Immune signalling in neural development, synaptic plasticity and disease (original) (raw)
Rall, G. F., Mucke, L. & Oldstone, M. B. Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class I-expressing neurons in vivo. J. Exp. Med.182, 1201–1212 (1995). ArticleCASPubMed Google Scholar
Joly, E., Mucke, L. & Oldstone, M. B. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science253, 1283–1285 (1991). ArticleCASPubMed Google Scholar
Lampson, L. A., Whelan, J. P. & Siegel, G. Functional implications of class I MHC modulation in neural tissue. Ann. NY Acad. Sci.540, 479–482 (1988). ArticleCASPubMed Google Scholar
Fujimaki, H., Hikawa, N., Nagoya, M., Nagata, T. & Minami, M. IFN-γ induces expression of MHC class I molecules in adult mouse dorsal root ganglion neurones. Neuroreport7, 2951–2955 (1996). ArticleCASPubMed Google Scholar
Joly, E. & Oldstone, M. B. Neuronal cells are deficient in loading peptides onto MHC class I molecules. Neuron8, 1185–1190 (1992). ArticleCASPubMed Google Scholar
Drew, P. D. et al. Regulation of MHC class I and β2-microglobulin gene expression in human neuronal cells. Factor binding to conserved cis-acting regulatory sequences correlates with expression of the genes. J. Immunol.150, 3300–3310 (1993). CASPubMed Google Scholar
White, L. A., Keane, R. W. & Whittemore, S. R. Differentiation of an immortalized CNS neuronal cell line decreases their susceptibility to cytotoxic T cell lysis in vitro. J. Neuroimmunol.49, 135–143 (1994). ArticleCASPubMed Google Scholar
Lampson, L. A. & Fisher, C. A. Weak HLA and β2-microglobulin expression of neuronal cell lines can be modulated by interferon. Proc. Natl Acad. Sci. USA81, 6476–6480 (1984). ArticleCASPubMedPubMed Central Google Scholar
Lampson, L. A. Interpreting MHC class I expression and class I/class II reciprocity in the CNS: reconciling divergent findings. Microsc. Res. Tech.32, 267–285 (1995). ArticleCASPubMed Google Scholar
Maehlen, J., Schroder, H. D., Klareskog, L., Olsson, T. & Kristensson, K. Axotomy induces MHC class I antigen expression on rat nerve cells. Neurosci. Lett.92, 8–13 (1988). ArticleCASPubMed Google Scholar
Lidman, O., Olsson, T. & Piehl, F. Expression of nonclassical MHC class I (RT1-U) in certain neuronal populations of the central nervous system. Eur. J. Neurosci.11, 4468–4472 (1999). ArticleCASPubMed Google Scholar
Redwine, J. M., Buchmeier, M. J. & Evans, C. F. In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am. J. Pathol.159, 1219–1224 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pereira, R. A., Tscharke, D. C. & Simmons, A. Upregulation of class I major histocompatibility complex gene expression in primary sensory neurons, satellite cells, and Schwann cells of mice in response to acute but not latent herpes simplex virus infection in vivo. J. Exp. Med.180, 841–850 (1994). ArticleCASPubMed Google Scholar
Foster, J. A., Quan, N., Stern, E. L., Kristensson, K. & Herkenham, M. Induced neuronal expression of class I major histocompatibility complex mRNA in acute and chronic inflammation models. J. Neuroimmunol.131, 83–91 (2002). ArticleCASPubMed Google Scholar
Wong, G. H., Bartlett, P. F., Clark-Lewis, I., Battye, F. & Schrader, J. W. Inducible expression of H-2 and Ia antigens on brain cells. Nature310, 688–691 (1984). ArticleCASPubMed Google Scholar
Neumann, H., Cavalie, A., Jenne, D. E. & Wekerle, H. Induction of MHC class I genes in neurons. Science269, 549–552 (1995). ArticleCASPubMed Google Scholar
Neumann, H., Schmidt, H., Cavalie, A., Jenne, D. & Wekerle, H. Major histocompatibility complex (MHC) class I gene expression in single neurons of the central nervous system: differential regulation by interferon (IFN)-γ and tumor necrosis factor (TNF)-α. J. Exp. Med.185, 305–316 (1997). ArticleCASPubMedPubMed Central Google Scholar
Linda, H. et al. Expression of MHC class I and β2-microglobulin in rat spinal motoneurons: regulatory influences by IFN-γ and axotomy. Exp. Neurol.150, 282–295 (1998). ArticleCASPubMed Google Scholar
Corriveau, R. A., Huh, G. S. & Shatz, C. J. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron21, 505–520 (1998). This study first identified MHC class I in an unbiased screen for genes involved in activity-dependent plasticity. MHC was found to be expressed by neurons and regulated by activity in the adult and developing mammalian brain. ArticleCASPubMed Google Scholar
Huh, G. S. et al. Functional requirement for class I MHC in CNS development and plasticity. Science290, 2155–2159 (2000). Using mice deficient for most MHC class I genes, this study determined that MHC class I is required for normal activity-dependent refinement of developing visual projections as well as normal long-term potentiation and long-term depression in the adult hippocampus. ArticleCASPubMedPubMed Central Google Scholar
Neumann, H., Schmidt, H., Wilharm, E., Behrens, L. & Wekerle, H. Interferon-γ gene expression in sensory neurons: evidence for autocrine gene regulation. J. Exp. Med.186, 2023–2031 (1997). ArticleCASPubMedPubMed Central Google Scholar
Linda, H., Hammarberg, H., Piehl, F., Khademi, M. & Olsson, T. Expression of MHC class I heavy chain and β2-microglobulin in rat brainstem motoneurons and nigral dopaminergic neurons. J. Neuroimmunol.101, 76–86 (1999). ArticleCASPubMed Google Scholar
Loconto, J. et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell112, 607–618 (2003). MHC class Ib (non-classical) genes were identified in an unbiased screen for genes that were coexpressed with a subset of pheromone receptors in the VNO, where they might be involved in pheromone receptor delivery to the cell surface, as well as gender identification behaviours. ArticleCASPubMed Google Scholar
Ishii, T., Hirota, J. & Mombaerts, P. Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr. Biol.13, 394–400 (2003). In parallel with the above study, members of the H2-M non-classical MHC class I family were identified in vomeronasal sensory neurons and were found to be expressed in complex and nonrandom cellular association with specific pheromone receptors. ArticleCASPubMed Google Scholar
Binder, G. K. & Griffin, D. E. Interferon-γ-mediated site-specific clearance of alphavirus from CNS neurons. Science293, 303–306 (2001). ArticleCASPubMed Google Scholar
Dalziel, R. G., Lampert, P. W., Talbot, P. J. & Buchmeier, M. J. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J. Virol.59, 463–471 (1986). CASPubMedPubMed Central Google Scholar
Fazakerley, J. K., Parker, S. E., Bloom, F. & Buchmeier, M. J. The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology187, 178–188 (1992). ArticleCASPubMed Google Scholar
Duan, W. M., Westerman, M., Flores, T. & Low, W. C. Survival of intrastriatal xenografts of ventral mesencephalic dopamine neurons from MHC-deficient mice to adult rats. Exp. Neurol.167, 108–117 (2001). ArticleCASPubMed Google Scholar
Veng, L. M. et al. Xenografts of MHC-deficient mouse embryonic mesencephalon improve behavioral recovery in hemiparkinsonian rats. Cell Transplant.11, 5–16 (2002). ArticlePubMed Google Scholar
Pakzaban, P., Deacon, T. W., Burns, L. H., Dinsmore, J. & Isacson, O. A novel mode of immunoprotection of neural xenotransplants: masking of donor major histocompatibility complex class I enhances transplant survival in the central nervous system. Neuroscience65, 983–996 (1995). ArticleCASPubMed Google Scholar
Ransohoff, R. M., Kivisakk, P. & Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nature Rev. Immunol.3, 569–581 (2003). ArticleCAS Google Scholar
Catipovic, B. et al. Analysis of the structure of empty and peptide-loaded major histocompatibility complex molecules at the cell surface. J. Exp. Med.180, 1753–1761 (1994). ArticleCASPubMed Google Scholar
Pereira, R. A. & Simmons, A. Cell surface expression of H2 antigens on primary sensory neurons in response to acute but not latent herpes simplex virus infection in vivo. J. Virol.73, 6484–6489 (1999). CASPubMedPubMed Central Google Scholar
Turnley, A. M., Starr, R. & Bartlett, P. F. Failure of sensory neurons to express class I MHC is due to differential SOCS1 expression. J. Neuroimmunol.123, 35–40 (2002). ArticleCASPubMed Google Scholar
Boulanger, L. M., Huh, G. S. & Shatz, C. J. Neuronal plasticity and cellular immunity: shared molecular mechanisms. Curr. Opin. Neurobiol.11, 568–578 (2001). ArticleCASPubMed Google Scholar
Zijlstra, M. et al. β2-microglobulin deficient mice lack CD4−8+ cytolytic T cells. Nature344, 742–746 (1990). ArticleCASPubMed Google Scholar
Van Kaer, L., Ashton-Rickardt, P. G., Ploegh, H. L. & Tonegawa, S. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4−8+ T cells. Cell71, 1205–1214 (1992). References 37 and 38 detail development and characterization of two lines of mutant mice deficient in MHC class I cell surface expression — valuable tools for studying MHC class I functions in the immune system and beyond. ArticleCASPubMed Google Scholar
de Sousa, M. et al. Iron overload in β2-microglobulin-deficient mice. Immunol. Lett.39, 105–111 (1994). ArticleCASPubMed Google Scholar
Moos, T., Trinder, D. & Morgan, E. H. Cellular distribution of ferric iron, ferritin, transferrin and divalent metal transporter 1 (DMT1) in substantia nigra and basal ganglia of normal and β2-microglobulin deficient mouse brain. Cell Mol. Biol. (Noisy-le-grand)46, 549–561 (2000). CAS Google Scholar
Rothenberg, B. E. & Voland, J. R. β2-knockout mice develop parenchymal iron overload: a putative role for class I genes of the major histocompatibility complex in iron metabolism. Proc. Natl Acad. Sci. USA93, 1529–1534 (1996). ArticleCASPubMedPubMed Central Google Scholar
Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nature Rev. Neurosci.4, 551–562 (2003). ArticleCAS Google Scholar
Moretta, A. et al. Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunol. Rev.155, 105–117 (1997). ArticleCASPubMed Google Scholar
Ugolini, S. & Vivier, E. Regulation of T cell function by NK cell receptors for classical MHC class I molecules. Curr. Opin. Immunol.12, 295–300 (2000). ArticleCASPubMed Google Scholar
Trowsdale, J. et al. The genomic context of natural killer receptor extended gene families. Immunol. Rev.181, 20–38 (2001). ArticleCASPubMed Google Scholar
Bakker, A. B., Wu, J., Phillips, J. H. & Lanier, L. L. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals. Hum. Immunol.61, 18–27 (2000). ArticleCASPubMed Google Scholar
Kane, K. P., Silver, E. T. & Hazes, B. Specificity and function of activating Ly-49 receptors. Immunol. Rev.181, 104–114 (2001). ArticleCASPubMed Google Scholar
Klausner, R. D., Weissman, A. M., Baniyash, M., Bonifacino, J. S. & Samelson, L. E. The role of the ζ-chain in the expression, structure and function of the T cell receptor. Adv. Exp. Med. Biol.254, 21–24 (1989). CASPubMed Google Scholar
Syken, J. & Shatz, C. J. Expression of T cell receptor β-locus in central nervous system neurons. Proc. Natl Acad. Sci. USA100, 13048–13053 (2003). This study found striking and dynamic expression of mRNA encoding an unrecombined β-subunit of the TCR in the developing and adult mouse CNS, including in the thalamic nuclei and deep layers of cortex. ArticleCASPubMedPubMed Central Google Scholar
Nishiyori, A., Hanno, Y., Saito, M. & Yoshihara, Y. Aberrant transcription of unrearranged T-cell receptor β-gene in mouse brain. J. Comp. Neurol.469, 214–226 (2004). ArticleCASPubMed Google Scholar
Wilson, I. A. & Bjorkman, P. J. Unusual MHC-like molecules: CD1, Fc receptor, the hemochromatosis gene product, and viral homologs. Curr. Opin. Immunol.10, 67–73 (1998). ArticleCASPubMed Google Scholar
Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet.13, 399–408 (1996). ArticleCASPubMed Google Scholar
Parkkila, S. et al. Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc. Natl Acad. Sci. USA94, 13198–13202 (1997). ArticleCASPubMedPubMed Central Google Scholar
Feder, J. N. et al. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc. Natl Acad. Sci. USA95, 1472–1477 (1998). ArticleCASPubMedPubMed Central Google Scholar
Feder, J. N. et al. The hemochromatosis founder mutation in HLA-H disrupts β2-microglobulin interaction and cell surface expression. J. Biol. Chem.272, 14025–14028 (1997). ArticleCASPubMed Google Scholar
Burmeister, W. P., Gastinel, L. N., Simister, N. E., Blum, M. L. & Bjorkman, P. J. Crystal structure at 2.2 Å resolution of the MHC-related neonatal Fc receptor. Nature372, 336–343 (1994). ArticleCASPubMed Google Scholar
Burmeister, W. P., Huber, A. H. & Bjorkman, P. J. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature372, 379–383 (1994). ArticleCASPubMed Google Scholar
Ojcius, D. M., Delarbre, C., Kourilsky, P. & Gachelin, G. MHC and MHC-related proteins as pleiotropic signal molecules. FASEB J.16, 202–206 (2002). ArticleCASPubMed Google Scholar
Rivera-Quinones, C. et al. Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nature Med.4, 187–193 (1998). ArticleCASPubMed Google Scholar
Neumann, H., Medana, I. M., Bauer, J. & Lassmann, H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci.25, 313–319 (2002). ArticleCASPubMed Google Scholar
Darnell, R. B. Onconeural antigens and the paraneoplastic neurologic disorders: at the intersection of cancer, immunity, and the brain. Proc. Natl Acad. Sci. USA93, 4529–4536 (1996). ArticleCASPubMedPubMed Central Google Scholar
Albert, M. L. & Darnell, R. B. Paraneoplastic neurological degenerations: keys to tumour immunity. Nature Rev. Cancer4, 36–44 (2004). ArticleCAS Google Scholar
Schwartz, M., Moalem, G., Leibowitz-Amit, R. & Cohen, I. R. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci.22, 295–299 (1999). ArticleCASPubMed Google Scholar
Rothermundt, M., Arolt, V. & Bayer, T. A. Review of immunological and immunopathological findings in schizophrenia. Brain Behav. Immun.15, 319–339 (2001). ArticleCASPubMed Google Scholar
Karayiorgou, M. & Gogos, J. A. A turning point in schizophrenia genetics. Neuron19, 967–979 (1997). ArticleCASPubMed Google Scholar
Schwab, S. G. et al. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol. Psychiatry5, 638–649 (2000). ArticleCASPubMed Google Scholar
Smeraldi, E., Bellodi, L. & Cazzullo, C. L. Further studies on the major histocompatibility complex as a genetic marker for schizophrenia. Biol. Psychiatry11, 655–661 (1976). CASPubMed Google Scholar
Wright, P., Nimgaonkar, V. L., Donaldson, P. T. & Murray, R. M. Schizophrenia and HLA: a review. Schizophr. Res.47, 1–12 (2001). ArticleCASPubMed Google Scholar
Cardno, A. G. et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch. Gen. Psychiatry56, 162–168 (1999). ArticleCASPubMed Google Scholar
Torrey, E. F. Are we overestimating the genetic contribution to schizophrenia? Schizophr. Bull.18, 159–170 (1992). ArticleCASPubMed Google Scholar
Brown, A. S. et al. Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophr. Bull.26, 287–295 (2000). ArticleCASPubMed Google Scholar
Fatemi, S. H. et al. Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell. Mol. Neurobiol.22, 25–33 (2002). This and several other elegant studies have shown that prenatal viral infection is a significant risk factor for neurodevelopmental abnormalities, perhaps through changes in cytokine expression in the fetal CNS. ArticlePubMed Google Scholar
Shima, S., Yano, K., Sugiura, M. & Tokunaga, Y. Anticerebral antibodies in functional psychoses. Biol. Psychiatry29, 322–328 (1991). ArticleCASPubMed Google Scholar
Wojtanowska, M. & Rybakowski, J. Changes of humoral and cellular immunity in schizophrenia. Psychiatr. Pol.30, 783–799 (1996). CASPubMed Google Scholar
Arolt, V., Rothermundt, M., Wandinger, K. P. & Kirchner, H. Decreased in vitro production of interferon-γ and interleukin-2 in whole blood of patients with schizophrenia during treatment. Mol. Psychiatry5, 150–158 (2000). ArticleCASPubMed Google Scholar
Nawa, H., Takahashi, M. & Patterson, P. H. Cytokine and growth factor involvement in schizophrenia — support for the developmental model. Mol. Psychiatry5, 594–603 (2000). ArticleCASPubMed Google Scholar
Ganguli, R. et al. Autoimmunity in schizophrenia: a review of recent findings. Ann. Med.25, 489–496 (1993). ArticleCASPubMed Google Scholar
Wright, P. et al. Autoimmune diseases in the pedigrees of schizophrenic and control subjects. Schizophr. Res.20, 261–267 (1996). ArticleCASPubMed Google Scholar
Eaton, W. W., Hayward, C. & Ram, R. Schizophrenia and rheumatoid arthritis: a review. Schizoph. Res.6, 181–192 (1992). ArticleCAS Google Scholar
McAllister, C. G. et al. Increases in CSF levels of interleukin-2 in schizophrenia: effects of recurrence of psychosis and medication status. Am. J. Psychiatry152, 1291–1297 (1995). ArticleCASPubMed Google Scholar
Degreef, G. et al. Volumes of ventricular system subdivisions measured from magnetic resonance images in first-episode schizophrenic patients. Arch. Gen. Psychiatry49, 531–537 (1992). ArticleCASPubMed Google Scholar
Keshavan, M. S., Anderson, S. & Pettegrew, J. W. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J. Psychiatr. Res.28, 239–265 (1994). ArticleCASPubMed Google Scholar
Warren, R. P. et al. Possible association of the extended MHC haplotype B44-SC30-DR4 with autism. Immunogenetics36, 203–207 (1992). ArticleCASPubMed Google Scholar
Daniels, W. W. et al. Increased frequency of the extended or ancestral haplotype B44-SC30-DR4 in autism. Neuropsychobiology32, 120–123 (1995). ArticleCASPubMed Google Scholar
Warren, R. P. et al. Strong association of the third hypervariable region of HLA-DR β1 with autism. J. Neuroimmunol.67, 97–102 (1996). ArticleCASPubMed Google Scholar
Torres, A. R., Maciulis, A., Stubbs, E. G., Cutler, A. & Odell, D. The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum. Immunol.63, 311–316 (2002). ArticleCASPubMed Google Scholar
Lauritsen, M. & Ewald, H. The genetics of autism. Acta Psychiatr. Scand.103, 411–427 (2001). ArticleCASPubMed Google Scholar
Chess, S. Follow-up report on autism in congenital rubella. J. Autism Child. Schizophr.7, 69–81 (1977). ArticleCASPubMed Google Scholar
Desmond, M. M. et al. Congenital rubella encephalitis. Course and early sequelae. J. Pediatr.71, 311–331 (1967). ArticleCASPubMed Google Scholar
Stubbs, E. G., Ash, E. & Williams, C. P. Autism and congenital cytomegalovirus. J. Autism Dev. Disord.14, 183–189 (1984). ArticleCASPubMed Google Scholar
Stubbs, E. G. & Crawford, M. L. Depressed lymphocyte responsiveness in autistic children. J. Autism Child. Schizophr.7, 49–55 (1977). ArticleCASPubMed Google Scholar
Warren, R. P. et al. Deficiency of suppressor-inducer (CD4+CD45RA+) T cells in autism. Immunol. Invest.19, 245–251 (1990). ArticleCASPubMed Google Scholar
Denney, D. R., Frei, B. W. & Gaffney, G. R. Lymphocyte subsets and interleukin-2 receptors in autistic children. J. Autism Dev. Disord.26, 87–97 (1996). ArticleCASPubMed Google Scholar
Warren, R. P., Foster, A. & Margaretten, N. C. Reduced natural killer cell activity in autism. J. Am. Acad. Child Adolesc. Psychiatry26, 333–335 (1987). ArticleCASPubMed Google Scholar
Warren, R. P., Burger, R. A., Odell, D., Torres, A. R. & Warren, W. L. Decreased plasma concentrations of the C4B complement protein in autism. Arch. Pediatr. Adolesc. Med.148, 180–183 (1994). ArticleCASPubMed Google Scholar
Dalton, P. et al. Maternal neuronal antibodies associated with autism and a language disorder. Ann. Neurol.53, 533–537 (2003). ArticlePubMed Google Scholar
Warren, R. P. et al. Increased frequency of the null allele at the complement C4b locus in autism. Clin. Exp. Immunol.83, 438–440 (1991). ArticleCASPubMedPubMed Central Google Scholar
Warren, R. P. et al. Detection of maternal antibodies in infantile autism. J. Am. Acad. Child Adolesc. Psychiatry29, 873–877 (1990). ArticleCASPubMed Google Scholar
Singh, V. K., Warren, R., Averett, R. & Ghaziuddin, M. Circulating autoantibodies to neuronal and glial filament proteins in autism. Pediatr. Neurol.17, 88–90 (1997). ArticleCASPubMed Google Scholar
Connolly, A. M. et al. Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders. J. Pediatr.134, 607–613 (1999). ArticleCASPubMed Google Scholar
Krause, I., He, X. S., Gershwin, M. E. & Shoenfeld, Y. Brief report: immune factors in autism: a critical review. J. Autism Dev. Disord.32, 337–345 (2002). ArticlePubMed Google Scholar
Courchesne, E., Carper, R. & Akshoomoff, N. Evidence of brain overgrowth in the first year of life in autism. JAMA290, 337–344 (2003). ArticlePubMed Google Scholar
Fisher, S. E. & DeFries, J. C. Developmental dyslexia: genetic dissection of a complex cognitive trait. Nature Rev. Neurosci.3, 767–780 (2002). ArticleCAS Google Scholar
Cardon, L. R. et al. Quantitative trait locus for reading disability on chromosome 6. Science266, 276–279 (1994). This study was the first to show a strong genetic link between the MHC class I region and developmental dyslexia. ArticleCASPubMed Google Scholar
Pennington, B. F., Smith, S. D., Kimberling, W. J., Green, P. A. & Haith, M. M. Left-handedness and immune disorders in familial dyslexics. Arch. Neurol.44, 634–639 (1987). ArticleCASPubMed Google Scholar
Hugdahl, K., Synnevag, B. & Satz, P. Immune and autoimmune diseases in dyslexic children. Neuropsychologia28, 673–679 (1990). ArticleCASPubMed Google Scholar
Behan, W. M., Behan, P. O. & Geschwind, N. Anti-Ro antibody in mothers of dyslexic children. Dev. Med. Child Neurol.27, 538–540 (1985). ArticleCASPubMed Google Scholar
Vincent, A. et al. Maternal antibody-mediated dyslexia? Evidence for a pathogenic serum factor in a mother of two dyslexic children shown by transfer to mice using behavioural studies and magnetic resonance spectroscopy. J. Neuroimmunol.130, 243–247 (2002). ArticleCASPubMed Google Scholar
Witton, C. et al. Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Curr. Biol.8, 791–797 (1998). ArticleCASPubMed Google Scholar
Stein, J. The neurobiology of reading difficulties. Prostaglandins Leukot. Essent. Fatty Acids63, 109–116 (2000). ArticleCASPubMed Google Scholar
Kulski, J. K., Shiina, T., Anzai, T., Kohara, S. & Inoko, H. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev190, 95–122 (2002). ArticleCASPubMed Google Scholar
Gunther, E. & Walter, L. Comparative genomic aspects of rat, mouse and human MHC class I gene regions. Cytogenet. Cell Genet.91, 107–112 (2000). ArticleCASPubMed Google Scholar
Heinrichs, H. & Orr, H. T. HLA non-A,B,C class I genes: their structure and expression. Immunol. Res.9, 265–274 (1990). ArticleCASPubMed Google Scholar