounds in aqueous solution. Biotechnol. Bioeng.36, 1070–1082 (1990). CASPubMed Google Scholar
Heyde, M., Laloi, P. & Portalier, R. Involvement of carbon source and acetyl phosphate in the external-pH-dependent expression of porin genes in Escherichia coli. J. Bacteriol.182, 198–202 (2000). CASPubMedPubMed Central Google Scholar
Nyström, T. The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol. Microbiol.12, 833–843 (1994). PubMed Google Scholar
McCleary, W. R., Stock, J. B. & Ninfa, A. J. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol.175, 2793–2798 (1993). CASPubMedPubMed Central Google Scholar
Prüß, B. M. & Wolfe, A. J. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol. Microbiol.12, 973–984 (1994). PubMed Google Scholar
Wolfe, A. J. et al. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol. Microbiol.48, 977–988 (2003). CASPubMed Google Scholar
Strauch, M. A. & Hoch, J. A. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene-expression. Mol. Microbiol.7, 337–342 (1993). CASPubMed Google Scholar
Piggot, P. J. & Losick, R. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 483–517 (ASM Press, Washington DC, 2002). Google Scholar
Onyenwoke, R. U., Brill, J. A., Farahi, K. & Wiegel, J. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Arch. Microbiol.182, 182–192 (2004). CASPubMed Google Scholar
Santangelo, J. D., Kuhn, A., Treuner-Lange, A. & Dürre, P. Sporulation and time course expression of σ-factor homologous genes in Clostridium acetobutylicum. FEMS Microbiol. Lett.161, 157–164 (1998). CASPubMed Google Scholar
Weir, J., Predich, M., Dubnau, E., Nair, G. & Smith, I. Regulation of spo0H, a gene coding for the Bacillus subtilis σ-H factor. J. Bacteriol.173, 521–529 (1991). CASPubMedPubMed Central Google Scholar
Resnekov, O., Driks, A. & Losick, R. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J. Bacteriol.177, 5628–5635 (1995). CASPubMedPubMed Central Google Scholar
Zuber, P. & Losick, R. Role of AbrB in Spo0A-dependent and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. J. Bacteriol.169, 2223–2230 (1987). CASPubMedPubMed Central Google Scholar
Long, S., Jones, D. T. & Woods, D. R. Initiation of solvent production, clostridial stage and endospore formation in Clostridium acetobutylicum P262. Appl. Microbiol. Biotechnol.20, 256–261 (1984). CAS Google Scholar
Jones, D. T. et al. Solvent production and morphological changes in Clostridium acetobutylicum. Appl. Environ. Microbiol.43, 1434–1439 (1982). CASPubMedPubMed Central Google Scholar
York, K. et al. Spo0A controls the σA-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. J. Bacteriol.174, 2648–2658 (1992). CASPubMedPubMed Central Google Scholar
Scotcher, M. C. & Bennett, G. N. SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824. J. Bacteriol.187, 1930–1936 (2005). CASPubMedPubMed Central Google Scholar
Stragier, P., Kunkel, B., Kroos, L. & Losick, R. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science243, 507–512 (1989). CASPubMed Google Scholar
Haraldsen, J. D. & Sonenshein, A. L. Efficient sporulation in Clostridium difficile requires disruption of the σK gene. Mol. Microbiol.48, 811–821 (2003). CASPubMed Google Scholar
Scotcher, M. C., Rudolph, F. B. & Bennett, G. N. Expression of abrB310 and sinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol.71, 1987–1995 (2005). CASPubMedPubMed Central Google Scholar
Mandic-Mulec, I., Doukhan, L. & Smith, I. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J. Bacteriol.177, 4619–4627 (1995). CASPubMedPubMed Central Google Scholar
Bai, U., Mandic-Mulec, I. & Smith, I. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein–protein interaction. Genes Dev.7, 139–148 (1993). CASPubMed Google Scholar
Schumann, W., Hecker, M. & Msadek, T. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 359–368 (ASM Press, Washington DC, 2002). Google Scholar
Pich, A., Narberhaus, F. & Bahl, H. Induction of heat shock proteins during the initiation of solvent formation in Clostridium acetobutylicum. Appl. Microbiol. Biotechnol.33, 697–704 (1990). CAS Google Scholar
Sauer, U. & Dürre, P. Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum. FEMS Microbiol. Lett.125, 115–120 (1995). CAS Google Scholar
Schaffer, S., Isci, N., Zickner, B. & Dürre, P. Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis23, 110–121 (2002). First publication on proteomic profiling inC. acetobutylicumand the transition from acidogenic and solventogenic conditions. CASPubMed Google Scholar
Terracciano, J. S., Rapaport, E. & Kashket, E. R. Stress and growth-phase associated proteins of Clostridium acetobutylicum. Appl. Environ. Microbiol.54, 1989–1995 (1988). CASPubMedPubMed Central Google Scholar
Walter, K. A., Mermelstein, L. D. & Papoutsakis, E. T. Host–plasmid interactions in recombinant strains of Clostridium acetobutylicum ATCC 824. FEMS Microbiol. Lett.123, 335–342 (1994). CAS Google Scholar
Tomas, C. A., Welker, N. E. & Papoutsakis, E. T. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and large changes in the cell's transcriptional program. Appl. Environ. Microbiol.69, 4951–4965 (2003). First clostridial transcriptional microarray platform, it includes the profiling ofC. acetobutylicumwild-type and non-solventogenic, asporogenous strains. CASPubMedPubMed Central Google Scholar
Tomas, C. A., Beamish, J. A. & Papoutsakis, E. T. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J. Bacteriol.186, 2006–2018 (2003). Google Scholar
Alsaker, K. V., Spitzer, T. R. & Papoutsakis, E. T. Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress. J. Bacteriol.186, 1959–1971 (2004). CASPubMedPubMed Central Google Scholar
Hüsemann, M. H. & Papoutsakis, E. T. Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum. Appl. Environ. Microbiol.56, 1497–1500 (1990). PubMedPubMed Central Google Scholar
Fond, O., Matta-Ammouri, G., Petitdemange, H. & Engasser, J. M. The role of acids on the production of acetone and butanol by Clostridium acetobutylicum. Appl. Microbiol. Biotechnol.22, 195–200 (1985). CAS Google Scholar
Huang, L., Forsberg, C. W. & Gibbens, L. N. Influence of external pH and fermentation products on Clostridium acetobutylicum intracellular pH and cellular distribution of fermentation products. Appl. Environ. Microbiol.51, 1230–1234 (1986). CASPubMedPubMed Central Google Scholar
Terracciano, J. S. & Kashket, E. R. Intracellular conditions required for the initiation of solvent production by Clostridium acetobutylicum. Appl. Environ. Microbiol.52, 86–91 (1986). CASPubMedPubMed Central Google Scholar
Gottwald, M. & Gottschalk, G. The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch. Microbiol.143, 42–46 (1985). CAS Google Scholar
George, H. A. & Chen, J. -S. Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym C. butylicum). Appl. Environ. Microbiol.46, 321–327 (1983). CASPubMedPubMed Central Google Scholar
Aizawa, S. -I., Zhulin, I. B., Márquez-Magaña, L. & Ordal, G. W. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 437–452 (ASM Press, Washington DC, 2002). Google Scholar
Estacio, W., Santa Anna-Arriola, S., Adedipe, M. & Marquez-Magana, L. M. Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis. J. Bacteriol.180, 3548–3555 (1998). CASPubMedPubMed Central Google Scholar
Tomas, C. A. et al. DNA-array based transcriptional analysis of asporogenous, non-solventogenic Clostridium acetobutylicum strains SKO1 and M5. J. Bacteriol.185, 4539–4547 (2003). Transcriptional profiling and Western blot analysis of aC. acetobutylicumstrain overexpressing thegroESLoperon. The strain shows important variations in butanol tolerance, solvent production, cell division and sporulation, showing the complex relationships between these processes inC. acetobutylicum. CASPubMedPubMed Central Google Scholar
Cornillot, E., Nair, R. V., Papoutsakis, E. T. & Soucaille, P. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol.179, 5442–5447 (1997). CASPubMedPubMed Central Google Scholar
Stim-Herndon, K. P., Nair, R., Papoutsakis, E. T. & Bennett, G. N. Analysis of degenerate variants of Clostridium acetobutylicum ATCC 824. Anaerobe2, 11–18 (1996). CAS Google Scholar
Petersen, D. J. & Bennett, G. N. Enzymatic characterization of a nonmotile, nonsolventogenic Clostridium acetobutylicum ATCC824 mutant. Curr. Microbiol.23, 253–258 (1991). CAS Google Scholar
Gutierrez, N. A. & Maddox, I. S. Isolation and partial characterization of a non-motile mutant of Clostridium acetobutylicum. Biotechnol. Lett.12, 853–856 (1990). CAS Google Scholar
Lyristis, M. et al. Cloning, sequencing, and characterization of the gene encoding flagellin, flaC, and the post-translational modification of flagellin, FlaC, from Clostridium acetobutylicum ATCC824. Anaerobe6, 69–79 (2000). CAS Google Scholar
Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell109, 257–266 (2002). CASPubMed Google Scholar
Dworkin, J. & Losick, R. Developmental commitment in a bacterium. Cell121, 401–409 (2005). CASPubMed Google Scholar
Baptista, C. S. et al. DNA microarrays for comparative genomics and analysis of gene expression in Trypanosoma cruzi. Mol. Biochem. Parasitol.138, 183–194 (2004). CASPubMed Google Scholar
Cassat, J. E. et al. Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J. Bacteriol.187, 576–592 (2005). CASPubMedPubMed Central Google Scholar
Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science294, 115–121 (2001). CASPubMed Google Scholar
Paredes, C. J., Rigoutsos, I. & Papoutsakis, E. T. Transcriptional organization of the Clostridium acetobutylicum genome. Nucleic Acids Res.32, 1973–1981 (2004). CASPubMedPubMed Central Google Scholar
Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl Acad. Sci. USA95, 5857–5864 (1998). CASPubMedPubMed Central Google Scholar
Mulder, N. J. et al. InterPro, progress and status in 2005. Nucleic Acids Res.33, D201–D205 (2005). CASPubMed Google Scholar
Steen, H. & Pandey, A. Proteomics goes quantitative: measuring protein abundance. Trends Biotechnol.20, 361–364 (2002). CASPubMed Google Scholar
Lin, D., Tabb, D. L. & Yates, J. R. Large-scale protein identification using mass spectrometry. Biochim. Biophys. Acta1646, 1–10 (2003). CASPubMed Google Scholar
Brüggemann, H. et al. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl Acad. Sci. USA100, 1316–1321 (2003). PubMedPubMed Central Google Scholar
Hoch, J. A. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol.47, 441–465 (1993). CASPubMed Google Scholar
Sonenshein, A. L. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol.3, 561–566 (2000). CASPubMed Google Scholar
Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. & Lipman, D. J. Basic Local Alignment Search Tool. J. Mol. Biol.215, 403–410 (1990). CASPubMed Google Scholar
Jiang, M., Shao, W. L., Perego, M. & Hoch, J. A. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol.38, 535–542 (2000). CASPubMed Google Scholar
Dartois, V., Djavakhishvili, T. & Hoch, J. A. Identification of a membrane protein involved in activation of the KinB pathway to sporulation in Bacillus subtilis. J. Bacteriol.178, 1178–1186 (1996). CASPubMedPubMed Central Google Scholar
LeDeaux, J. R. & Grossman, A. D. Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J. Bacteriol.177, 166–175 (1995). CASPubMedPubMed Central Google Scholar