- Dronavalli, S., Duka, I. & Bakris, G. L. The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 4, 444–452 (2008).
Article CAS PubMed Google Scholar
- Williamson, J. R. et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42, 801–813 (1993).
Article CAS PubMed Google Scholar
- Bravi, M. C. et al. Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients. Metabolism 46, 1194–1198 (1997).
Article CAS PubMed Google Scholar
- Jennings, P. E., Chirico, S., Jones, A. F., Lunec, J. & Barnett, A. H. Vitamin C metabolites and microangiopathy in diabetes mellitus. Diabetes Res. 6, 151–154 (1987).
CAS PubMed Google Scholar
- Suzuki, E. et al. Increased oxidized form of human serum albumin in patients with diabetes mellitus. Diabetes Res. Clin. Pract. 18, 153–158 (1992).
Article CAS PubMed Google Scholar
- Wells-Knecht, M. C., Lyons, T. J., McCance, D. R., Thorpe, S. R. & Baynes, J. W. Age-dependent increase in _ortho_-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes. J. Clin. Invest. 100, 839–846 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Horie, K. et al. Immunohistochemical co-localization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J. Clin. Invest. 100, 2995–3004 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Suzuki, D. et al. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J. Am. Soc. Nephrol. 10, 822–832 (1999).
CAS PubMed Google Scholar
- Pennathur, S., Wagner, J. D., Leeuwenburgh, C., Litwak, K. N. & Heinecke, J. W. A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J. Clin. Invest. 107, 853–860 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Shah, S. V., Baliga, R., Rajapurkar, M. & Fonseca, V. A. Oxidants in chronic kidney disease. J. Am. Soc. Nephrol. 18, 16–28 (2007).
Article CAS PubMed Google Scholar
- Forbes, J. M., Coughlan, M. T. & Cooper, M. E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57, 1446–1454 (2008).
Article CAS PubMed Google Scholar
- Jaimes, E. A., Galceran, J. M. & Raij, L. Angiotensin II induces superoxide anion production by mesangial cells. Kidney Int. 54, 775–784 (1998).
Article CAS PubMed Google Scholar
- Izuhara, Y. et al. Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering. J. Am. Soc. Nephrol. 16, 3631–3641 (2005).
Article CAS PubMed Google Scholar
- Gorin, Y. et al. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J. Biol. Chem. 280, 39616–39626 (2005).
Article CAS PubMed Google Scholar
- Asaba, K. et al. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int. 67, 1890–1898 (2005).
Article CAS PubMed Google Scholar
- Thallas-Bonke, V. et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57, 460–469 (2008).
Article CAS PubMed Google Scholar
- Szabo, C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br. J. Pharmacol. 156, 713–727 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 404, 787–790 (2000).
Article CAS PubMed Google Scholar
- Kiritoshi, S. et al. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52, 2570–2577 (2003).
Article CAS PubMed Google Scholar
- Tan, A. L., Forbes, J. M. & Cooper, M. E. AGE, RAGE, and ROS in diabetic nephropathy. Semin. Nephrol. 27, 130–143 (2007).
Article CAS PubMed Google Scholar
- Monnier, V. M. Transition metals redox: reviving an old plot for diabetic vascular disease. J. Clin. Invest. 107, 799–801 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Baynes, J. W. & Thorpe, S. R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48, 1–9 (1999).
Article CAS PubMed Google Scholar
- Aragonés, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 (2008).
Article CAS PubMed Google Scholar
- Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).
Article CAS PubMed Google Scholar
- Bonnet, S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).
Article CAS PubMed Google Scholar
- Kulkarni, A. C., Kuppusamy, P. & Parinandi, N. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid. Redox. Signal. 9, 1717–1730 (2007).
Article CAS PubMed Google Scholar
- Katavetin, P. et al. High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidativestress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J. Am. Soc. Nephrol. 17, 1405–1413 (2006).
Article CAS PubMed Google Scholar
- Rosenberger, C. et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int. 73, 34–42 (2008).
Article CAS PubMed Google Scholar
- Yang, Z. Z., Zhang, A. Y., Yi, F. X., Li, P. L. & Zou, A. P. Redox regulation of HIF-1alpha levels and HO-1 expression in renal medullary interstitial cells. Am. J. Physiol. Renal Physiol. 284, F1207–F1215 (2003).
Article CAS PubMed Google Scholar
- Fine, L. G., Orphanides, C. & Norman, J. T. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int. Suppl. 65, S74–S78 (1998).
CAS PubMed Google Scholar
- Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).
Article CAS PubMed Google Scholar
- Singh, D. K., Winocour, P. & Farrington, K. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat. Clin. Pract. Nephrol. 4, 216–226 (2008).
Article CAS PubMed Google Scholar
- Ries, M. et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J. Magn. Reson. Imaging 17, 104–113 (2003).
Article PubMed Google Scholar
- Bernhardt, W. M. et al. Expression of hypoxia-inducible transcription factors in developing human and rat kidneys. Kidney Int. 69, 114–122 (2006).
Article CAS PubMed Google Scholar
- Rosenberger, C. et al. Hypoxia-inducible factors and tubular cell survival in isolated perfused kidneys. Kidney Int. 70, 60–70 (2006).
Article CAS PubMed Google Scholar
- Tanaka, T., Miyata, T., Inagi, R., Fujita, T. & Nangaku, M. Hypoxia in renal disease with proteinuria and/or glomerular hypertension. Am. J. Pathol. 165, 1979–1992 (2004).
Article PubMed PubMed Central Google Scholar
- Singh, P., Deng, A., Weir, M. R. & Blantz, R. C. The balance of angiotensin II and nitric oxide in kidney diseases. Curr. Opin. Nephrol. Hypertens. 17, 51–56 (2008).
Article CAS PubMed Google Scholar
- Palm, F. et al. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. Am. J. Physiol. Renal Physiol. 294, F30–F37 (2008).
Article CAS PubMed Google Scholar
- Nangaku, M. & Eckardt, K. U. Pathogenesis of renal anemia. Semin. Nephrol. 26, 261–268 (2006).
Article CAS PubMed Google Scholar
- Bahlmann, F. H. & Fliser, D. Erythropoietin and renoprotection. Curr. Opin. Nephrol. Hypertens. 18, 15–20 (2009).
Article CAS PubMed Google Scholar
- Nath, K. A., Croat, A. J. & Hostettor, T. H. Oxygen consumption and oxidant stress in surviving nephrons. Am. J. Physiol. 258, F1354–F1362 (1990).
CAS PubMed Google Scholar
- Modlinger, P. S., Wilcox, C. S. & Aslam, S. Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin. Nephrol. 24, 354–365 (2004).
Article CAS PubMed Google Scholar
- Wilcox, C. S. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R913–R935 (2005).
Article CAS PubMed Google Scholar
- Prabhakar, S., Starnes, J., Shi, S., Lonis, B. & Tran, R. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production. J. Am. Soc. Nephrol. 18, 2945–2952 (2007).
Article CAS PubMed Google Scholar
- Palm, F., Teerlink, T. & Hansell, P. Nitric oxide and kidney oxygenation. Curr. Opin. Nephrol. Hypertens. 18, 68–73 (2009).
Article CAS PubMed Google Scholar
- Garcia, S. F. et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat. Med. 7, 108–113 (2001).
Article Google Scholar
- Du, X. et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Invest. 112, 1049–1057 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Miyata, T., Kurokawa, K. & van Ypersele de Strihou, C. From molecular footprints of disease to new therapeutic interventions in diabetic nephropathy: a detective story (review). Curr. Drug Targets Immune Endocr. Metabol. Disord. 5, 323–329 (2005).
Article CAS PubMed Google Scholar
- Miyata, T. et al. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 51, 1170–1181 (1997).
Article CAS PubMed Google Scholar
- Witko-Sarsat, V. et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49, 1304–1313 (1996).
Article CAS PubMed Google Scholar
- Miyata, T., Kurokawa, K. & van Ypersele de Strihou, C. Advanced glycation and lipoxidation end products: Role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism (editorial review). J. Am. Soc. Nephrol. 11, 1744–1752 (2000).
CAS PubMed Google Scholar
- Yan, S. D. et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem. 269, 9889–9897 (1994).
CAS PubMed Google Scholar
- Friederich, M., Hansell, P. & Palm, F. Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr. Diabetes Rev. 5, 120–144 (2009).
Article CAS PubMed Google Scholar
- Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Lindenmeyer, M. T. et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J. Am. Soc. Nephrol. 19, 2225–2236 (2008).
Article PubMed PubMed Central Google Scholar
- Jafar, T. H. et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann. Intern. Med. 135, 73–87 (2001).
Article CAS PubMed Google Scholar
- Lewis, E. J. et al. Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).
Article CAS PubMed Google Scholar
- Brenner, B. M. et al. RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).
Article CAS PubMed Google Scholar
- Parving, H. H. et al. Irbesartan in Patients with type 2 diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).
Article CAS PubMed Google Scholar
- Viberti, G. & Wheeldon, N. M. Microalbuminuria reduction with valsartan (MARVAL) Study Investigators. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus. A blood pressure-independent effect. Circulation 106, 672–678 (2002).
Article CAS PubMed Google Scholar
- Parving, H. H. et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358, 2433–2446 (2008).
Article CAS PubMed Google Scholar
- Seikaly, M. G., Arant, B. S. & Seney, F. D. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J. Clin. Invest. 86, 1352–1357 (1990).
Article CAS PubMed PubMed Central Google Scholar
- Manotham, K. et al. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J. Am. Soc. Nephrol. 15, 1277–1288 (2004).
Article PubMed Google Scholar
- Palm, F., Connors, S. G., Mendonca, M., Welch, W. J. & Wilcox, C. S. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats. Hypertension 51, 345–351 (2008).
Article CAS PubMed Google Scholar
- Onozato, M. L., Tojo, A., Goto, A., Fujita, T. & Wilcox, C. S. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int. 61, 186–194 (2002).
Article CAS PubMed Google Scholar
- Benigni, A. et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 119, 524–530 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Miyata, T. et al. Angiotensine II receptor antagonist and angiotensin converting enzyme (ACE) inhibitor scavenge oxidative radicals and lower the formation of advanced glycation end products. J. Am. Soc. Nephrol. 13, 2478–2487 (2002).
Article CAS PubMed Google Scholar
- Nangaku, M. et al. Anti-hypertensive agents inhibit in vivo the formation of advanced glycation end products and improve renal damage in a type 2 diabetic nephropathy rat model. J. Am. Soc. Nephrol. 14, 1212–1222 (2003).
Article CAS PubMed Google Scholar
- Chen, S. et al. Candesartan suppresses chronic renal inflammation by a novel antioxidant action independent of AT1R blockade. Kidney Int. 74, 1128–1138 (2008).
Article CAS PubMed Google Scholar
- Sun, H. L. et al. ACE-inhibitor suppresses the apoptosis induced by endoplasmic reticulum stress in renal tubular in experimental diabetic rats. Exp. Clin. Endocrinol. Diabetes 117, 336–344 (2009).
Article CAS PubMed Google Scholar
- Izuhara, Y. et al. A novel sartan derivative with very low angiotensin II type 1 receptor affinity protects the kidney in type 2 diabetic rats. Arterioscler. Thromb. Vasc. Biol. 28, 1767–1773 (2008).
Article CAS PubMed Google Scholar
- Takizawa, S. et al. A sartan derivative with a very low angiotensin II receptor affinity ameliorates ischemic cerebral damage. J. Cereb. Blood Flow Metab. 29, 1665–1672 (2009).
Article CAS PubMed Google Scholar
- Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290, 2159–2167 (2003).
- Sarafidis, P. A. & Ruilope, L. M. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. Am. J. Nephrol. 26, 232–234 (2006).
Article PubMed Google Scholar
- Makino, H. et al. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes 55, 2747–2756 (2006).
Article CAS PubMed Google Scholar
- Ohtomo, S. et al. Thiazolidinediones provide better renoprotection than insulin in an obese, hypertensive type II diabetic rat model. Kidney Int. 72, 1512–1519 (2007).
Article CAS PubMed Google Scholar
- Rodriguez, W. E. et al. Pioglitazone mitigates renal glomerular vascular changes in high-fat, high-calorie-induced type 2 diabetes mellitus. Am. J. Physiol. Renal Physiol. 291, F694–F701 (2006).
Article CAS PubMed Google Scholar
- Perico, N. & Remuzzi, G. Inhibition of TGF-beta expression: a novel role for thiazolidinediones to implement renoprotection in diabetes. Kidney Int. 72, 1419–1421 (2007).
Article CAS PubMed Google Scholar
- Gredilla, R. & Barja, G. Minireview: the role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 146, 3713–3717 (2005).
Article CAS PubMed Google Scholar
- Cai, W. et al. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am. J. Pathol. 173, 327–336 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Trayhurn, P., Wang, B. & Wood, I. S. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br. J. Nutr. 100, 227–235 (2008).
Article CAS PubMed Google Scholar
- Ye, J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int. J. Obes. (Lond.) 33, 54–66 (2009).
Article CAS Google Scholar
- Crujeiras, A. B. et al. Energy restriction in obese subjects impact differently two mitochondrial function markers. J. Physiol. Biochem. 64, 211–219 (2008).
Article CAS PubMed Google Scholar
- Nangaku, M. et al. In a type 2 diabetic nephropathy rat model, the improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy. Nephrol. Dial. Transplant. 20, 2661–2669 (2005).
Article CAS PubMed Google Scholar
- Miyata, T. & van Ypersele de Strihou, C. Translation of basic science into clinical medicine: novel targets for diabetic nephropathy. Nephrol. Dial. Transplant. 24, 1373–1377 (2009).
Article PubMed Google Scholar
- Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).
Article CAS PubMed Google Scholar
- Marx, J. How cells endure low oxygen. Science 303, 1454–1456 (2004).
Article CAS PubMed Google Scholar
- Epstein, A. C. et al. Elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).
Article CAS PubMed Google Scholar
- Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).
Article CAS PubMed Google Scholar
- Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417, 975–978 (2002).
Article CAS PubMed Google Scholar
- Ivan, M. et al. HIFa targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).
Article CAS PubMed Google Scholar
- Maxwell, P. H. et al. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).
Article CAS PubMed Google Scholar
- Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat. Cell Biol. 2, 423–427 (2000).
Article CAS PubMed Google Scholar
- Eguchi, H., Ikuta, T., Tachibana, T., Yoneda, Y. & Kawajiri, K. A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor 1beta is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. J. Biol. Chem. 272, 17640–17647 (1997).
Article CAS PubMed Google Scholar
- Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).
Article CAS PubMed Google Scholar
- Takeda, K. et al. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 113, 3229–3235 (2008).
Article CAS Google Scholar
- Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162–168 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Bernhardt, W. M. et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am. J. Pathol. 170, 830–842 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Kojima, I. et al. Protective role of hypoxia-inducible factor-2alpha against ischemic damage and oxidative stress in the kidney. J. Am. Soc. Nephrol. 18, 1218–1226 (2007).
Article CAS PubMed Google Scholar
- Rosenberger, C. et al. Evidence for sustained renal hypoxia and transient hypoxia adaptation in experimental rhabdomyolysis-induced acute kidney injury. Nephrol. Dial. Transplant. 23, 1135–1143 (2008).
Article CAS PubMed Google Scholar
- Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).
Article CAS PubMed Google Scholar
- Koivunen, P., Hirsilä, M., Günzler, V., Kivirikko, K. I. & Myllyharju, J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279, 9899–9904 (2004).
Article CAS PubMed Google Scholar
- Fraisl, P., Aragonés, J. & Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat. Rev. Drug Discov. 8, 139–152 (2009).
Article CAS PubMed Google Scholar
- Salnikow, K. et al. Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress. J. Biol. Chem. 279, 40337–40344 (2004).
Article CAS PubMed Google Scholar
- Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).
Article PubMed Google Scholar
- Tanaka, T. et al. Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int. 68, 2714–2725 (2005).
Article CAS PubMed Google Scholar
- Tanaka, T. et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 85, 1292–1307 (2005).
Article CAS PubMed Google Scholar
- Tanaka, T. et al. Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol. 289, F1123–F1133 (2005).
Article CAS PubMed Google Scholar
- Ohtomo, S. et al. Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol. Dial. Transplant. 23, 1166–1172 (2008).
Article CAS PubMed Google Scholar
- Smith, E. L. Presence of cobalt in the anti-pernicious anemia factor. Nature 162, 144 (1948).
Article CAS PubMed Google Scholar
- Berk, L., Burchebal, J. H. & Castle, W. B. Erythropoietic effect of cobalt in patients with or without anemia. N. Engl. J. Med. 240, 754–761 (1949).
Article CAS PubMed Google Scholar
- Edwards, M. S. & Curtis, J. R. Use of cobaltous chloride in anemia of maintenance hemodialysis patients. Lancet 2, 582–583 (1971).
Article CAS PubMed Google Scholar
- Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 99, 13459–13464 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Mole, D. R. et al. 2-oxoglutarate analog inhibitors of HIF prolyl hydroxylase. Bioorg. Med. Chem. Lett. 13, 2677–2680 (2003).
Article CAS PubMed Google Scholar
- McDonough, M. A. et al. Selective inhibition of factor inhibiting hypoxia-inducible factor. J. Am. Chem. Soc. 127, 7680–7681 (2005).
Article CAS PubMed Google Scholar
- Nangaku, M. et al. A novel class of prolyl hydroxylase inhibitors induces angiogenesis and exerts organ protection against ischemia. Arterioscler. Thromb. Vasc. Biol. 27, 2548–2554 (2007).
Article CAS PubMed Google Scholar
- Bernhardt, W. M. et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J. Am. Soc. Nephrol. 17, 1970–1978 (2006).
Article CAS PubMed Google Scholar
- Watanabe, D. et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N. Engl. J. Med. 353, 782–792 (2005).
Article CAS PubMed Google Scholar
- Metzen, E. et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J. Cell. Sci. 116, 1319–1326 (2003).
Article CAS PubMed Google Scholar
- Steinhoff, A. et al. Cellular oxygen sensing: Importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2. Biochem. Biophys. Res. Commun. 387, 705–711 (2009).
Article CAS PubMed Google Scholar
- Berchner-Pfannschmidt, U. et al. Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J. Biol. Chem. 283, 31745–31753 (2008).
Article CAS PubMed Google Scholar
- Fong, G. H. & Takeda, K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 15, 635–641 (2008).
Article CAS PubMed Google Scholar
- Tug, S., Delos, R. B., Fandrey, J. & Berchner-Pfannschmidt, U. Non-hypoxic activation of the negative regulatory feedback loop of prolyl-hydroxylase oxygen sensors. Biochem. Biophys. Res. Commun. 384, 519–523 (2009).
Article CAS PubMed Google Scholar
- Berchner-Pfannschmidt, U., Yamac, H., Trinidad, B. & Fandrey, J. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J. Biol. Chem. 282, 1788–1796 (2007).
Article CAS PubMed Google Scholar
- Schödel, J. et al. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am. J. Pathol. 174, 1663–1674 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Takeda, K., Cowan, A. & Fong, G. H. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 116, 774–781 (2007).
Article CAS PubMed Google Scholar
- Loinard, C. et al. Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularization. Circulation 120, 50–59 (2009).
Article CAS PubMed Google Scholar
- Pouysségur, J. et al. Hypoxia signaling in cancer and approaches to enforce tumor regression. Nature 441, 437–443 (2006).
Article CAS PubMed Google Scholar
- Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc. Natl Acad. Sci. USA 103, 18154–18159 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Mikhaylova, O. et al. The von Hippel–Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol. Cell. Biol. 28, 2701–2717 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Baranova, O. et al. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J. Neurosci. 27, 6320–6332 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Koditz, J. et al. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110, 3610–3617 (2007).
Article CAS PubMed Google Scholar
- Natarajan, R. et al. Prolyl hydroxylase inhibition attenuates post-ischemic cardiac injury via induction of endoplasmic reticulum stress genes. Vascul. Pharmacol. 51, 110–128 (2009).
Article CAS PubMed Google Scholar
- Tong, K. I., Kobayashi, A., Katsuoka, F. & Yamamoto, M. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 387, 1311–1320 (2006).
Article CAS PubMed Google Scholar
- Zhou, F. et al. Hibernation, a model of neuroprotection. Am. J. Pathol. 158, 2145–2151 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Drew, K. L. et al. Hypoxia tolerance in mammalian heterotherms. J. Exp. Biol. 207, 3155–3162 (2004).
Article CAS PubMed Google Scholar
- Siddiq, A. et al. Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J. Neurosci. 29, 8828–8838 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Minamishima, Y. A. et al. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111, 3236–3244 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Ladroue, C. et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N. Engl. J Med. 359, 2685–2692 (2008).
Article CAS PubMed Google Scholar
- Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Chen, J. X. & Stinnett, A. Ang-1 gene therapy inhibits hypoxia-inducible factor-1alpha (HIF-1alpha)-prolyl-4-hydroxylase-2, stabilizes HIF-1alpha expression, and normalizes immature vasculature in db/db mice. Diabetes 57, 3335–3343 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Fuchshofer, R. et al. Hypoxia/reoxygenation induces CTGF and PAI-1 in cultured human retinal pigment epithelium cells. Exp. Eye Res. 88, 889–899 (2009).
Article CAS PubMed Google Scholar
- Kroening, S., Neubauer, E., Wessel, J., Wiesener, M. & Goppelt-Struebe, M. Hypoxia interferes with connective tissue growth factor (CTGF) gene expression in human proximal tubular cell lines. Nephrol. Dial. Transplant. 24, 3319–3325 (2009).
Article CAS PubMed Google Scholar
- Ha, H., Oh, E. Y. & Lee, H. B. The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases. Nat. Rev. Nephrol. 5, 203–211 (2009).
Article CAS PubMed Google Scholar
- Izuhara, Y. et al. Inhibition of plasminogen activator inhibitor-1: its mechanism and effectiveness on coagulation and fibrosis. Arterioscler. Thromb. Vasc. Biol. 28, 672–677 (2008).
Article CAS PubMed Google Scholar
- Schwartz, S. et al. Phase 1 study of FG-3019, an anti-CTGF monoclonal antibody, in type 1/2 diabetes mellitus with microalbuminuria (abstract). Diabetes 56 (Suppl.1), A151 (2007).
Google Scholar