Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis (original) (raw)
Lindenbach, B. D., Thiel, H. J. & Rice, C. M. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1101–1152 (Lippincott–Raven, Philadelphia,2007). Google Scholar
Westaway, E. G., Mackenzie, J. M., Kenney, M. T., Jones, M. K. & Khromykh, A. A. Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J. Virol.71, 6650–6661 (1997). CASPubMedPubMed Central Google Scholar
Gray, E. W. & Nettleton, P. F. The ultrastructure of cell cultures infected with border disease and bovine virus diarrhoea viruses. J. Gen. Virol.68, 2339–2346 (1987). ArticlePubMed Google Scholar
Mottola, G. et al. Hepatitis C virus nonstructural proteins are localized in a modified endoplasmic reticulum of cells expressing viral subgenomic replicons. Virology293, 31–43 (2002). ArticleCASPubMed Google Scholar
Meyers, G., Tautz, N., Becher, P., Thiel, H.-J. & Kümmerer, B. M. Recovery of cytopathogenic and noncytopathogenic bovine viral diarrhea viruses from cDNA constructs. J. Virol.70, 8606–8613 (1996). CASPubMedPubMed Central Google Scholar
Rice, C. M., Grakoui, A., Galler, R. & Chambers, T. J. Transcription of infectious yellow fever virus RNA from full-length cDNA templates produced by in vitro ligation. New Biol.1, 285–296 (1989). CASPubMed Google Scholar
Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science290, 1972–1974 (2000). ArticleCASPubMed Google Scholar
Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science285, 110–113 (1999). ArticleCASPubMed Google Scholar
Lindenbach, B. D. et al. Complete replication of hepatitis C virus in cell culture. Science309, 623–626 (2005). ArticleCASPubMed Google Scholar
Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med.11, 791–796 (2005). ArticleCASPubMed Google Scholar
Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell108, 717–725 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mukhopadhyay, S., Kim, B. S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. Structure of West Nile virus. Science302, 248 (2003). ArticleCASPubMed Google Scholar
Zhang, W. et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nature Struct. Biol.10, 907–912 (2003). ArticleCASPubMed Google Scholar
Zhang, Y., Kostyuchenko, V. A. & Rossmann, M. G. Structural analysis of viral nucleocapsids by subtraction of partial projections. J. Struct. Biol.157, 356–364 (2007). ArticleCASPubMed Google Scholar
Ma, L., Jones, C. T., Groesch, T. D., Kuhn, R. J. & Post, C. B. Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl Acad. Sci. USA101, 3414–3419 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ferlenghi, I. et al. Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol. Cell7, 593–602 (2001). ArticleCASPubMed Google Scholar
Konishi, E. et al. Comparison of protective immunity elicited by recombinant vaccinia viruses that synthesize E or NS1 of Japanese encephalitis virus. Virology185, 401–410 (1991). ArticleCASPubMed Google Scholar
Zhang, Y., Kaufmann, B., Chipman, P. R., Kuhn, R. J. & Rossmann, M. G. Structure of immature West Nile virus. J. Virol.81, 6141–6145 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science319, 1834–1837 (2008). ArticleCASPubMed Google Scholar
Stadler, K., Allison, S. L., Schalich, J. & Heinz, F. X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol.71, 8475–8481 (1997). CASPubMedPubMed Central Google Scholar
Heinz, F. X. et al. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology198, 109–117 1994). ArticleCASPubMed Google Scholar
Gastaminza, P., Kapadia, S. B. & Chisari, F. V. Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J. Virol.80, 11074–11081 (2006). ArticleCASPubMedPubMed Central Google Scholar
Macovei, A., Zitzmann, N., Lazar, C., Dwek, R. A. & Branza-Nichita, N. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity. Biochem. Biophys. Res. Commun.346, 1083–1090 (2006). ArticleCASPubMed Google Scholar
Krey, T., Thiel, H. J. & Rumenapf, T. Acid-resistant bovine pestivirus requires activation for pH-triggered fusion during entry. J. Virol.79, 4191–4200 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tscherne, D. M. et al. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J. Virol.80, 1734–1741 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chang, K. S., Jiang, J., Cai, Z. & Luo, G. Human apolipoprotein E is required for infectivity and production of hepatitis C virus in cell culture. J. Virol.81, 13783–13793 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gastaminza, P. et al. Cellular determinants of hepatitis C virus assembly, maturation, degradation and secretion. J. Virol.82, 2120–2129 (2008). ArticleCASPubMed Google Scholar
Huang, H. et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc. Natl Acad. Sci. USA104, 5848–5853 (2007). ArticleCASPubMedPubMed Central Google Scholar
Behrens, S. E., Grassmann, C. W., Thiel, H. J., Meyers, G. & Tautz, N. Characterization of an autonomous subgenomic pestivirus RNA replicon. J. Virol.72, 2364–2372 (1998). CASPubMedPubMed Central Google Scholar
Khromykh, A. A., Kenney, M. T. & Westaway, E. G. _trans_-complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J. Virol.72, 7270–7279 (1998). CASPubMedPubMed Central Google Scholar
Harada, T., Tautz, N. & Thiel, H. J. E2–p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J. Virol.74, 9498–9506 (2000). ArticleCASPubMedPubMed Central Google Scholar
Carrere-Kremer, S. et al. Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J. Virol.76, 3720–3730 (2002). ArticleCASPubMedPubMed Central Google Scholar
Elbers, K. et al. Processing in the pestivirus E2–NS2 region: identification of proteins p7 and E2p7. J. Virol.70, 4131–4135 (1996). CASPubMedPubMed Central Google Scholar
Lin, C., Lindenbach, B. D., Prágai, B., McCourt, D. W. & Rice, C. M. Processing of the hepatitis C virus E2–NS2 region: identification of p7 and two distinct E2-specific products with different C termini. J. Virol.68, 5063–5073 (1994). CASPubMedPubMed Central Google Scholar
Mizushima, H. et al. Two hepatitis C virus glycoprotein E2 products with different C termini. J. Virol.68, 6215–6222 (1994). CASPubMedPubMed Central Google Scholar
Jones, C. T., Murray, C. L., Eastman, D. K., Tassello, J. & Rice, C. M. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J. Virol.81, 8374–8383 (2007). ArticleCASPubMedPubMed Central Google Scholar
Steinmann, E. et al. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog.3, e103 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Carrere-Kremer, S. et al. Regulation of hepatitis C virus polyprotein processing by signal peptidase involves structural determinants at the p7 sequence junctions. J. Biol. Chem.279, 41384–41392 (2004). ArticleCASPubMed Google Scholar
Isherwood, B. J. & Patel, A. H. Analysis of the processing and transmembrane topology of the E2p7 protein of hepatitis C virus. J. Gen. Virol.86, 667–676 (2005). ArticleCASPubMed Google Scholar
Griffin, S. D. et al. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett.535, 34–38 (2003). ArticleCASPubMed Google Scholar
Griffin, S. D. et al. A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J. Gen. Virol.85, 451–461 (2004). ArticleCASPubMed Google Scholar
Pavlovic, D. et al. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl Acad. Sci. USA100, 6104–6108 (2003). ArticleCASPubMedPubMed Central Google Scholar
StGelais, C. et al. Inhibition of hepatitis C virus p7 membrane channels in a liposome-based assay system. Antiviral Res.76, 48–58 (2007). ArticleCASPubMed Google Scholar
Patargias, G., Zitzmann, N., Dwek, R. & Fischer, W. B. Protein–protein interactions: modeling the hepatitis C virus ion channel p7. J. Med. Chem.49, 648–655 (2006). ArticleCASPubMed Google Scholar
Clarke, D. et al. Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. J. Biol. Chem.281, 37057–37068 (2006). ArticleCASPubMed Google Scholar
Premkumar, A., Wilson, L., Ewart, G. D. & Gage, P. W. Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett.557, 99–103 (2004). ArticleCASPubMed Google Scholar
Sakai, A. et al. The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc. Natl Acad. Sci. USA100, 11646–11651 (2003). ArticleCASPubMedPubMed Central Google Scholar
Grakoui, A., McCourt, D. W., Wychowski, C., Feinstone, S. M. & Rice, C. M. A second hepatitis C virus-encoded proteinase. Proc. Natl Acad. Sci. USA90, 10583–10587 (1993). ArticleCASPubMedPubMed Central Google Scholar
Hijikata, M. et al. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J. Virol.67, 4665–4675 (1993). CASPubMedPubMed Central Google Scholar
Lackner, T. et al. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J. Virol.78, 10765–10775 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lorenz, I. C., Marcotrigiano, J., Dentzer, T. G. & Rice, C. M. Structure of the catalytic domain of the hepatitis C virus NS2-3 protease. Nature442, 831–835 (2006). ArticleCASPubMed Google Scholar
Santolini, E., Pacini, L., Fipaldini, C., Migliaccio, G. & Monica, N. The NS2 protein of hepatitis C virus is a transmembrane polypeptide. J. Virol.69, 7461–7471 (1995). CASPubMedPubMed Central Google Scholar
Kolykhalov, A. A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science277, 570–574 (1997). ArticleCASPubMed Google Scholar
Agapov, E. V. et al. Uncleaved NS2-3 is required for production of infectious bovine viral diarrhea virus. J. Virol.78, 2414–2425 (2004). ArticleCASPubMedPubMed Central Google Scholar
Moulin, H. R. et al. Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation. Virology365, 376–389 (2007). ArticleCASPubMed Google Scholar
Lackner, T., Muller, A., Konig, M., Thiel, H. J. & Tautz, N. Persistence of bovine viral diarrhea virus is determined by a cellular cofactor of a viral autoprotease. J. Virol.79, 9746–9755 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rinck, G., Birghan, C., Harada, T., Meyers, G., Thiel, H. J. & Tautz, N. A cellular J-domain protein modulates polyprotein processing and cytopathogenicity of a pestivirus. J. Virol.75, 9470–9482 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lackner, T., Thiel, H. J. & Tautz, N. Dissection of a viral autoprotease elucidates a function of a cellular chaperone in proteolysis. Proc. Natl Acad. Sci. USA103, 1510–1515 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pietschmann, T. et al. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc. Natl Acad. Sci. USA103, 7408–7413 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yi, M., Ma, Y., Yates, J. & Lemon, S. M. Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. J. Virol.81, 629–638 (2007). ArticleCASPubMed Google Scholar
Kiiver, K., Merits, A., Ustav, M. & Zusinaite, E. Complex formation between hepatitis C virus NS2 and NS3 proteins. Virus Res.117, 264–272 (2006). ArticleCASPubMed Google Scholar
Khromykh, A. A., Sedlak, P. L. & Westaway, E. G. _cis_- and _trans_-acting elements in flavivirus RNA replication. J. Virol.74, 3253–3263 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nestorowicz, A., Chambers, T. J. & Rice, C. M. Mutagenesis of the yellow fever virus NS2A/2B cleavage site: effects on proteolytic processing, viral replication and evidence for alternative processing of the NS2A protein. Virology199, 114–123 (1994). ArticleCASPubMed Google Scholar
Kümmerer, B. & Rice, C. M. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious virus. J. Virol.76, 4773–4784 (2002). ArticlePubMedPubMed Central Google Scholar
Liu, W. J., Chen, H. B. & Khromykh, A. A. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J. Virol.77, 7804–7813 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mackenzie, J. M., Khromykh, A. A., Jones, M. K. & Westaway, E. G. Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology245, 203–215 (1998). ArticleCASPubMed Google Scholar
Amberg, S. M., Nestorowicz, A., McCourt, D. W. & Rice, C. M. NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J. Virol.68, 3794–3802 (1994). CASPubMedPubMed Central Google Scholar
Lobigs, M. Flavivirus premembrane protein cleavage and spike heterodimer secretion requires the function of the viral proteinase NS3. Proc. Natl Acad. Sci. USA90, 6218–6222 (1993). ArticleCASPubMedPubMed Central Google Scholar
Lobigs, M. & Lee, E. Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes. J. Virol.78, 178–186 (2004). ArticleCASPubMedPubMed Central Google Scholar
Santolini, E., Migliaccio, G. & La Monica, N. Biosynthesis and biochemical properties of the hepatitis C virus core protein. J. Virol.68, 3631–3641 (1994). CASPubMedPubMed Central Google Scholar
Heimann, M., Roman-Sosa, G., Martoglio, B., Thiel, H. J. & Rumenapf, T. Core protein of pestiviruses is processed at the C terminus by signal peptide peptidase. J. Virol.80, 1915–1921 (2006). ArticleCASPubMedPubMed Central Google Scholar
McLauchlan, J., Lemberg, M. K., Hope, G. & Martoglio, B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J.21, 3980–3988 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shavinskaya, A., Boulant, S., Penin, F., McLauchlan, J. & Bartenschlager, R. The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J. Biol. Chem.282, 37158–37169 (2007). ArticleCASPubMed Google Scholar
Liu, W. J., Sedlak, P. L., Kondratieva, N. & Khromykh, A. A. Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J. Virol.76, 10766–10775 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pijlman, G. P., Kondratieva, N. & Khromykh, A. A. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging. J. Virol.80, 11255–11264 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jones, C. T., Patkar, C. G. & Kuhn, R. J. Construction and applications of yellow fever virus replicons. Virology331, 247–259 (2005). ArticleCASPubMed Google Scholar
Patkar, C. G. & Kuhn, R. J. Yellow fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J. Virol.82, 3342–3352 (2008). ArticleCASPubMedPubMed Central Google Scholar
Murray, C. L., Jones, C. T., Tassello, J. & Rice, C. M. Alanine scanning of the hepatitis C virus core protein reveals numerous residues essential for production of infectious virus. J. Virol.81, 10220–10231 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ma, Y., Yates, J., Liang, Y., Lemon, S. M. & Yi, M. NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. J. Virol. 28 May 2008 (doi:10.1128/JVI.00724-08). ArticleCASPubMedPubMed Central Google Scholar
Tellinghuisen, T. L., Marcotrigiano, J., Gorbalenya, A. E. & Rice, C. M. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J. Biol. Chem.279, 48576–48587 (2004). ArticleCASPubMed Google Scholar
Tellinghuisen, T. L., Paulson, M. S. & Rice, C. M. The NS5A protein of bovine viral diarrhea virus contains an essential zinc-binding site similar to that of the hepatitis C virus NS5A protein. J. Virol.80, 7450–7458 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tanji, Y., Kaneko, T., Satoh, S. & Shimotohno, K. Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A. J. Virol.69, 3980–3986 (1995). CASPubMedPubMed Central Google Scholar
Reed, K. E., Gorbalenya, A. E. & Rice, C. M. The NS5A/NS5 proteins of viruses from three genera of the family Flaviviridae are phosphorylated by associated serine/threonine kinases. J. Virol.72, 6199–6206 (1998). CASPubMedPubMed Central Google Scholar
Quintavalle, M. et al. Hepatitis C virus NS5A is a direct substrate of casein kinase I-α, a cellular kinase identified by inhibitor affinity chromatography using specific NS5A hyperphosphorylation inhibitors. J. Biol. Chem.282, 5536–5544 (2007). ArticleCASPubMed Google Scholar
Appel, N., Pietschmann, T. & Bartenschlager, R. Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J. Virol.79, 3187–3194 (2005). ArticleCASPubMedPubMed Central Google Scholar
Neddermann, P. et al. Reduction of hepatitis C virus NS5A hyperphosphorylation by selective inhibition of cellular kinases activates viral RNA replication in cell culture. J. Virol.78, 13306–13314 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bukh, J. et al. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc. Natl Acad. Sci. USA99, 14416–14421 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gao, L., Aizaki, H., He, J. W. & Lai, M. M. Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J. Virol.78, 3480–3488 (2004). ArticleCASPubMedPubMed Central Google Scholar
Evans, M. J., Rice, C. M. & Goff, S. P. Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc. Natl Acad. Sci. USA101, 13038–13043 (2004). ArticleCASPubMedPubMed Central Google Scholar
Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nature Cell Biol.9, 1089–1097 (2007). ArticleCASPubMed Google Scholar
Appel, N. et al. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog.4, e1000035 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Tellinghuisen, T. L., Foss, K. L. & Treadaway, J. Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog.4, e1000032 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Yap, T. L. et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J. Virol.81, 4753–4765 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kapoor, M. et al. Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J. Biol. Chem.270, 19100–19106 (1995). ArticleCASPubMed Google Scholar
Khromykh, A. A., Varnavski, A. N., Sedlak, P. L. & Westaway, E. G. Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J. Virol.75, 4633–4640 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mackenzie, J. M. & Westaway, E. G. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J. Virol.75, 10787–10799 (2001). ArticleCASPubMedPubMed Central Google Scholar
Selby, M. J., Glazer, E., Masiarz, F. & Houghton, M. Complex processing and protein:protein interactions in the E2:NS2 region of HCV. Virology204, 114–122 (1994). ArticleCASPubMed Google Scholar
Goh, P. Y. et al. The hepatitis C virus core protein interacts with NS5A and activates its caspase-mediated proteolytic cleavage. Virology290, 224–236 (2001). ArticleCASPubMed Google Scholar
Lamb, R. A. & Pinto, L. H. Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology229, 1–11 (1997). ArticleCASPubMed Google Scholar
Kelly, M. L. et al. Demonstrating the intrinsic ion channel activity of virally encoded proteins. FEBS Lett.552, 61–67 (2003). ArticleCASPubMed Google Scholar
Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature451, 425–430 (2008). ArticleCASPubMed Google Scholar
Liu, D. X., Yuan, Q. & Liao, Y. Coronavirus envelope protein: a small membrane protein with multiple functions. Cell. Mol. Life Sci.64, 2043–2048 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tellinghuisen, T. L., Foss, K. L., Treadaway, J. C. & Rice, C. M. Identification of residues required for RNA replication in domains II and III of the hepatitis C virus NS5A protein. J. Virol.82, 1073–1083 (2008). ArticleCASPubMed Google Scholar