Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy (original) (raw)
Selkoe, D. J. Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J. Clin. Invest.110, 1375–1381 (2002). CASPubMedPubMed Central Google Scholar
Blennow, K., de Leon, M. J. & Zetterberg, H. Alzheimer's disease. Lancet368, 387–403 (2006). CASPubMed Google Scholar
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). CASPubMed Google Scholar
Selkoe, D. & Kopan, R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci.26, 565–597 (2003). CASPubMed Google Scholar
Shen, J. & Kelleher, R. J. The presenilin hypothesis of Alzheimer's disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl Acad. Sci. USA104, 403–409 (2007). CASPubMed Google Scholar
Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA90, 1977–1981 (1993). References 6 and 7 were the first to report a genetic association between the ɛ4 allele of theAPOEgene and LOAD. CASPubMedPubMed Central Google Scholar
Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science261, 921–923 (1993). CASPubMed Google Scholar
Mahley, R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science240, 622–630 (1988). A classic review on the biochemical properties and cholesterol transport function of APOE. CASPubMed Google Scholar
Bertram, L. & Tanzi, R. E. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nature Rev. Neurosci.9, 768–778 (2008). This paper provides a comprehensive review of the current state of AD genetics. CAS Google Scholar
Blacker, D. et al. ApoE-4 and age at onset of Alzheimer's disease: the NIMH genetics initiative. Neurology48, 139–147 (1997). CASPubMed Google Scholar
Burt, T. D. et al. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE ɛ4/ɛ4 genotype accelerates HIV disease progression. Proc. Natl Acad. Sci. USA105, 8718–8723 (2008). CASPubMedPubMed Central Google Scholar
Greenberg, S. M., Rebeck, G. W., Vonsattel, J. P., Gomez-Isla, T. & Hyman, B. T. Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann. Neurol.38, 254–259 (1995). CASPubMed Google Scholar
Josephs, K. A., Tsuboi, Y., Cookson, N., Watt, H. & Dickson, D. W. Apolipoprotein E ɛ4 is a determinant for Alzheimer-type pathologic features in tauopathies, synucleinopathies, and frontotemporal degeneration. Arch. Neurol.61, 1579–1584 (2004). PubMed Google Scholar
Martinez, M. et al. Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson's disease. Am. J. Med. Genet. B Neuropsychiatr. Genet.136B, 172–174 (2005). Google Scholar
Masterman, T. & Hillert, J. The telltale scan: APOE ɛ4 in multiple sclerosis. Lancet Neurol.3, 331 (2004). PubMed Google Scholar
Herz, J. & Bock, H. H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem.71, 405–434 (2002). CASPubMed Google Scholar
Herz, J. & Chen, Y. Reelin, lipoprotein receptors and synaptic plasticity. Nature Rev. Neurosci.7, 850–859 (2006). CAS Google Scholar
Pitas, R. E., Boyles, J. K., Lee, S. H., Foss, D. & Mahley, R. W. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim. Biophys. Acta917, 148–161 (1987). CASPubMed Google Scholar
Uchihara, T. et al. ApoE immunoreactivity and microglial cells in Alzheimer's disease brain. Neurosci. Lett.195, 5–8 (1995). CASPubMed Google Scholar
Pitas, R. E., Boyles, J. K., Lee, S. H., Hui, D. & Weisgraber, K. H. Lipoproteins and their receptors in the central nervous system. J. Biol. Chem.262, 14352–14360 (1987). CASPubMed Google Scholar
LaDu, M. J. et al. Nascent astrocyte particles differ from lipoproteins in CSF. J. Neurochem.70, 2070–2081 (1998). CASPubMed Google Scholar
Hirsch-Reinshagen, V. et al. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J. Biol. Chem.279, 41197–41207 (2004). CASPubMed Google Scholar
Wahrle, S. E. et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J. Biol. Chem.279, 40987–40993 (2004). CASPubMed Google Scholar
Hatters, D. M., Peters-Libeu, C. A. & Weisgraber, K. H. Apolipoprotein E structure: insights into function. Trends Biochem. Sci.31, 445–454 (2006). A comprehensive review of the biophysical and structural properties of the APOE isoforms. CASPubMed Google Scholar
Zhong, N. & Weisgraber, K. H. Understanding the association of apolipoprotein E4 with Alzheimer's disease: clues from its structure. J. Biol. Chem.284, 6027–6031 (2009). CASPubMedPubMed Central Google Scholar
Weisgraber, K. H., Rall, S. C. Jr & Mahley, R. W. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J. Biol. Chem.256, 9077–9083 (1981). CASPubMed Google Scholar
Ramaswamy, G., Xu, Q., Huang, Y. & Weisgraber, K. H. Effect of domain interaction on apolipoprotein E levels in mouse brain. J. Neurosci.25, 10658–10663 (2005). CASPubMedPubMed Central Google Scholar
Goldstein, J. L., Brown, M. S., Anderson, R. G. W., Russell, D. W. & Schneider, W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol.1, 1–39 (1985). CASPubMed Google Scholar
Jeon, H. & Blacklow, S. C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem.74, 535–562 (2005). CASPubMed Google Scholar
Herz, J. et al. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J.7, 4119–4127 (1988). This paper reported the initial cloning and structural properties of LRP1, a major APOE receptor in the brain. CASPubMedPubMed Central Google Scholar
Herz, J., Kowal, R. C., Goldstein, J. L. & Brown, M. S. Proteolytic processing of the 600 kd low density lipoprotein receptor-related protein (LRP) occurs in a trans-Golgi compartment. EMBO J.9, 1769–1776 (1990). CASPubMedPubMed Central Google Scholar
Li, Y., Lu, W., Marzolo, M. P. & Bu, G. Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J. Biol. Chem.276, 18000–18006 (2001). CASPubMed Google Scholar
Herz, J., Clouthier, D. E. & Hammer, R. E. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell71, 411–421 (1992). CASPubMed Google Scholar
May, P. et al. Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol. Cell. Biol.24, 8872–8883 (2004). CASPubMedPubMed Central Google Scholar
Willnow, T. E., Nykjaer, A. & Herz, J. Lipoprotein receptors: new roles for ancient proteins. Nature Cell Biol.1, E157–E162 (1999). CASPubMed Google Scholar
Liu, C. X., Li, Y., Obermoeller-McCormick, L. M., Schwartz, A. L. & Bu, G. The putative tumor suppressor LRP1B, a novel member of the low density lipoprotein (LDL) receptor family, exhibits both overlapping and distinct properties with the LDL receptor-related protein. J. Biol. Chem.276, 28889–28896 (2001). CASPubMed Google Scholar
Li, Y. et al. Low density lipoprotein (LDL) receptor-related protein 1B impairs urokinase receptor regeneration on the cell surface and inhibits cell migration. J. Biol. Chem.277, 42366–42371 (2002). CASPubMed Google Scholar
Cam, J. A. et al. The low density lipoprotein receptor-related protein 1B retains β-amyloid precursor protein at the cell surface and reduces amyloid-β peptide production. J. Biol. Chem.279, 29639–29646 (2004). CASPubMed Google Scholar
Trommsdorff, M. et al. Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell97, 689–701 (1999). This paper described the role of APOER2 and VLDLR function in reelin signalling, which is crucial for neuronal migration during development. CASPubMed Google Scholar
Johnson, E. B., Hammer, R. E. & Herz, J. Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum. Mol. Genet.14, 3523–3538 (2005). CASPubMed Google Scholar
He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development131, 1663–1677 (2004). CASPubMed Google Scholar
May, P. & Herz, J. LDL receptor-related proteins in neurodevelopment. Traffic4, 291–301 (2003). CASPubMed Google Scholar
Bu, G. Receptor-associated protein: a specialized chaperone and antagonist for members of the LDL receptor gene family. Curr. Opin. Lipidol.9, 149–155 (1998). CASPubMed Google Scholar
Bu, G. & Marzolo, M. P. Role of rap in the biogenesis of lipoprotein receptors. Trends Cardiovasc. Med.10, 148–155 (2000). CASPubMed Google Scholar
Fryer, J. D. et al. The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J. Biol. Chem.280, 25754–25759 (2005). CASPubMed Google Scholar
Liu, Q. et al. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron56, 66–78 (2007). This paper reported that APP and APOE are functionally linked in brain cholesterol metabolism through the APOE receptor LRP1. CASPubMedPubMed Central Google Scholar
Zerbinatti, C. V. et al. Apolipoprotein E and low density lipoprotein receptor-related protein facilitate intraneuronal Aβ42 accumulation in amyloid model mice. J. Biol. Chem.281, 36180–36186 (2006). CASPubMed Google Scholar
Rebeck, G. W., Reiter, J. S., Strickland, D. K. & Hyman, B. T. Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron11, 575–580 (1993). This paper described the finding that both APOE and its receptor LRP1 are present in amyloid plaques. CASPubMed Google Scholar
Rapp, A., Gmeiner, B. & Huttinger, M. Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes. Biochimie88, 473–483 (2006). CASPubMed Google Scholar
Narita, M. et al. Cellular catabolism of lipid poor apolipoprotein E via cell surface LDL receptor-related protein. J. Biochem.132, 743–749 (2002). CASPubMed Google Scholar
Kowal, R. C. et al. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J. Biol. Chem.265, 10771–10779 (1990). CASPubMed Google Scholar
Fagan, A. M., Bu, G. J., Sun, Y. L., Daugherty, A. & Holtzman, D. M. Apolipoprotein E-containing high density lipoprotein promotes neurite outgrowth and is a ligand for the low density lipoprotein receptor-related protein. J. Biol. Chem.271, 30121–30125 (1996). CASPubMed Google Scholar
Niu, S., Yabut, O. & D'Arcangelo, G. The reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J. Neurosci.28, 10339–10348 (2008). CASPubMedPubMed Central Google Scholar
Beffert, U. et al. Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci.24, 1897–1906 (2004). CASPubMedPubMed Central Google Scholar
Beffert, U. et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron47, 567–579 (2005). CASPubMed Google Scholar
D'Arcangelo, G. et al. Reelin is a ligand for lipoprotein receptors. Neuron24, 471–479 (1999). CASPubMed Google Scholar
Hoe, H. S., Harris, D. C. & Rebeck, G. W. Multiple pathways of apolipoprotein E signaling in primary neurons. J. Neurochem.93, 145–155 (2005). CASPubMed Google Scholar
Qiu, Z., Crutcher, K. A., Hyman, B. T. & Rebeck, G. W. ApoE isoforms affect neuronal _N_-methyl-D-aspartate calcium responses and toxicity via receptor-mediated processes. Neuroscience122, 291–303 (2003). CASPubMed Google Scholar
Hayashi, H., Campenot, R. B., Vance, D. E. & Vance, J. E. Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J. Neurosci.27, 1933–1941 (2007). CASPubMedPubMed Central Google Scholar
Kounnas, M. Z. et al. LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation. Cell82, 331–340 (1995). The first report to describe an interaction between APP and LRP1. Subsequent studies showed that LRP1 regulates APP trafficking and processing. CASPubMed Google Scholar
Trommsdorff, R., Borg, J. P., Margolis, B. & Herz, J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem.273, 33556–33560 (1998). CASPubMed Google Scholar
Pietrzik, C. U. et al. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J. Neurosci.24, 4259–4265 (2004). CASPubMedPubMed Central Google Scholar
Kinoshita, A. et al. Demonstration by fluorescence resonance energy transfer of two sites of interaction between the low-density lipoprotein receptor-related protein and the amyloid precursor protein: role of the intracellular adapter protein Fe65. J. Neurosci.21, 8354–8361 (2001). CASPubMedPubMed Central Google Scholar
Ulery, P. G. et al. Modulation of β-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer's disease. J. Biol. Chem.275, 7410–7415 (2000). CASPubMed Google Scholar
Cam, J. A., Zerbinatti, C. V., Li, Y. & Bu, G. Rapid endocytosis of the low density lipoprotein receptor-related protein modulates cell surface distribution and processing of the β-amyloid precursor protein. J. Biol. Chem.280, 15464–15470 (2005). CASPubMed Google Scholar
Cole, S. L. & Vassar, R. The Alzheimer's disease β-secretase enzyme, BACE1. Mol. Neurodegener.2, 22 (2007). PubMedPubMed Central Google Scholar
Zerbinatti, C. V. et al. Increased soluble amyloid-β peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein. Proc. Natl Acad. Sci. USA101, 1075–1080 (2004). CASPubMedPubMed Central Google Scholar
Ye, S. et al. Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc. Natl Acad. Sci. USA102, 18700–18705 (2005). CASPubMedPubMed Central Google Scholar
Hoe, H. S. et al. F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol. Cell. Biol.25, 9259–9268 (2005). CASPubMedPubMed Central Google Scholar
Scherzer, C. R. et al. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch. Neurol.61, 1200–1205 (2004). PubMed Google Scholar
Andersen, O. M. et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl Acad. Sci. USA102, 13461–13466 (2005). CASPubMedPubMed Central Google Scholar
Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genet.39, 168–177 (2007). CASPubMed Google Scholar
Cirrito, J. R. et al. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J. Neurosci.23, 8844–8853 (2003). This paper described anin vivomicrodialysis technique to assess Aβ concentration in brain interstitial fluid. It also showed that Aβ's half-life in the mouse brain is 2–4 h. CASPubMedPubMed Central Google Scholar
Bateman, R. J. et al. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nature Med.12, 856–861 (2006). CASPubMed Google Scholar
Deane, R. et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron43, 333–344 (2004). This paper reported an important function of LRP1 in brain Aβ efflux through the BBB. It also demonstrated that Aβ binds directly to LRP1. CASPubMed Google Scholar
Strittmatter, W. J. et al. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer's disease. Proc. Natl Acad. Sci. USA90, 8098–8102 (1993). CASPubMedPubMed Central Google Scholar
Tamamizu-Kato, S. et al. Interaction with amyloid β peptide compromises the lipid binding function of apolipoprotein E. Biochemistry47, 5225–5234 (2008). CASPubMed Google Scholar
Beffert, U. et al. β-amyloid peptides increase the binding and internalization of apolipoprotein E to hippocampal neurons. J. Neurochem.70, 1458–1466 (1998). CASPubMed Google Scholar
Hone, E. et al. Alzheimer's disease amyloid-β peptide modulates apolipoprotein E isoform specific receptor binding. J. Alzheimers Dis.7, 303–314 (2005). CASPubMed Google Scholar
LaDu, M. J. et al. Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem.269, 23403–23406 (1994). This paper showed that APOE3–lipoprotein binds to Aβ with higher affinity than APOE4–lipoprotein. CASPubMed Google Scholar
Holtzman, D. M. et al. Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer's disease. J. Clin. Invest.103, R15–R21 (1999). CASPubMedPubMed Central Google Scholar
Holtzman, D. M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA97, 2892–2897 (2000). This paper described the differentialin vivoeffects of human APOE isoforms on amyloid deposition in mouse models. CASPubMedPubMed Central Google Scholar
DeMattos, R. B. et al. ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron41, 193–202 (2004). CASPubMed Google Scholar
Schmechel, D. E. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA90, 9649–9653 (1993). CASPubMedPubMed Central Google Scholar
Bogdanovic, N., Corder, E., Lannfelt, L. & Winblad, B. APOE polymorphism and clinical duration determine regional neuropathology in Swedish APP(670, 671) mutation carriers: implications for late-onset Alzheimer's disease. J. Cell. Mol. Med.6, 199–214 (2002). CASPubMedPubMed Central Google Scholar
Small, G. W. et al. Influence of cognitive status, age, and APOE-4 genetic risk on brain FDDNP positron-emission tomography imaging in persons without dementia. Arch. Gen. Psychiatry66, 81–87 (2009). PubMedPubMed Central Google Scholar
Deane, R. et al. apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest.118, 4002–4013 (2008). CASPubMedPubMed Central Google Scholar
Van Uden, E. et al. Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J. Neurosci.22, 9298–9304 (2002). CASPubMedPubMed Central Google Scholar
Shibata, M. et al. Clearance of Alzheimer's amyloid-β1–40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest.106, 1489–1499 (2000). CASPubMedPubMed Central Google Scholar
Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L. & Laferla, F. M. Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron45, 675–688 (2005). CASPubMed Google Scholar
Koistinaho, M. et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nature Med.10, 719–726 (2004). This paper showed that APOE that is secreted by astrocytes has a crucial role in degrading Aβ that is associated with amyloid plaques; this process depends on the function of APOE receptors. CASPubMed Google Scholar
Khoury, J. E. & Luster, A. D. Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends Pharmacol. Sci.29, 626–632 (2008). PubMed Google Scholar
McCarron, M. O. & Nicoll, J. A. R. Cerebral amyloid angiopathy and thrombolysis-related intracerebral haemorrhage. Lancet Neurol.3, 484–492 (2004). PubMed Google Scholar
Roher, A. E. et al. β-amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc. Natl Acad. Sci. USA90, 10836–10840 (1993). CASPubMedPubMed Central Google Scholar
Fryer, J. D. et al. Human apolipoprotein E4 alters the amyloid-β 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J. Neurosci.25, 2803–2810 (2005). CASPubMedPubMed Central Google Scholar
Tanzi, R. E., Moir, R. D. & Wagner, S. L. Clearance of Alzheimer's Aβ peptide: the many roads to perdition. Neuron43, 605–608 (2004). CASPubMed Google Scholar
Dahlgren, K. N. et al. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem.277, 32046–32053 (2002). CASPubMed Google Scholar
Manelli, A. M., Bulfinch, L. C., Sullivan, P. M. & LaDu, M. J. Aβ42 neurotoxicity in primary co-cultures: effect of apoE isoform and Aβ conformation. Neurobiol. Aging28, 1139–1147 (2007). CASPubMed Google Scholar
Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Med.14, 837–842 (2008). References 102 and 103 demonstrated that Aβ oligomers isolated from the brain are highly neurotoxic. CASPubMed Google Scholar
Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature440, 352–357 (2006). CASPubMed Google Scholar
Belinson, H., Lev, D., Masliah, E. & Michaelson, D. M. Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J. Neurosci.28, 4690–4701 (2008). This paper showed that APOE4 and Aβ synergistically activate neurotoxic pathways that lead to neurodegeneration and cognitive deficits in mice. CASPubMedPubMed Central Google Scholar
Muller, T., Meyer, H. E., Egensperger, R. & Marcus, K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog. Neurobiol.85, 393–406 (2008). PubMed Google Scholar
Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science316, 750–754 (2007). CASPubMed Google Scholar
Tesseur, I. et al. Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am. J. Pathol.156, 951–964 (2000). CASPubMedPubMed Central Google Scholar
Brecht, W. J. et al. Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci.24, 2527–2534 (2004). This paper demonstrated that neuronal expression of APOE4 leads to increased tau phosphorylation. CASPubMedPubMed Central Google Scholar
Aoki, K. et al. Increased expression of neuronal apolipoprotein E in human brain with cerebral infarction. Stroke34, 875–880 (2003). CASPubMed Google Scholar
Xu, Q. et al. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci.26, 4985–4994 (2006). CASPubMedPubMed Central Google Scholar
Chang, S. et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl Acad. Sci. USA102, 18694–18699 (2005). CASPubMedPubMed Central Google Scholar
Mahley, R. W., Weisgraber, K. H. & Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc. Natl Acad. Sci. USA103, 5644–5651 (2006). CASPubMedPubMed Central Google Scholar
Pfrieger, F. W. Cholesterol homeostasis and function in neurons of the central nervous system. Cell. Mol. Life Sci.60, 1158–1171 (2003). CASPubMed Google Scholar
Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science294, 1354–1357 (2001). This paper showed that astrocyte-secreted cholesterol is essential for synaptogenesis. CASPubMed Google Scholar
Shobab, L. A., Hsiung, G.-Y. R. & Feldman, H. H. Cholesterol in Alzheimer's disease. Lancet Neurol.4, 841–852 (2005). CASPubMed Google Scholar
Puglielli, L., Tanzi, R. E. & Kovacs, D. M. Alzheimer's disease: the cholesterol connection. Nature Neurosci.6, 345–351 (2003). CASPubMed Google Scholar
Kaether, C. & Haass, C. A lipid boundary separates APP and secretases and limits amyloid β-peptide generation. J. Cell Biol.167, 809–812 (2004). CASPubMedPubMed Central Google Scholar
Reid, P. C., Urano, Y., Kodama, T. & Hamakubo, T. Alzheimer's disease: cholesterol, membrane rafts, isoprenoids and statins. J. Cell. Mol. Med.11, 383–392 (2007). CASPubMedPubMed Central Google Scholar
Marzolo, M. P. & Bu, G. Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer's disease. Semin. Cell Dev. Biol. 17 Oct 2008 (doi: 10.1016/j.semcdb.2008.10.005). CAS Google Scholar
Thinakaran, G. & Koo, E. H. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem.283, 29615–29619 (2008). CASPubMedPubMed Central Google Scholar
Ledesma, M. D. et al. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Rep.4, 1190–1196 (2003). CASPubMedPubMed Central Google Scholar
Ledesma, M. D. & Dotti, C. G. Amyloid excess in Alzheimer's disease: what is cholesterol to be blamed for? FEBS Lett.580, 5525–5532 (2006). CASPubMed Google Scholar
Hamanaka, H. et al. Altered cholesterol metabolism in human apolipoprotein E4 knock-in mice. Hum. Mol. Genet.9, 353–361 (2000). CASPubMed Google Scholar
Michikawa, M., Fan, Q. W., Isobe, I. & Yanagisawa, K. Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J. Neurochem.74, 1008–1016 (2000). CASPubMed Google Scholar
Gong, J. S. et al. Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J. Biol. Chem.277, 29919–29926 (2002). CASPubMed Google Scholar
Han, X. Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer's disease: a tale of shotgun lipidomics. J. Neurochem.103, 171–179 (2007). CASPubMedPubMed Central Google Scholar
Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science298, 789–791 (2002). CASPubMed Google Scholar
Wang, C. et al. Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol. Dis.18, 390–398 (2005). CASPubMed Google Scholar
Trommer, B. L. et al. ApoE isoform affects LTP in human targeted replacement mice. Neuroreport15, 2655–2658 (2004). CASPubMed Google Scholar
Hayashi, T. et al. Different expression of low density lipoprotein receptor and ApoE between young adult and old rat brains after ischemia. Neurol. Res.28, 822–825 (2006). CASPubMed Google Scholar
Holtzman, D. M. et al. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc. Natl Acad. Sci. USA92, 9480–9484 (1995). CASPubMedPubMed Central Google Scholar
Nathan, B. P. et al. Differential effects of apolipoprotein E3 and E4 on neuronal growth in vitro. Science264, 850–852 (1994). References 131 and 132 described the differential effects of APOE isoforms in promoting neurite outgrowth. CASPubMed Google Scholar
Ji, Y. et al. Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients. Neuroscience122, 305–315 (2003). CASPubMed Google Scholar
Lanz, T. A., Carter, D. B. & Merchant, K. M. Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol. Dis.13, 246–253 (2003). CASPubMed Google Scholar
Brodbeck, J. et al. Rosiglitazone increases dendritic spine density and rescues spine loss caused by apolipoprotein E4 in primary cortical neurons. Proc. Natl Acad. Sci. USA105, 1343–1346 (2008). CASPubMedPubMed Central Google Scholar
Laws, S. M., Hone, E., Gandy, S. & Martins, R. N. Expanding the association between the APOE gene and the risk of Alzheimer's disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription. J. Neurochem.84, 1215–1236 (2003). CASPubMed Google Scholar
Riddell, D. R. et al. Impact of apolipoprotein E (apoE) polymorphism on brain apoE levels. J. Neurosci.28, 11445–11453 (2008). CASPubMedPubMed Central Google Scholar
Vaya, J. & Schipper, H. M. Oxysterols, cholesterol homeostasis, and Alzheimer disease. J. Neurochem.102, 1727–1737 (2007). CASPubMed Google Scholar
Riddell, D. R. et al. The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer's disease. Mol. Cell. Neurosci.34, 621–628 (2007). CASPubMed Google Scholar
Laskowitz, D. T. & Vitek, M. P. Apolipoprotein E and neurological disease: therapeutic potential and pharmacogenomic interactions. Pharmacogenomics8, 959–969 (2007). CASPubMed Google Scholar
Aono, M. et al. Protective effect of apolipoprotein E-mimetic peptides on _N_-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cell cultures. Neuroscience116, 437–445 (2003). CASPubMed Google Scholar
Laskowitz, D. T., Fillit, H., Yeung, N., Toku, K. & Vitek, M. P. Apolipoprotein E-derived peptides reduce CNS inflammation: implications for therapy of neurological disease. Acta Neurol. Scand. Suppl.185, 15–20 (2006). CASPubMed Google Scholar
Bales, K. R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nature Genet.17, 263–264 (1997). CASPubMed Google Scholar
Sadowski, M. J. et al. Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer's disease. Proc. Natl Acad. Sci. USA103, 18787–18792 (2006). CASPubMedPubMed Central Google Scholar
Kang, D. E. et al. Modulation of amyloid β-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway. J. Clin. Invest.106, 1159–1166 (2000). CASPubMedPubMed Central Google Scholar
Grimsley, P. G., Quinn, K. A. & Owensby, D. A. Soluble low-density lipoprotein receptor-related protein. Trends Cardiovasc. Med.8, 363–368 (1998). CASPubMed Google Scholar
Quinn, K. A., Pye, V. J., Dai, Y. P., Chesterman, C. N. & Owensby, D. A. Characterization of the soluble form of the low density lipoprotein receptor-related protein (LRP). Exp. Cell Res.251, 433–441 (1999). CASPubMed Google Scholar
Sagare, A. et al. Clearance of amyloid-β by circulating lipoprotein receptors. Nature Med.13, 1029–1031 (2007). CASPubMed Google Scholar
von Arnim, C. A. et al. The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J. Biol. Chem.280, 17777–17785 (2005). CASPubMed Google Scholar
May, P., Bock, H. H., Nimpf, J. & Herz, J. Differential glycosylation regulates processing of lipoprotein receptors by γ-secretase. J. Biol. Chem.278, 37386–37392 (2003). CASPubMed Google Scholar
Kinoshita, A., Shah, T., Tangredi, M. M., Strickland, D. K. & Hyman, B. T. The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. J. Biol. Chem.278, 41182–41188 (2003). CASPubMed Google Scholar
Zurhove, K., Nakajima, C., Herz, J., Bock, H. H. & May, P. γ-Secretase limits the inflammatory response through the processing of LRP1. Sci. Signal.1, ra15 (2008). PubMedPubMed Central Google Scholar
Hoe, H. S. & Rebeck, G. W. Regulated proteolysis of APP and ApoE receptors. Mol. Neurobiol.37, 64–72 (2008). CASPubMed Google Scholar