Fighting neurodegeneration with rapamycin: mechanistic insights (original) (raw)
Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol.12, 21–35 (2011). ArticleCAS Google Scholar
Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol.6, 1122–1128 (2004). ArticleCASPubMed Google Scholar
Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol.14, 1296–1302 (2004). ArticleCASPubMed Google Scholar
Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell22, 159–168 (2006). ArticleCASPubMed Google Scholar
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol.4, 648–657 (2002). ArticleCASPubMed Google Scholar
Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell10, 151–162 (2002). ArticleCASPubMed Google Scholar
Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biol.4, 658–665 (2002). ArticleCASPubMed Google Scholar
Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell11, 1457–1466 (2003). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biol.5, 578–581 (2003). ArticleCASPubMed Google Scholar
Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol.13, 1259–1268 (2003). ArticleCASPubMed Google Scholar
Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell141, 290–303 (2010). ArticleCASPubMedPubMed Central Google Scholar
Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. Nature Cell Biol.13, 453–460 (2011). ArticleCASPubMed Google Scholar
Haghighat, A., Mader, S., Pause, A. & Sonenberg, N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J.14, 5701–5709 (1995). ArticleCASPubMedPubMed Central Google Scholar
Hara, K. et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem.272, 26457–26463 (1997). ArticleCASPubMed Google Scholar
Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neurosci.12, 1129–1135 (2009). In this article, rapamycin was shown to suppress flight muscle degeneration, climbing deficits, mitochondrial alterations and dopaminergic neurodegeneration inD. melanogaster Pink1orparkknockout models of Parkinson's disease by activating 4E-BP. ArticleCASPubMed Google Scholar
Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell139, 149–160 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wilson, K. F., Wu, W. J. & Cerione, R. A. Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex. J. Biol. Chem.275, 37307–37310 (2000). ArticleCASPubMed Google Scholar
Richter, J. D. & Sonenberg, N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature433, 477–480 (2005). ArticleCASPubMed Google Scholar
Ma, X. M., Yoon, S. O., Richardson, C. J., Julich, K. & Blenis, J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell133, 303–313 (2008). ArticleCASPubMed Google Scholar
Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441, 885–889 (2006). ArticleCASPubMed Google Scholar
Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441, 880–884 (2006). ArticleCASPubMed Google Scholar
Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem.273, 3963–3966 (1998). ArticleCASPubMed Google Scholar
Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem.284, 8023–8032 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet.36, 585–595 (2004). This study provided the first demonstration that rapamycin is able to attenuate pathology in experimentalin vivomodels of neurodegeneration by inducing autophagy-mediated degradation of aggregate-prone proteins. ArticleCASPubMed Google Scholar
Charest, P. G. et al. A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev. Cell18, 737–749 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lee, S. et al. TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol. Biol. Cell16, 4572–4583 (2005). ArticleCASPubMedPubMed Central Google Scholar
Huang, J., Dibble, C. C., Matsuzaki, M. & Manning, B. D. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell. Biol.28, 4104–4115 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M. N. Activation of mTORC2 by association with the ribosome. Cell144, 757–768 (2011). ArticleCASPubMed Google Scholar
Facchinetti, V. et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J.27, 1932–1943 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307, 1098–1101 (2005). ArticleCASPubMed Google Scholar
Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell11, 859–871 (2006). ArticleCASPubMed Google Scholar
Garcia-Martinez, J. M. & Alessi, D. R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J.416, 375–385 (2008). ArticleCASPubMed Google Scholar
Ikenoue, T., Inoki, K., Yang, Q., Zhou, X. & Guan, K. L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J.27, 1919–1931 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wong, E. & Cuervo, A. M. Autophagy gone awry in neurodegenerative diseases. Nature Neurosci.13, 805–811 (2010). ArticleCASPubMed Google Scholar
Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron39, 889–909 (2003). ArticleCASPubMed Google Scholar
Malagelada, C., Jin, Z. H., Jackson-Lewis, V., Przedborski, S. & Greene, L. A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J. Neurosci.30, 1166–1175 (2010). This study demonstrates that rapamycin protects against dopaminergic neuron cell death in the MPTP mouse model of Parkinson's disease by blockade of mTORC1-dependent translation of the pro-cell death protein RTP801. ArticleCASPubMedPubMed Central Google Scholar
Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci.30, 12535–12544 (2010). This study demonstrates that rapamycin protects against MPTP-induced dopaminergic neurodegeneration by boosting lysosomal biogenesis, restoring the number of lysosomes, enhancing autophagosome–lysosome fusion and increasing lysosome-mediated clearance of accumulated autophagosomes. ArticleCASPubMedPubMed Central Google Scholar
Przedborski, S. & Vila, M. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. Ann. N. Y. Acad. Sci.991, 189–198 (2003). ArticleCASPubMed Google Scholar
Malagelada, C., Ryu, E. J., Biswas, S. C., Jackson-Lewis, V. & Greene, L. A. RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson's disease by a mechanism involving mammalian target of rapamycin inactivation. J. Neurosci.26, 9996–10005 (2006). ArticleCASPubMedPubMed Central Google Scholar
Malagelada, C., Jin, Z. H. & Greene, L. A. RTP801 is induced in Parkinson's disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J. Neurosci.28, 14363–14371 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ries, V. et al. Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson's disease. Proc. Natl Acad. Sci. USA103, 18757–18762 (2006). ArticleCASPubMedPubMed Central Google Scholar
Vila, M., Bove, J., Dehay, B., Rodriguez-Muela, N. & Boya, P. Lysosomal membrane permeabilization in Parkinson disease. Autophagy7, 98–100 (2011). ArticlePubMed Google Scholar
Chu, Y., Dodiya, H., Aebischer, P., Olanow, C. W. & Kordower, J. H. Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to α-synuclein inclusions. Neurobiol. Dis.35, 385–398 (2009). ArticleCASPubMed Google Scholar
Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol.12, 25–31 (1997). CASPubMed Google Scholar
Sarkar, S., Ravikumar, B., Floto, R. A. & Rubinsztein, D. C. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ.16, 46–56 (2009). ArticleCASPubMed Google Scholar
Cullen, V. et al. Acid β-glucosidase mutants linked to gaucher disease, parkinson disease, and lewy body dementia alter α-synuclein processing. Ann. Neurol.69, 940–953 (2011). ArticleCASPubMed Google Scholar
Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science325, 473–477 (2009). ArticleCASPubMed Google Scholar
Pan, T. et al. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol. Dis.32, 16–25 (2008). ArticleCASPubMed Google Scholar
Crews, L. et al. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy. PLoS ONE5, e9313 (2010). ArticleCASPubMedPubMed Central Google Scholar
Spencer, B. et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci.29, 13578–13588 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yu, W. H. et al. Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric α-synuclein. Am. J. Pathol.175, 736–747 (2009). ArticleCASPubMedPubMed Central Google Scholar
Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chem. Biol.4, 295–305 (2008). ArticleCAS Google Scholar
Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D. C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem.282, 5641–5652 (2007). ArticleCASPubMed Google Scholar
Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nature Chem. Biol.3, 331–338 (2007). ArticleCAS Google Scholar
Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem.278, 25009–25013 (2003). ArticleCASPubMed Google Scholar
Pan, T. et al. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience164, 541–551 (2009). ArticleCASPubMed Google Scholar
Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Rev. Mol. Cell Biol.11, 621–632 (2010). ArticleCAS Google Scholar
Vila, M. & Przedborski, S. Genetic clues to the pathogenesis of Parkinson's disease. Nature Med.10, S58–S62 (2004). ArticleCASPubMed Google Scholar
Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biol.12, 119–131 (2010). ArticleCASPubMed Google Scholar
Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA107, 378–383 (2010). ArticleCASPubMed Google Scholar
Vila, M. et al. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Proc. Natl Acad. Sci. USA98, 2837–2842 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vila, M. & Przedborski, S. Targeting programmed cell death in neurodegenerative diseases. Nature Rev. Neurosci.4, 365–375 (2003). ArticleCAS Google Scholar
Perier, C. et al. Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc. Natl Acad. Sci. USA102, 19126–19131 (2005). ArticleCASPubMedPubMed Central Google Scholar
Perier, C. et al. Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proc. Natl Acad. Sci. USA104, 8161–8166 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ravikumar, B., Berger, Z., Vacher, C., O'Kane, C. J. & Rubinsztein, D. C. Rapamycin pre-treatment protects against apoptosis. Hum. Mol. Genet.15, 1209–1216 (2006). ArticleCASPubMed Google Scholar
Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab.11, 35–46 (2010). ArticleCASPubMedPubMed Central Google Scholar
Santini, E., Heiman, M., Greengard, P., Valjent, E. & Fisone, G. Inhibition of mTOR signaling in Parkinson's disease prevents L-DOPA-induced dyskinesia. Sci. Signal.2, ra36 (2009). ArticlePubMed Google Scholar
Ross, C. A. & Tabrizi, S. J. Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol.10, 83–98 (2011). ArticleCASPubMed Google Scholar
Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet.11, 1107–1117 (2002). ArticleCASPubMed Google Scholar
Sarkar, S. et al. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum. Mol. Genet.17, 170–178 (2008). ArticleCASPubMed Google Scholar
Tsvetkov, A. S. et al. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc. Natl Acad. Sci. USA107, 16982–16987 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martinez-Vicente, M. et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nature Neurosci.13, 567–576 (2010). ArticleCASPubMed Google Scholar
Wang, T., Lao, U. & Edgar, B. A. TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J. Cell Biol.186, 703–711 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rose, C. et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum. Mol. Genet.19, 2144–2153 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fox, J. H. et al. The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington's disease. Mol. Neurodegener.5, 26 (2010). ArticleCASPubMedPubMed Central Google Scholar
King, M. A. et al. Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Mol. Pharmacol.73, 1052–1063 (2008). ArticleCASPubMed Google Scholar
Ittner, L. M. & Gotz, J. Amyloid-β and tau — a toxic pas de deux in Alzheimer's disease. Nature Rev. Neurosci.12, 65–72 (2011). ArticleCAS Google Scholar
Caccamo, A., Majumder, S., Richardson, A., Strong, R. & Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments. J. Biol. Chem.285, 13107–13120 (2010). ArticleCASPubMedPubMed Central Google Scholar
Caccamo, A. et al. Naturally secreted amyloid-β increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism. J. Biol. Chem.286, 8924–8932 (2011). References 85 and 86 demonstrate an Aβ-induced hyperactivation of mTOR in a triple-transgenic mouse model of Alzheimer's disease. In these animals, rapamycin treatment decreased intraneuronal Aβ accumulations, attenuated tau pathology and rescued cognitive deficits. ArticleCASPubMedPubMed Central Google Scholar
Meske, V., Albert, F. & Ohm, T. G. Coupling of mammalian target of rapamycin with phosphoinositide 3-kinase signaling pathway regulates protein phosphatase 2A- and glycogen synthase kinase-3-dependent phosphorylation of Tau. J. Biol. Chem.283, 100–109 (2008). ArticleCASPubMed Google Scholar
Spilman, P. et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer's disease. PLoS ONE5, e9979 (2010). ArticleCASPubMedPubMed Central Google Scholar
Casadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell99, 221–237 (1999). ArticleCASPubMed Google Scholar
Tischmeyer, W. et al. Rapamycin-sensitive signalling in long-term consolidation of auditory cortex-dependent memory. Eur. J. Neurosci.18, 942–950 (2003). ArticlePubMed Google Scholar
Ehninger, D. et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nature Med.14, 843–848 (2008). ArticleCASPubMed Google Scholar
Puighermanal, E. et al. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nature Neurosci.12, 1152–1158 (2009). ArticleCASPubMed Google Scholar
Khurana, V. et al. TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr. Biol.16, 230–241 (2006). ArticleCASPubMed Google Scholar
Berger, Z. et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet.15, 433–442 (2006). ArticleCASPubMed Google Scholar
Pickford, F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Invest.118, 2190–2199 (2008). CASPubMedPubMed Central Google Scholar
Hung., S. Y., Huang, W. P., Liou, H. C. & Fu, W. M. Autophagy protects neuron from Aβ-induced cytotoxicity. Autophagy5, 502–510 (2009). ArticleCASPubMed Google Scholar
Yang, D. S. et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain134, 258–277 (2011). ArticlePubMed Google Scholar
Nixon, R. A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol.64, 113–122 (2005). ArticlePubMed Google Scholar
Boland, B. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J. Neurosci.28, 6926–6937 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell141, 1146–1158 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yu, W. H. et al. Macroautophagy — a novel β-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol.171, 87–98 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ling, D., Song, H. J., Garza, D., Neufeld, T. P. & Salvaterra, P. M. Aβ42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS ONE4, e4201 (2009). ArticlePubMedPubMed Central Google Scholar
Schols, L., Bauer, P., Schmidt, T., Schulte, T. & Riess, O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol.3, 291–304 (2004). ArticlePubMed Google Scholar
Menzies, F. M. et al. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain133, 93–104 (2010). In a genetic mouse model of spinocerebellar ataxia type 3, treatment with the rapamycin analogue temsirolimus reduces the number of ataxin-3-positive brain aggregates and improves motor performance by enhancing the autophagic degradation of toxic, mutant ataxin 3. ArticleCASPubMed Google Scholar
Pasinelli, P. & Brown, R. H. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nature Rev. Neurosci.7, 710–723 (2006). ArticleCAS Google Scholar
Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362, 59–62 (1993). ArticleCASPubMed Google Scholar
Zhang, X. et al. Rapamycin treatment augments motor neuron degeneration in SOD1 (G93A) mouse model of amyotrophic lateral sclerosis. Autophagy7, 412–425 (2011). ArticleCASPubMed Google Scholar
Kabuta, T., Suzuki, Y. & Wada, K. Degradation of amyotrophic lateral sclerosis-linked mutant Cu,Zn-superoxide dismutase proteins by macroautophagy and the proteasome. J. Biol. Chem.281, 30524–30533 (2006). ArticleCASPubMed Google Scholar
Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev.23, 2294–2306 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pizzasegola, C. et al. Treatment with lithium carbonate does not improve disease progression in two different strains of SOD1 mutant mice. Amyotroph. Lateral. Scler.10, 221–228 (2009). ArticleCASPubMed Google Scholar
Gill, A., Kidd, J., Vieira, F., Thompson, K. & Perrin, S. No benefit from chronic lithium dosing in a sibling-matched, gender balanced, investigator-blinded trial using a standard mouse model of familial ALS. PLoS ONE4, e6489 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chio, A. et al. Lithium carbonate in amyotrophic lateral sclerosis: lack of efficacy in a dose-finding trial. Neurology75, 619–625 (2010). ArticleCASPubMed Google Scholar
Chen-Plotkin, A. S., Lee, V. M. & Trojanowski, J. Q. TAR DNA-binding protein 43 in neurodegenerative disease. Nature Rev. Neurol.6, 211–220 (2010). ArticleCAS Google Scholar
Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science314, 130–133 (2006). ArticleCASPubMed Google Scholar
Rutherford, N. J. et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet.4, e1000193 (2008). ArticleCASPubMedPubMed Central Google Scholar
Caccamo, A. et al. Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J. Biol. Chem.284, 27416–27424 (2009). ArticleCASPubMedPubMed Central Google Scholar
Erlich, S., Alexandrovich, A., Shohami, E. & Pinkas-Kramarski, R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis.26, 86–93 (2007). ArticleCASPubMed Google Scholar
Alirezaei, M., Kiosses, W. B., Flynn, C. T., Brady, N. R. & Fox, H. S. Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS ONE3, e2906 (2008). ArticleCASPubMedPubMed Central Google Scholar
Carloni, S., Buonocore, G. & Balduini, W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol. Dis.32, 329–339 (2008). ArticleCASPubMed Google Scholar
Zhao, C. et al. mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice. J. Clin. Invest.121, 369–383 (2011). ArticleCASPubMed Google Scholar
Powers, R. W., Kaeberlein, M., Caldwell, S. D., Kennedy, B. K. & Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev.20, 174–184 (2006). ArticleCASPubMedPubMed Central Google Scholar
Medvedik, O., Lamming, D. W., Kim, K. D. & Sinclair, D. A. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol.5, e261 (2007). ArticleCASPubMedPubMed Central Google Scholar
Alvers, A. L. et al. Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell8, 353–369 (2009). ArticleCASPubMed Google Scholar
Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature460, 392–395 (2009). This article demonstrates that rapamycin is able to significantly extend lifespan in genetically heterogeneous mice of both sexes, even if these animals started the treatment late in life. ArticleCASPubMedPubMed Central Google Scholar
Hansen, M. et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell6, 95–110 (2007). ArticleCASPubMed Google Scholar
Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature426, 620 (2003). ArticleCASPubMed Google Scholar
Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol.14, 885–890 (2004). ArticleCASPubMedPubMed Central Google Scholar
Luong, N. et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab.4, 133–142 (2006). ArticleCASPubMed Google Scholar
Bishop, N. A. & Guarente, L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Rev. Genet.8, 835–844 (2007). ArticleCASPubMed Google Scholar
Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem.77, 727–754 (2008). ArticleCASPubMed Google Scholar
Chen, C. et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med.205, 2397–2408 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature450, 736–740 (2007). ArticleCASPubMed Google Scholar
Podbielski, J. & Schoenberg, L. Use of sirolimus in kidney transplantation. Prog. Transplant.11, 29–32 (2001). ArticleCASPubMed Google Scholar
Kandzari, D. E. & Leon, M. B. Overview of pharmacology and clinical trials program with the zotarolimus-eluting endeavor stent. J. Interv. Cardiol.19, 405–413 (2006). ArticlePubMed Google Scholar
Atkins, M. B. et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol.22, 909–918 (2004). ArticleCASPubMed Google Scholar
Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med.356, 2271–2281 (2007). ArticleCASPubMed Google Scholar
Massey, A. C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A. M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA103, 5805–5810 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sehgal, S. N., Baker, H. & Vezina, C. Rapamycin (AY-22989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot.28, 727–732 (1975). ArticleCAS Google Scholar
Cloughesy, T. F. et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med.5, e8 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ekberg, H. et al. Cyclosporine, tacrolimus and sirolimus retain their distinct toxicity profiles despite low doses in the Symphony study. Nephrol. Dial. Transplant.25, 2004–2010 (2010). ArticleCASPubMed Google Scholar
Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol.8, 382–397 (2009). ArticleCASPubMed Google Scholar
Avellino, R. et al. Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood106, 1400–1406 (2005). ArticleCASPubMed Google Scholar
Tirado, O. M., Mateo-Lozano, S. & Notario, V. Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax: Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity. Oncogene24, 3348–3357 (2005). ArticleCASPubMed Google Scholar
Swiech, L., Perycz, M., Malik, A. & Jaworski, J. Role of mTOR in physiology and pathology of the nervous system. Biochim. Biophys. Acta1784, 116–132 (2008). ArticleCASPubMed Google Scholar
Hou, L. & Klann, E. Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J. Neurosci.24, 6352–6361 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tang, S. J. et al. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl Acad. Sci. USA99, 467–472 (2002). ArticleCASPubMed Google Scholar
Abel, T. & Lattal, K. M. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol.11, 180–187 (2001). ArticleCASPubMed Google Scholar
Luzio, J. P., Pryor, P. R. & Bright, N. A. Lysosomes: fusion and function. Nature Rev. Mol. Cell Biol.8, 622–632 (2007). ArticleCAS Google Scholar
Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science331, 456–461 (2011). ArticleCASPubMed Google Scholar
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell20, 1981–1991 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ganley, I. G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem.284, 12297–12305 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol.181, 497–510 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol.22, 132–139 (2010). ArticleCASPubMed Google Scholar
Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell137, 873–886 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell110, 177–189 (2002). ArticleCASPubMed Google Scholar
Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell110, 163–175 (2002). ArticleCASPubMed Google Scholar
Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell25, 903–915 (2007). ArticleCASPubMed Google Scholar
Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol.16, 1865–1870 (2006). ArticleCASPubMed Google Scholar
Yang, Q., Inoki, K., Ikenoue, T. & Guan, K. L. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev.20, 2820–2832 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yip, C. K., Murata, K., Walz, T., Sabatini, D. M. & Kang, S. A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell38, 768–774 (2010). ArticleCASPubMedPubMed Central Google Scholar
Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol.7, e38 (2009). ArticleCASPubMed Google Scholar
Narendra, D. P. & Youle, R. J. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid. Redox Signal.14, 1929–1938 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sulzer, D. et al. Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J. Neurochem.106, 24–36 (2008). ArticleCASPubMedPubMed Central Google Scholar
Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene27, 6434–6451 (2008). ArticleCASPubMed Google Scholar