Solomon, R. L. & Corbit, J. D. An opponent-process theory of motivation. II. Cigarette addiction. J. Abnorm. Psychol.81, 158–171 (1973). ArticleCASPubMed Google Scholar
Olds, J. & Milner, P. M. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol.47, 419–427 (1954). ArticleCASPubMed Google Scholar
Wise, R. A. Catecholamine theories of reward: a critical review. Brain Res.152, 215–247 (1978). ArticleCASPubMed Google Scholar
Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA85, 5274–5278 (1988). ArticleCASPubMedPubMed Central Google Scholar
Stewart, J., de Wit, H. & Eikelboom, R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev.91, 251–268 (1984). ArticleCASPubMed Google Scholar
Robinson, T. E. & Becker, J. B. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res.396, 157–198 (1986). ArticleCASPubMed Google Scholar
Wise, R. A. & Bozarth, M. A. A psychomotor stimulant theory of addiction. Psychol. Rev.94, 469–492 (1987). ArticleCASPubMed Google Scholar
Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev.18, 247–291 (1993). ArticleCASPubMed Google Scholar
Di Chiara, G. Drug addiction as dopamine-dependent associative learning disorder. Eur. J. Pharmacol.375, 13–30 (1999). ArticleCASPubMed Google Scholar
Everitt, B. J. et al. Associative processes in addiction and reward. The role of amygdala–ventral striatal subsystems. Ann. NY Acad. Sci.877, 412–438 (1999). ArticleCASPubMed Google Scholar
White, N. M. Addictive drugs as reinforcers: multiple partial actions on memory systems. Addiction91, 921–949 (1996). ArticleCASPubMed Google Scholar
Jentsch, J. D. & Taylor, J. R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharamacology146, 373–390 (1999). ArticleCAS Google Scholar
Kalivas, P. W., Volkow, N. & Seamans, J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron45, 647–650 (2005). ArticleCASPubMed Google Scholar
Volkow, N. D. & Fowler, J. S. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb. Cortex10, 318–325 (2000). ArticleCASPubMed Google Scholar
Koob, G. F. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology24, 97–129 (2001). ArticleCASPubMed Google Scholar
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Association, Washington DC, 2000).
Ettenberg, A., Pettit, H. O., Bloom, F. E. & Koob, G. F. Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology78, 204–209 (1982). ArticleCASPubMed Google Scholar
Pettit, H. O., Ettenberg, A., Bloom, F. E. & Koob, G. F. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration. Psychopharmacology84, 167–173 (1984). ArticleCASPubMed Google Scholar
Bechara, A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature Neurosci.8, 1458–1463 (2005). ArticleCASPubMed Google Scholar
Fu, L. P. et al. Impaired response inhibition function in abstinent heroin dependents: an fMRI study. Neurosci. Lett.438, 322–326 (2008). ArticleCASPubMed Google Scholar
Fernandez-Serrano, M. J., Perez-Garcia, M., Schmidt Rio-Valle, J. & Verdejo-Garcia, A. Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. J. Psychopharmacol.24, 1317–1332 (2010). ArticlePubMed Google Scholar
Ornstein, T. J. et al. Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology23, 113–126 (2000). ArticleCASPubMed Google Scholar
Muriach, M. et al. Cocaine causes memory and learning impairments in rats: involvement of nuclear factor κB and oxidative stress, and prevention by topiramate. J. Neurochem.114, 675–684 (2010). ArticleCASPubMed Google Scholar
Tramullas, M., Martinez-Cue, C. & Hurle, M. A. Chronic administration of heroin to mice produces up-regulation of brain apoptosis-related proteins and impairs spatial learning and memory. Neuropharmacology54, 640–652 (2008). ArticleCASPubMed Google Scholar
Fole, A. et al. Effects of chronic cocaine administration on spatial learning and hippocampal spine density in two genetically different strains of rats. Neurobiol. Learn. Mem.95, 491–497 (2011). ArticleCASPubMed Google Scholar
McNamara, R., Dalley, J. W., Robbins, T. W., Everitt, B. J. & Belin, D. Trait-like impulsivity does not predict escalation of heroin self-administration in the rat. Psychopharmacology212, 453–464 (2010). ArticleCASPubMed Google Scholar
Dalley, J. W. et al. Attentional and motivational deficits in rats withdrawn from intravenous self-administration of cocaine or heroin. Psychopharmacology182, 579–587 (2005). ArticleCASPubMed Google Scholar
Dalley, J. W., Everitt, B. J. & Robbins, T. W. Impulsivity, compulsivity, and top-down cognitive control. Neuron69, 680–694 (2011). ArticleCASPubMed Google Scholar
de Wit, H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addiction Biol.14, 22–31 (2009). Article Google Scholar
Ersche, K. D., Clark, L., London, M., Robbins, T. W. & Sahakian, B. J. Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology31, 1036–1047 (2006). ArticleCASPubMed Google Scholar
Ersche, K. D. et al. Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology180, 612–623 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ersche, K. D., Roiser, J. P., Robbins, T. W. & Sahakian, B. J. Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology197, 421–431 (2008). ArticleCASPubMedPubMed Central Google Scholar
London, E. D. et al. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biol. Psychiatry58, 770–778 (2005). ArticleCASPubMed Google Scholar
Lundqvist, T. Cognitive consequences of cannabis use: comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions. Pharmacol. Biochem. Behav.81, 319–330 (2005). ArticleCASPubMed Google Scholar
Verdejo-Garcia, A., Perez-Garcia, M., Sanchez-Barrera, M., Rodriguez-Fernandez, A. & Gomez-Rio, M. Neuroimagen y drogodependencias: correlatos neuroanatómicos del consumo de cocaína, opiáceos, cannabis y éxtasis. Rev. Neurol.44, 432–439 (2007) (in Spanish). CASPubMed Google Scholar
Winstanley, C. A. et al. Increased impulsivity during withdrawal from cocaine self-administration: role for DeltaFosB in the orbitofrontal cortex. Cereb. Cortex19, 435–444 (2009). ArticlePubMed Google Scholar
Liu, S., Heitz, R. P. & Bradberry, C. W. A touch screen based Stop Signal Response Task in rhesus monkeys for studying impulsivity associated with chronic cocaine self-administration. J. Neurosci. Meth.177, 67–72 (2009). Article Google Scholar
Fletcher, P. J., Rizos, Z., Noble, K. & Higgins, G. A. Impulsive action induced by amphetamine, cocaine and MK801 is reduced by 5HT(2C) receptor stimulation and 5HT(2A) receptor blockade. Neuropharmacology61, 468–477 (2011). ArticleCASPubMed Google Scholar
Harty, S. C., Whaley, J. E., Halperin, J. M. & Ranaldi, R. Impulsive choice, as measured in a delay discounting paradigm, remains stable after chronic heroin administration. Pharmacol. Biochem. Behav.98, 337–340 (2011). ArticleCASPubMed Google Scholar
Harris, J. E. & Baldessarini, R. J. Uptake of (3H)-catecholamines by homogenates of rat corpus striatum and cerebral cortex: effects of amphetamine analogues. Neuropharmacology12, 669–679 (1973). ArticleCASPubMed Google Scholar
Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci.5, 483–494 (2004). ArticleCAS Google Scholar
Gysling, K. & Wang, R. Y. Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res.277, 119–127 (1983). ArticleCASPubMed Google Scholar
Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci.12, 483–488 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kalivas, P. W. & Volkow, N. D. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry162, 1403–1413 (2005). ArticlePubMed Google Scholar
Carelli, R. M., King, V. C., Hampson, R. E. & Deadwyler, S. A. Firing patterns of nucleus accumbens neurons during cocaine self-administration in rats. Brain Res.626, 14–22 (1993). ArticleCASPubMed Google Scholar
Chang, J. Y., Zhang, L., Janak, P. H. & Woodward, D. J. Neuronal responses in prefrontal cortex and nucleus accumbens during heroin self-administration in freely moving rats. Brain Res.754, 12–20 (1997). ArticleCASPubMed Google Scholar
Chang, J. Y., Janak, P. H. & Woodward, D. J. Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J. Neurosci.18, 3098–3115 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kalivas, P. W. & Stewart, J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev.16, 223–244 (1991). ArticleCASPubMed Google Scholar
Nestler, E. J. Molecular basis of long-term plasticity underlying addiction. Nature Rev. Neurosci.2, 119–128 (2001). ArticleCAS Google Scholar
Thomas, M. J., Kalivas, P. W. & Shaham, Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol.154, 327–342 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wolf, M. E., Sun, X., Mangiavacchi, S. & Chao, S. Z. Psychomotor stimulants and neuronal plasticity. Neuropharmacology47, 61–79 (2004). ArticleCASPubMed Google Scholar
Girault, J. A., Valjent, E., Caboche, J. & Herve, D. ERK2: a logical AND gate critical for drug-induced plasticity? Curr. Opin. Pharmacol.7, 77–85 (2007). ArticleCASPubMed Google Scholar
Bonci, A. & Williams, J. T. A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron16, 631–639 (1996). ArticleCASPubMed Google Scholar
Bowers, M. S., Chen, B. T. & Bonci, A. AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron67, 11–24 (2010). ArticleCASPubMedPubMed Central Google Scholar
Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron37, 577–582 (2003). ArticleCASPubMed Google Scholar
Francesconi, W. et al. Protracted withdrawal from alcohol and drugs of abuse impairs long-term potentiation of intrinsic excitability in the juxtacapsular bed nucleus of the stria terminalis. J. Neurosci.29, 5389–5401 (2009). ArticleCASPubMedPubMed Central Google Scholar
Vanderschuren, L. J. & Kalivas, P. W. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology151, 99–120 (2000). ArticleCASPubMed Google Scholar
Rossetti, Z. L., Hmaidan, Y. & Gessa, G. L. Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur. J. Pharmacol.221, 227–234 (1992). ArticleCASPubMed Google Scholar
Dacher, M. & Nugent, F. S. Morphine-induced modulation of LTD at GABAergic synapses in the ventral tegmental area. Neuropharmacology 1 Dec 2010 (doi:10.1016/j.neuropharm.2010.11.012). ArticleCASPubMed Google Scholar
Niehaus, J. L., Murali, M. & Kauer, J. A. Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area. Eur. J. Neurosci.32, 108–117 (2010). ArticlePubMedPubMed Central Google Scholar
Pan, B., Hillard, C. J. & Liu, Q. S. Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J. Neurosci.28, 1385–1397 (2008). ArticleCASPubMedPubMed Central Google Scholar
Huang, C. C., Lin, H. J. & Hsu, K. S. Repeated cocaine administration promotes long-term potentiation induction in rat medial prefrontal cortex. Cereb. Cortex17, 1877–1888 (2007). ArticlePubMed Google Scholar
Lu, H., Cheng, P. L., Lim, B. K., Khoshnevisrad, N. & Poo, M. M. Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition. Neuron67, 821–833 (2010). ArticleCASPubMedPubMed Central Google Scholar
Van den Oever, M. C. et al. Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nature Neurosci.11, 1053–1058 (2008). ArticleCASPubMed Google Scholar
Robinson, T. E. & Kolb, B. Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci.17, 8491–8497 (1997). ArticleCASPubMedPubMed Central Google Scholar
Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology47, 33–46 (2004). ArticleCASPubMed Google Scholar
Russo, S. J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci.33, 267–276 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gerfen, C. R. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci.15, 133–139 (1992). ArticleCASPubMed Google Scholar
Badiani, A. et al. Environmental modulation of amphetamine-induced cfos expression in D1 versus D2 striatal neurons. Behav. Brain Res.103, 203–209 (1999). ArticleCASPubMed Google Scholar
Ferguson, S. M. & Robinson, T. E. Amphetamine-evoked gene expression in striatopallidal neurons: regulation by corticostriatal afferents and the ERK/MAPK signaling cascade. J. Neurochem.91, 337–348 (2004). ArticleCASPubMed Google Scholar
Uslaner, J. et al. Amphetamine and cocaine induce different patterns of cfos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. Neurosci.13, 1977–1983 (2001). ArticleCASPubMed Google Scholar
Hope, B. T. et al. Induction of a long-lasting AP1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron13, 1235–1244 (1994). ArticleCASPubMed Google Scholar
Lee, K. W. et al. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc. Natl Acad. Sci. USA103, 3399–3404 (2006). ArticleCASPubMedPubMed Central Google Scholar
Albertson, D. N., Schmidt, C. J., Kapatos, G. & Bannon, M. J. Distinctive profiles of gene expression in the human nucleus accumbens associated with cocaine and heroin abuse. Neuropsychopharmacology31, 2304–2312 (2006). ArticleCASPubMed Google Scholar
Warner, L. A., Kessler, R. C., Hughes, M., Anthony, J. C. & Nelson, C. B. Prevalence and correlates of drug use and dependence in the United States. Results from the National Comorbidity Survey. Arch. Gen. Psychiatry52, 219–229 (1995). ArticleCASPubMed Google Scholar
Glantz, M. D. & Pickens, R. W. Vulnerability to Drug Abuse (American Psychological Association, Washington DC, 1992). Book Google Scholar
Tsuang, M. T. et al. Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities. Arch. Gen. Psychiatry55, 967–972 (1998). ArticleCASPubMed Google Scholar
Caprioli, D., Celentano, M., Paolone, G. & Badiani, A. Modeling the role of environment in addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry31, 1639–1653 (2007). ArticlePubMed Google Scholar
Harding, W. M. & Zinberg, N. E. Controlling intoxicant use. J. Psychoactive Drugs16, 101–106 (1984). ArticleCASPubMed Google Scholar
Robins, L. N., Davis, D. H. & Goodwin, D. W. Drug use by U. S. Army enlisted men in Vietnam: a follow-up on their return home. Am. J. Epidemiol.99, 235–249 (1974). ArticleCASPubMed Google Scholar
Brady, J. V. Animal models for assessing drugs of abuse. Neurosci. Biobehav. Rev.15, 35–43 (1991). ArticleCASPubMed Google Scholar
Schuster, C. R. & Thompson, T. Self administration of and behavioral dependence on drugs. Annu. Rev. Pharmacol.9, 483–502 (1969). ArticleCASPubMed Google Scholar
Thomsen, M. & Caine, S. B. Intravenous drug self-administration in mice: practical considerations. Behav. Genet.37, 101–118 (2007). ArticlePubMed Google Scholar
Carroll, M. E. & Meisch, M. E. in Advances in Behavioral Pharmacology (eds Thompson, T., Dews, P. B. & Barrett, J. E.) 47–88 (Academic Press, New York, 1984). Google Scholar
Lu, L., Shepard, J. D., Scott Hall, F. & Shaham, Y. Effect of environmental stressors on opiate and psychostimulant reinforcement, reinstatement and discrimination in rats: a review. Neurosci. Biobehav. Rev.27, 457–491 (2003). ArticleCASPubMed Google Scholar
Piazza, P. V. & Le Moal, M. The role of stress in drug self-administration. Trends Pharmacol. Sci.19, 67–74 (1998). ArticleCASPubMed Google Scholar
Lett, B. T. Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology98, 357–362 (1989). ArticleCASPubMed Google Scholar
Shippenberg, T. S. & Elmer, G. I. The neurobiology of opiate reinforcement. Crit. Rev. Neurobiol.12, 267–303 (1998). ArticleCASPubMed Google Scholar
Vezina, P. Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychostimulant drugs. Neurosci. Biobehav. Rev.27, 827–839 (2004). ArticleCASPubMed Google Scholar
Carroll, M. E., Morgan, A. D., Lynch, W. J., Campbell, U. C. & Dess, N. K. Intravenous cocaine and heroin self-administration in rats selectively bred for differential saccharin intake: phenotype and sex differences. Psychopharmacology161, 304–313 (2002). ArticleCASPubMed Google Scholar
Wills, T. A., Vaccaro, D. & McNamara, G. Novelty seeking, risk taking, and related constructs as predictors of adolescent substance use: an application of Cloninger's theory. J. Subst. Abuse6, 1–20 (1994). ArticleCASPubMed Google Scholar
Piazza, P. V. & Le Moal, M. Pathophysiological basis of vulnerability to drug abuse: interaction between stress, glucocorticoids, and dopaminergic neurons. Ann. Rev. Pharmacol. Toxicol.36, 359–378 (1996). ArticleCAS Google Scholar
Marinelli, M. & Piazza, P. V. Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur. J. Neurosci.16, 387–394 (2002). ArticlePubMed Google Scholar
Marinelli, M., Aouizerat, B., Barrot, M., Le Moal, M. & Piazza, P. V. Dopamine-dependent responses to morphine depend on glucocorticoid receptors. Proc. Natl Acad. Sci. USA95, 7742–7747 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ambroggi, F. et al. Stress and addiction: glucocorticoid receptor in dopaminoceptive neurons facilitates cocaine seeking. Nature Neurosci.12, 247–249 (2009). ArticleCASPubMed Google Scholar
Ettenberg, A. Opponent process properties of self-administered cocaine. Neurosci. Biobehav. Rev.27, 721–728 (2004). ArticleCASPubMed Google Scholar
Ettenberg, A. & Geist, T. D. Qualitative and quantitative differences in the operant runway behavior of rats working for cocaine and heroin reinforcement. Pharmacol. Biochem. Behav.44, 191–198 (1993). ArticleCASPubMed Google Scholar
Ettenberg, A., Raven, M. A., Danluck, D. A. & Necessary, B. D. Evidence for opponent-process actions of intravenous cocaine. Pharmacol. Biochem. Behav.64, 507–512 (1999). ArticleCASPubMed Google Scholar
Geist, T. D. & Ettenberg, A. Concurrent positive and negative goalbox events produce runway behaviors comparable to those of cocaine-reinforced rats. Pharmacol. Biochem. Behav.57, 145–150 (1997). ArticleCASPubMed Google Scholar
Knackstedt, L. A., Samimi, M. M. & Ettenberg, A. Evidence for opponent-process actions of intravenous cocaine and cocaethylene. Pharmacol. Biochem. Behav.72, 931–936 (2002). ArticleCASPubMed Google Scholar
Anthony, J. C., Tien, A. Y. & Petronis, K. R. Epidemiologic evidence on cocaine use and panic attacks. Am. J. Epidemiol.129, 543–549 (1989). ArticleCASPubMed Google Scholar
Geracioti, T. D., Jr & Post, R. M. Onset of panic disorder associated with rare use of cocaine. Biol. Psychiatry29, 403–406 (1991). ArticlePubMed Google Scholar
Breiter, H. C. et al. Acute effects of cocaine on human brain activity and emotion. Neuron19, 591–611 (1997). ArticleCASPubMed Google Scholar
Becker, J. B. & Hu, M. Sex differences in drug abuse. Frontiers Neuroendocrinol.29, 36–47 (2008). ArticleCAS Google Scholar
Roth, M. E., Cosgrove, K. P. & Carroll, M. E. Sex differences in the vulnerability to drug abuse: a review of preclinical studies. Neurosci. Biobehav. Rev.28, 533–546 (2004). ArticleCASPubMed Google Scholar
Lynch, W. J. & Carroll, M. E. Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology144, 77–82 (1999). ArticleCASPubMed Google Scholar
Stewart, J., Woodside, B. C. & Shaham, Y. Changes in ovarian hormones do not affect the initiation of intravenous self-administration of heroin in the female rat. Psychobiology24, 154–159 (1996). CAS Google Scholar
Stewart, J. & Rodaros, D. The effects of gonadal hormones on the development and expression of the stimulant effects of morphine in male and female rats. Behav. Brain Res.102, 89–98 (1999). ArticleCASPubMed Google Scholar
Ahmed, S. H. & Koob, G. F. Transition to drug addiction: a negative reinforcement model based on an allostatic decrease in reward function. Psychopharmacology180, 473–490 (2005). ArticleCASPubMed Google Scholar
Bozarth, M. A. & Wise, R. A. Toxicity associated with long-term intravenous heroin and cocaine self- administration in the rat. J. Am. Med. Assoc.254, 81–83 (1985). ArticleCAS Google Scholar
Pickens, R. & Harris, W. C. Self-administration of damphetamine by rats. Psychopharmacologia12, 158–163 (1968). ArticleCASPubMed Google Scholar
Covington, H. E., 3rd & Miczek, K. A. Repeated social-defeat stress, cocaine or morphine. Effects on behavioral sensitization and intravenous cocaine self-administration “binges”. Psychopharmacology158, 388–398 (2001). ArticleCASPubMed Google Scholar
Belin, D., Economidou, D., Pelloux, Y. & Everitt, B. J. Habit formation and compulsion. Neuromethods53, 337–378 (2011). ArticleCAS Google Scholar
Wolffgramm, J. & Heyne, A. From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav. Brain Res.70, 77–94 (1995). ArticleCASPubMed Google Scholar
Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science305, 1014–1017 (2004). ArticleCASPubMed Google Scholar
Pelloux, Y., Everitt, B. J. & Dickinson, A. Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology194, 127–137 (2007). ArticleCASPubMed Google Scholar
Cooper, A., Barnea-Ygael, N., Levy, D., Shaham, Y. & Zangen, A. A conflict rat model of cue-induced relapse to cocaine seeking. Psychopharmacology194, 117–125 (2007). ArticleCASPubMed Google Scholar
Vanderschuren, L. J. & Everitt, B. J. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science305, 1017–1019 (2004). ArticleCASPubMed Google Scholar
Heyne, A. & Wolffgramm, J. The development of addiction to damphetamine in an animal model: same principles as for alcohol and opiate. Psychopharmacology140, 510–518 (1998). ArticleCASPubMed Google Scholar
Lenoir, M., Guillem, K., Koob, G. F. & Ahmed, S. H. Drug specificity in extended access cocaine and heroin self-administration. Addiction Biol. (in the press).
Weeks, J. R. & Collins, J. Patterns of intravenous self-injection by morphine-addicted rats. Res. Publ. Assoc. Res. Nerv. Ment. Dis.46, 288–298 (1968). CASPubMed Google Scholar
Miczek, K. A., Yap, J. J. & Covington, H. E. Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol. Ther.120, 102–128 (2008). ArticleCASPubMedPubMed Central Google Scholar
Covington, H. E., 3rd, Tropea, T. F., Rajadhyaksha, A. M., Kosofsky, B. E. & Miczek, K. A. NMDA receptors in the rat VTA: a critical site for social stress to intensify cocaine taking. Psychopharmacology197, 203–216 (2008). ArticleCASPubMed Google Scholar
Westerink, B. H., Kwint, H. F. & deVries, J. B. The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J. Neurosci.16, 2605–2611 (1996). ArticleCASPubMedPubMed Central Google Scholar
Cruz, F. C., Quadros, I. M., Hogenelst, K., Planeta, C. S. & Miczek, K. A. Social defeat stress in rats: escalation of cocaine and “speedball” binge self-administration, but not heroin. Psychopharmacology215, 165–175 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dalley, J. W. et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science315, 1267–1270 (2007). ArticleCASPubMedPubMed Central Google Scholar
de Wit, H. Priming effects with drugs and other reinforcers. Exp. Clin. Psychopharmacol.4, 5–10 (1996). ArticleCAS Google Scholar
Childress, A. R. et al. Cue reactivity and cue reactivity interventions in drug dependence. NIDA Res. Monogr.137, 73–95 (1993). CASPubMed Google Scholar
Sinha, R. How does stress increase risk of drug abuse and relapse. Psychopharmacology158, 343–359 (2001). ArticleCASPubMed Google Scholar
Heilig, M. et al. Translating the neuroscience of alcoholism into clinical treatments: from blocking the buzz to curing the blues. Neurosci. Biobehav. Rev.35, 334–344 (2010). ArticlePubMed Google Scholar
de Wit, H. & Stewart, J. Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology75, 134–143 (1981). ArticleCASPubMed Google Scholar
Meil, W. M. & See, R. E. Conditioned cued recovery of responding following prolonged withdrawal from self-administered cocaine in rats: an animal model of relapse. Behav. Pharmacol.7, 754–763 (1996). CASPubMed Google Scholar
Shaham, Y. & Stewart, J. Stress reinstates heroin self-administration behavior in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology119, 334–341 (1995). ArticleCASPubMed Google Scholar
Everitt, B. J. & Robbins, T. W. Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology153, 17–30 (2000). ArticleCASPubMed Google Scholar
Shalev, U., Grimm, J. W. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol. Rev.54, 1–42 (2002). ArticleCASPubMed Google Scholar
Bedi, G. et al. Incubation of cue-induced cigarette craving during abstinence in human smokers. Biol. Psychiatry69, 708–711 (2011). ArticlePubMedPubMed Central Google Scholar
Shaham, Y., Erb, S. & Stewart, J. Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res. Brain Res. Rev.33, 13–33 (2000). ArticleCASPubMed Google Scholar
Crombag, H., Bossert, J. M., Koya, E. & Shaham, Y. Context-induced relapse to drug seeking: a review. Trans. R. Soc. Lond. B363, 3233–3243 (2008). Article Google Scholar
Weiss, F. Neurobiology of craving, conditioned reward and relapse. Curr. Opin. Pharmacol.5, 9–19 (2005). ArticleCASPubMed Google Scholar
Schindler, C. W., Panlilio, L. V. & Goldberg, S. R. Second-order schedules of drug self-administration in animals. Psychopharmacology163, 327–344 (2002). ArticleCASPubMed Google Scholar
Shalev, U., Morales, M., Hope, B., Yap, J. & Shaham, Y. Time-dependent changes in extinction behavior and stress-induced reinstatement of drug seeking following withdrawal from heroin in rats. Psychopharmacology156, 98–107 (2001). ArticleCASPubMed Google Scholar
Shepard, J. D., Bossert, J. M., Liu, S. Y. & Shaham, Y. The anxiogenic drug yohimbine reinstates methamphetamine seeking in a rat model of drug relapse. Biol. Psychiatry55, 1082–1089 (2004). ArticleCASPubMed Google Scholar
Schmidt, H. D., Anderson, S. M., Famous, K. R., Kumaresan, V. & Pierce, R. C. Anatomy and pharmacology of cocaine priming-induced reinstatement of drug seeking. Eur. J. Pharmacol.526, 65–76 (2005). ArticleCASPubMed Google Scholar
Self, D. W. et al. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self administration and relapse of cocaine-seeking behavior. J. Neurosci.18, 1848–1859 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bossert, J. M., Wihbey, K. A., Pickens, C. L., Nair, S. G. & Shaham, Y. Role of dopamine D1-family receptors in dorsolateral striatum in context-induced reinstatement of heroin seeking in rats. Psychopharmacology206, 51–60 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fuchs, R. A., Branham, R. K. & See, R. E. Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J. Neurosci.26, 3584–3588 (2006). ArticleCASPubMedPubMed Central Google Scholar
Vanderschuren, L. J., Di Ciano, P. & Everitt, B. J. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J. Neurosci.25, 8665–8870 (2005). ArticleCASPubMedPubMed Central Google Scholar
LaLumiere, R. T. & Kalivas, P. W. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J. Neurosci.28, 3170–3177 (2008). ArticleCASPubMedPubMed Central Google Scholar
McFarland, K. & Kalivas, P. W. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci.21, 8655–8663 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shaham, Y., Highfield, D., Delfs, J. M., Leung, S. & Stewart, J. Clonidine blocks stress-induced reinstatement of heroin seeking in rats: an effect independent of the locus coeruleus noradrenergic neurons. Eur. J. Neurosci.12, 292–302 (2000). ArticleCASPubMed Google Scholar
Shalev, U., Erb, S. & Shaham, Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res.1314, 15–28 (2010). ArticleCASPubMed Google Scholar
Rogers, J. L., Ghee, S. & See, R. E. The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience151, 579–588 (2008). ArticleCASPubMed Google Scholar
Alderson, H. L., Robbins, T. W. & Everitt, B. J. The effects of excitotoxic lesions of the basolateral amygdala on the acquisition of heroin-seeking behaviour in rats. Psychopharmacology153, 111–119 (2000). ArticleCASPubMed Google Scholar
Whitelaw, R. B., Markou, A., Robbins, T. W. & Everitt, B. J. Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology127, 213–224 (1996). ArticleCASPubMed Google Scholar
Fuchs, R. A. & See, R. E. Basolateral amygdala inactivation abolishes conditioned stimulus- and heroin-induced reinstatement of extinguished heroin-seeking behavior in rats. Psychopharmacology160, 425–433 (2002). ArticleCASPubMed Google Scholar
McLaughlin, J. & See, R. E. Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology168, 57–65 (2003). ArticleCASPubMed Google Scholar
Fuchs, R. A. et al. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology30, 296–309 (2005). ArticleCASPubMed Google Scholar
Bossert, J. M. et al. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nature Neurosci.14, 420–422 (2011). ArticleCASPubMed Google Scholar
Fuchs, R. A., Ramirez, D. R. & Bell, G. H. Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology200, 545–556 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bossert, J. M., Poles, G. C., Sheffler-Collins, S. I. & Ghitza, U. E. The mGluR2/3 agonist LY379268 attenuates context- and discrete cue-induced reinstatement of sucrose seeking but not sucrose self-administration in rats. Behav. Brain Res.173, 148–152 (2006). ArticleCASPubMed Google Scholar
Bossert, J. M., Poles, G. C., Wihbey, K. A., Koya, E. & Shaham, Y. Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. J. Neurosci.27, 12655–12663 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bossert, J. M., Ghitza, U. E., Lu, L., Epstein, D. H. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: an update and clinical implications. Eur. J. Pharmacol.526, 36–50 (2005). ArticleCASPubMed Google Scholar
Peters, J., LaLumiere, R. T. & Kalivas, P. W. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J. Neurosci.28, 6046–6053 (2008). ArticleCASPubMedPubMed Central Google Scholar
Peters, J., Kalivas, P. W. & Quirk, G. J. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn. Mem.16, 279–288 (2009). ArticlePubMedPubMed Central Google Scholar
Lu, L. et al. Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol. Psychiatry66, 137–145 (2009). ArticleCASPubMedPubMed Central Google Scholar
Airavaara, M. et al. Endogenous GDNF in ventral tegmental area and nucleus accumbens does not play a role in the incubation of heroin craving. Addiction Biol.16, 261–272 (2011). ArticleCAS Google Scholar
Ettenberg, A. The runway model of drug self-administration. Pharmacol. Biochem. Behav.91, 271–277 (2009). ArticleCASPubMed Google Scholar
Wikler, A. Dynamics of drug dependence, implication of a conditioning theory for research and treatment. Arch. Gen. Psychiatry28, 611–616 (1973). ArticleCASPubMed Google Scholar
Cain, M. E., Smith, C. M. & Bardo, M. T. The effect of novelty on amphetamine self-administration in rats classified as high and low responders. Psychopharmacology176, 129–138 (2004). ArticleCASPubMed Google Scholar
Klebaur, J. E., Phillips, S. B., Kelly, T. H. & Bardo, M. T. Exposure to novel environmental stimuli decreases amphetamine self-administration in rats. Exp. Clin. Psychopharmacol.9, 372–379 (2001). ArticleCASPubMed Google Scholar
Cornish, J. L. et al. Heat increases 3,4-methylenedioxymethamphetamine self-administration and social effects in rats. Eur. J. Pharmacol.482, 339–341 (2003). ArticleCASPubMed Google Scholar
Caprioli, D. et al. Opposite environmental regulation of heroin and amphetamine self-administration in the rat. Psychopharmacology198, 395–404 (2008). ArticleCASPubMed Google Scholar
Caprioli, D. et al. Environmental modulation of cocaine self-administration in the rat. Psychopharmacology192, 397–406 (2007). ArticleCASPubMed Google Scholar
Caprioli, D. et al. Ambience and drug choice: cocaine- and heroin-taking as a function of environmental context in humans and rats. Biol. Psychiatry65, 893–899 (2009). ArticleCASPubMed Google Scholar
Montanari, C. L., De Luca, M. T., Meringolo, M., Contu, L. & Badiani, A. Environmental modulation of drug-induced reinstatement of cocaine versus heroin drug seeking in rats trained to self-administer both drugs. Behav. Pharmacol.22 (e-suppl. A), e21 (2011). Google Scholar
Stolerman, I. Drugs of abuse: behavioural principles, methods and terms. Trends Pharmacol. Sci.13, 170–176 (1992). ArticleCASPubMed Google Scholar
Paolone, G., Palopoli, M., Marrone, M. C., Nencini, P. & Badiani, A. Environmental modulation of the interoceptive effects of amphetamine in the rat. Behav. Brain Res.152, 149–155 (2004). CASPubMed Google Scholar
Celentano, M. et al. Drug context differently regulates cocaine versus heroin self-administration and cocaine- versus heroin-induced Fos mRNA expression in the rat. Psychopharmacology204, 349–360 (2009). ArticleCASPubMed Google Scholar
De Luca, M. T. & Badiani, A. Ketamine self-administration in the rat: evidence for a critical role of setting. Psychopharmacology214, 549–556 (2011). ArticleCASPubMed Google Scholar
Testa, A., Nencini, P. & Badiani, A. The role of setting in the oral self-administration of alcohol in the rat. Psychopharmacology215, 749–760 (2011). ArticleCASPubMed Google Scholar
Badiani, A. & Robinson, T. E. Drug-induced neurobehavioral plasticity: the role of environmental context. Behav. Pharmacol.15, 327–339 (2004). ArticleCASPubMed Google Scholar
Paolone, G. et al. Modulatory effect of environmental context and drug history on heroin-induced psychomotor activity and fos protein expression in the rat brain. Neuropsychopharmacology32, 2611–2623 (2007). ArticleCASPubMed Google Scholar
Lenoir, M. & Ahmed, S. H. Heroin-induced reinstatement is specific to compulsive heroin use and dissociable from heroin reward and sensitization. Neuropsychopharmacology32, 616–624 (2007). ArticleCASPubMed Google Scholar
Ahmed, S. H. & Cador, M. Dissociation of psychomotor sensitization from compulsive cocaine consumption. Neuropsychopharmacology31, 563–571 (2006). ArticleCASPubMed Google Scholar
Nutt, D. J., King, L. A. & Phillips, L. D. Drug harms in the UK: a multicriteria decision analysis. Lancet376, 1558–1565 (2010). ArticlePubMed Google Scholar
Anthony, J. C., Warner, L. A. & Kessler, R. C. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Drug Alcohol Depend.2, 244–268 (1994). Google Scholar
Hubbard, R. L. & Marsden, M. E. in NIDA Research Monograph 72: Relapse and Recovery in Drug Abuse (eds Tims, F. M. & Leukefeld, C. G.) 157–166 (Department of Health and Human Services, Rockville, Maryland, 1986). Google Scholar
Dutra, L. et al. A meta-analytic review of psychosocial interventions for substance use disorders. Am. J. Psychiatry165, 179–187 (2008). ArticlePubMed Google Scholar
Higgins, S. T., Heil, S. H. & Lussier, J. P. Clinical implications of reinforcement as a determinant of substance use disorders. Annu. Rev. Psychol.55, 431–461 (2004). ArticlePubMed Google Scholar
Khantzian, E. J. The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am. J. Psychiatry142, 1259–1264 (1985). ArticleCASPubMed Google Scholar
Craig, R. J. & Olson, R. E. MCMI comparisons of cocaine abusers and heroin addicts. J. Clin. Psychol.46, 230–237 (1990). ArticleCASPubMed Google Scholar
O'Connor, L. & Berry, J. W. The drugofchoice phenomenon: why addicts start using their preferred drug. J. Psychoactive Drugs22, 305–311 (1990). ArticleCASPubMed Google Scholar
Suh, J. J., Robins, C. E., Ruffins, S., Albanese, M. J. & Khantzian, E. J. Self-medication hypothesis: connecting affective experience and drug choice. Psychoanal. Psychol.25, 518–532 (2008). Article Google Scholar
Tarter, R. E. & Mezzich, A. C. in Vulnerability to Drug Abuse (eds Glantz, M. & Pickens, R.) 149–178 (American Psychological Association, Washington DC, 1992). Book Google Scholar
Kendler, K. S., Jacobson, K. C., Prescott, C. A. & Neale, M. C. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am. J. Psychiatry160, 687–695 (2003). ArticlePubMed Google Scholar
Yuferov, V., Levran, O., Proudnikov, D., Nielsen, D. A. & Kreek, M. J. Search for genetic markers and functional variants involved in the development of opiate and cocaine addiction and treatment. Ann. NY Acad. Sci.1187, 184–207 (2010). ArticleCASPubMed Google Scholar
Spagnolo, P. A., Celentano, M., Dubla, A. & Badiani, A. Setting preferences for heroin versus cocaine taking in human co-abusers: role of environmental variables in drug use and relapse. Behav. Pharmacol.22 (e-suppl. A), e21 (2011). Google Scholar
Epstein, D. H. et al. Real-time electronic diary reports of cue exposure and mood in the hours before cocaine and heroin craving and use. Arch. Gen. Psychiatry66, 88–94 (2009). ArticlePubMedPubMed Central Google Scholar
Heather, N., Stallard, A. & Tebbutt, J. Importance of substance cues in relapse among heroin users: comparison of two methods of investigation. Addictive Behav.16, 41–49 (1991). ArticleCAS Google Scholar
Marlatt, G. A. & Gordon, J. R. E. Relapse Prevention: Maintenance Strategies in the Treatment of Addictive Behaviors (Guilford, New York, 1985). Google Scholar
Dole, V. P., Nyswander, M. E. & Kreek, M. J. Narcotic blockade. Arch. Intern. Med.118, 304–309 (1966). ArticleCASPubMed Google Scholar
Shearer, J. The principles of agonist pharmacotherapy for psychostimulant dependence. Drug Alcohol Rev.27, 301–308 (2008). ArticlePubMed Google Scholar
Mello, N. K. & Negus, S. S. Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology14, 375–424 (1996). ArticleCASPubMed Google Scholar
Nielsen, D. A. et al. Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr. Genet.20, 207–214 (2010). ArticlePubMed Google Scholar
Compton, P. A., Ling, W., Charuvastra, V. C. & Wesson, D. R. Buprenorphine as a pharmacotherapy for cocaine abuse: a review of the evidence. J. Addictive Dis.14, 97–114 (1995). ArticleCAS Google Scholar
Schottenfeld, R. S., Pakes, J. R., Oliveto, A., Ziedonis, D. & Kosten, T. R. Buprenorphine vs methadone maintenance treatment for concurrent opioid dependence and cocaine abuse. Arch. Gen. Psychiatry54, 713–720 (1997). ArticleCASPubMed Google Scholar
Epstein, D. H. et al. Promoting abstinence from cocaine and heroin with a methadone dose increase and a novel contingency. Drug Alcohol Depend.101, 92–100 (2009). ArticlePubMed Google Scholar
Kosten, T. R., Rounsaville, B. J. & Kleber, H. D. A 2.5-year follow-up of cocaine use among treated opioid addicts. Have our treatments helped? Arch. Gen. Psychiatry44, 281–284 (1987). ArticleCASPubMed Google Scholar
Montoya, I. D. et al. Randomized trial of buprenorphine for treatment of concurrent opiate and cocaine dependence. Clin. Pharmacol. Ther.75, 34–48 (2004). ArticleCASPubMed Google Scholar
Wolf, M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol.54, 679–720 (1998). ArticleCASPubMed Google Scholar
Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neuronal mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci.29, 565–598 (2006). ArticleCASPubMed Google Scholar
Kalivas, P. W. The glutamate homeostasis hypothesis of addiction. Nature Rev. Neurosci.10, 561–572 (2009). ArticleCAS Google Scholar
Laviolette, S. R. & van der Kooy, D. Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol. Psychiatry8, 50–59 (2003). ArticleCASPubMed Google Scholar
Laviolette, S. R. & van der Kooy, D. The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nature Rev. Neurosci.5, 55–65 (2004). ArticleCAS Google Scholar
Rassnick, S., Stinus, L. & Koob, G. F. The effects of 6hydroxydopamine lesions of the nucleus accumbens and the mesolimbic dopamine system on oral self-administration of ethanol in the rat. Brain Res.623, 16–24 (1993). ArticleCASPubMed Google Scholar
Amit, Z. & Brown, Z. W. Actions of drugs of abuse on brain reward systems: a reconsideration with specific attention to alcohol. Pharmacol. Biochem. Behav.17, 233–238 (1982). ArticleCASPubMed Google Scholar
Belin, D., Jonkman, S., Dickinson, A., Robbins, T. W. & Everitt, B. J. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav. Brain Res.199, 89–102 (2009). ArticlePubMed Google Scholar
Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neurosci.8, 1481–1489 (2005). ArticleCASPubMed Google Scholar
Glickman, S. E. & Schiff, B. B. A biological theory of reinforcement. Psychol. Rev.74, 81–109 (1967). ArticleCASPubMed Google Scholar
Weeks, J. R. Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science143, 143–144 (1962). Article Google Scholar
Stretch, R. & Gerber, G. J. Drug-induced reinstatement of amphetamine self-administration behaviour in monkeys. Can. J. Psychol.27, 168–177 (1973). ArticleCASPubMed Google Scholar
Colpaert, F. C., Lal, H., Niemegeers, C. J. & Janssen, P. A. Investigations on drug produced and subjectively experienced discriminative stimuli. I. The fentanyl cue, a tool to investigate subjectively experience narcotic drug actions. Life Sci.16, 705–715 (1975). ArticleCASPubMed Google Scholar
Wise, R. A. & Rompre, P. P. Brain dopamine and reward. Annu. Rev. Psychol.40, 191–225 (1989). ArticleCASPubMed Google Scholar
Pierce, R. C. & Kumaresan, V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev.30, 215–238 (2006). ArticleCASPubMed Google Scholar
Tzschentke, T. M. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol.56, 613–672 (1998). ArticleCASPubMed Google Scholar
Roberts, D. C., Koob, G. F., Klonoff, P. & Fibiger, H. C. Extinction and recovery of cocaine self-administration following 6hydroxydopamine lesions of the nucleus accumbens. Pharmacol. Biochem. Behav.12, 781–787 (1980). ArticleCASPubMed Google Scholar
Wise, R. A., Leone, P., Rivest, R. & Leeb, K. Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration. Synapse21, 140–148 (1995). ArticleCASPubMed Google Scholar
Bozarth, M. A. & Wise, R. A. Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci.28, 551–555 (1981). ArticleCASPubMed Google Scholar
Phillips, A. G. & LePiane, F. G. Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacol. Biochem. Behav.12, 965–968 (1980). ArticleCASPubMed Google Scholar
Olds, M. E. Reinforcing effects of morhpine in the nucleus accumbens. Brain Res.237, 429–440 (1982). ArticleCASPubMed Google Scholar
van der Kooy, D., Mucha, R. F., O'Shaughnessy, M. & Bucenieks, P. Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Res.243, 107–117 (1982). ArticleCASPubMed Google Scholar
McBride, W. J., Murphy, J. M. & Ikemoto, S. Localization of brain reinforcement mechanisms: intracranial self- administration and intracranial place-conditioning studies. Behav. Brain Res.101, 129–152 (1999). ArticleCASPubMed Google Scholar
Shippenberg, T. S., Bals-Kubik, R. & Herz, A. Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D1 vs. D2 dopamine receptors. J. Pharmacol. Exp. Ther.265, 53–59 (1993). CASPubMed Google Scholar
Bechara, A., Nader, K. & van der Kooy, D. A twoseparatemotivational-systems hypothesis of opioid addiction. Pharmacol. Biochem. Behav.59, 1–17 (1998). ArticleCASPubMed Google Scholar
Sellings, L. H. & Clarke, P. B. Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J. Neurosci.23, 6295–6303 (2003). ArticleCASPubMedPubMed Central Google Scholar
Olmstead, M. C. & Franklin, K. B. The development of a conditioned place preference to morphine: effects of lesions of various CNS sites. Behav. Neurosci.111, 1313–1323 (1997). ArticleCASPubMed Google Scholar
Mackey, W. B. & van der Kooy, D. Neuroleptics block the positive reinforcing effects of amphetamine but not of morphine as measured by place conditioning. Pharmacol. Biochem. Behav.22, 101–105 (1985). ArticleCASPubMed Google Scholar
Nader, K., Bechara, A., Roberts, D. C. & van der Kooy, D. Neuroleptics block high- but not low-dose heroin place preferences: further evidence for a two-system model of motivation. Behav. Neurosci.108, 1128–1138 (1994). ArticleCASPubMed Google Scholar
Van Ree, J. M. & Ramsey, N. The dopamine hypothesis of opiate reward challenged. Eur. J. Pharmacol.134, 239–243 (1987). ArticleCASPubMed Google Scholar
Winger, G. Dopamine antagonist effects on behavior maintained by cocaine and alfentanil in rhesus monkeys. Behav. Pharmacol.5, 141–152 (1994). ArticleCASPubMed Google Scholar
Gerrits, M. A. F. M., Ramsey, N. F., Wolterink, G. & Van Ree, J. M. Lack of evidence for an involvement of nucleus accumbens dopamine D1 receptors in the initiation of heroin self-administration. Psychopharmacology114, 486–494 (1994). ArticleCASPubMed Google Scholar
Gerrits, M. A. & Van Ree, J. M. Effect of nucleus accumbens dopamine depletion on motivational aspects involved in initiation of cocaine and heroin self-administration in rats. Brain Res.713, 114–124 (1996). ArticleCASPubMed Google Scholar
Dworkin, S. I., Guerin, G. F., Co, C., Goeders, N. E. & Smith, J. E. Lack of an effect of 6hydroxydopamine lesions of the nucleus accumbens on intravenous morphine self-administration. Pharmacol. Biochem. Behav.30, 1051–1057 (1988). ArticleCASPubMed Google Scholar
Stinus, L. et al. Chronic flupenthixol treatment potentiates the reinforcing properties of systemic heroin administration. Biol. Psychiatry26, 363–371 (1989). ArticleCASPubMed Google Scholar
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Elsevier Academic Press, Amsterdam, 2005). Google Scholar