Mitochondrial energetics in the kidney (original) (raw)
Wang, Z. M. et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr.92, 1369–1377 (2010). ArticleCASPubMedPubMed Central Google Scholar
O'Connor, P. M. Renal oxygen delivery: matching delivery to metabolic demand. Clin. Exp. Pharmacol. Physiol.33, 961–967 (2006). ArticleCASPubMed Google Scholar
Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol.48, 9–31 (1986). ArticleCASPubMed Google Scholar
Holechek, M. J. et al. Glomerular filtration: an overview. Nephrol. Nurs. J.30, 285–290, quiz 281–282 (2003). PubMed Google Scholar
Dimmer, K. S. & Scorrano, L. (De)constructing mitochondria: what for? Physiol. (Bethesda)21, 233–241 (2006). CAS Google Scholar
Lodish, H. et al. in Molecular Cell Biology (W. H. Freeman and Company, 2000). Google Scholar
Weinberg, J. M. et al. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am. J. Physiol. Renal Physiol.279, F927–F943 (2000). ArticleCASPubMed Google Scholar
Pollak, M. R., Quaggin, S. E., Hoenig, M. P. & Dworkin, L. D. The glomerulus: the sphere of influence. Clin. J. Am. Soc. Nephrol.9, 1461–1469 (2014). ArticlePubMedPubMed Central Google Scholar
Chen, Y., Fry, B. C. & Layton, A. T. Modeling glucose metabolism and lactate production in the kidney. Math. Biosci.289, 116–129 (2017). ArticleCASPubMedPubMed Central Google Scholar
Gerich, J. E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med.27, 136–142 (2010). ArticleCASPubMedPubMed Central Google Scholar
Thomas, S. R. Inner medullary lactate production and accumulation: a vasa recta model. Am. J. Physiol. Renal Physiol.279, F468–F481 (2000). ArticleCASPubMed Google Scholar
Ross, B. D., Espinal, J. & Silva, P. Glucose metabolism in renal tubular function. Kidney Int.29, 54–67 (1986). ArticleCASPubMed Google Scholar
Guder, W. G. & Ross, B. D. Enzyme distribution along the nephron. Kidney Int.26, 101–111 (1984). ArticleCASPubMed Google Scholar
Lewy, P. R., Quintanilla, A., Levin, N. W. & Kessler, R. H. Renal energy metabolism and sodium reabsorption. Annu. Rev. Med.24, 365–384 (1973). ArticleCASPubMed Google Scholar
Simon, N. & Hertig, A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front. Med. (Lausanne)2, 52 (2015). This review discusses the mechanisms behind fatty acid transport and oxidation in proximal tubules and how therapeutic agents restoreβ-oxidation in renal diseases. Google Scholar
Iwao, Y. et al. CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am. J. Physiol. Renal Physiol.295, F1871–F1880 (2008). ArticleCASPubMed Google Scholar
Sabbahy, M. E. & Vaidya, V. S. Ischemic kidney injury and mechanisms of tissue repair. Wiley Interdiscip. Rev. Syst. Biol. Med.3, 606–618 (2011). ArticleCASPubMed Google Scholar
Forbes, J. M. Mitochondria-power players in kidney function? Trends Endocrinol. Metab.27, 441–442 (2016). ArticleCASPubMed Google Scholar
Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes55, 2502–2509 (2006). ArticleCASPubMed Google Scholar
Arici, M., Chana, R., Lewington, A., Brown, J. & Brunskill, N. J. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-γ. J. Am. Soc. Nephrol.14, 17–27 (2003). ArticleCASPubMed Google Scholar
Ruggiero, C. et al. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am. J. Physiol. Renal Physiol.306, F896–F906 (2014). ArticleCASPubMedPubMed Central Google Scholar
Gutteridge, J. M. C. & Halliwell, B. Invited review free radicals in disease processes: a compilation of cause and consequence. Free Radic. Res. Commun.19, 141–158 (1993). ArticleCASPubMed Google Scholar
Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal.24, 981–990 (2012). ArticleCASPubMedPubMed Central Google Scholar
Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell. Biol.15, 411–421 (2014). ArticleCASPubMed Google Scholar
Ruiz, S. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic. Kidney Int.83, 1029–1041 (2013). ArticleCASPubMedPubMed Central Google Scholar
Weisiger, R. A. & Fridovich, I. Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem.248, 4793–4796 (1973). CASPubMed Google Scholar
Teruya, R. et al. Expression of oxidative stress and antioxidant defense genes in the kidney of inbred mice after intestinal ischemia and reperfusion. Acta Cir. Bras.28, 848–855 (2013). ArticlePubMed Google Scholar
Lushchak, V. I. Glutathione homeostasis and functions: potential targets for medical interventions. J. Amino Acids2012, 26 (2012). ArticleCAS Google Scholar
Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell151, 400–413 (2012). ArticleCASPubMedPubMed Central Google Scholar
Brand, M. D. & Esteves, T. C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab.2, 85–93 (2005). ArticleCASPubMed Google Scholar
Brand, M. D. et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med.37, 755–767 (2004). ArticleCASPubMed Google Scholar
Zhou, Y. et al. UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia/reperfusion injury. Am. J. Physiol. Renal Physiol.http://dx.doi.org/10.1152/ajprenal.00118.2017 (2017). This study suggests a role for UCP2 in restoring tubular function after AKI by reducing tubular cell apoptosis.
Souza, B. M. d. et al. Polymorphisms of the UCP2 gene are associated with glomerular filtration rate in type 2 diabetic patients and with decreased UCP2 gene expression in human kidney. PLoS ONE10, e0132938 (2015). ArticleCASPubMedPubMed Central Google Scholar
Haase, V. H. Hypoxia-inducible factors in the kidney. Am. J. Physiol. Renal Physiol.291, F271–F281 (2006). ArticleCASPubMed Google Scholar
Semenza, G. L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J.405, 1–9 (2007). ArticleCASPubMed Google Scholar
Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA95, 11715–11720 (1998). ArticleCASPubMedPubMed Central Google Scholar
Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem.275, 25130–25138 (2000). ArticleCASPubMed Google Scholar
Klimova, T. & Chandel, N. S. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ.15, 660–666 (2008). ArticleCASPubMed Google Scholar
Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B. & Thomson, A. W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol.12, 587–609 (2016). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y. & Park, C. W. Adenosine monophosphate-activated protein kinase in diabetic nephropathy. Kidney Res. Clin. Pract.35, 69–77 (2016). ArticlePubMedPubMed Central Google Scholar
Gleason, C. E. et al. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J. Clin.Invest.125, 117–128 (2015). ArticlePubMed Google Scholar
Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature450, 736–740 (2007). ArticleCASPubMed Google Scholar
Grahammer, F. et al. mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proc. Natl Acad. Sci. USA111, E2817–E2826 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hardie, D. G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev.25, 1895–1908 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mihaylova, M. M. & Shaw, R. J. The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol.13, 1016–1023 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA104, 12017–12022 (2007). ArticleCASPubMedPubMed Central Google Scholar
Melser, S. et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab.17, 719–730 (2013). ArticleCASPubMed Google Scholar
Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta1813, 1269–1278 (2011). ArticleCASPubMed Google Scholar
Scarpulla, R. C., Vega, R. B. & Kelly, D. P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab.23, 459–466 (2012). ArticleCASPubMedPubMed Central Google Scholar
Svensson, K., Schnyder, S., Cardel, B. & Handschin, C. Loss of renal tubular PGC-1α exacerbates diet-induced renal steatosis and age-related urinary sodium excretion in mice. PLoS ONE11, e0158716 (2016). This study shows the importance of PGC1αin basic renal physiology, further supporting PGC1αas a therapeutic target for renal diseases. ArticleCASPubMedPubMed Central Google Scholar
Rasbach, K. A. & Schnellmann, R. G. PGC-1α over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem. Biophys. Res. Commun.355, 734–739 (2007). ArticleCASPubMed Google Scholar
Fan, W. & Evans, R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr. Opin. Cell Biol.33, 49–54 (2015). ArticleCASPubMed Google Scholar
Huang, P., Chandra, V. & Rastinejad, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol.72, 247–272 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vega, R. B., Huss, J. M. & Kelly, D. P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol.20, 1868–1876 (2000). ArticleCASPubMedPubMed Central Google Scholar
Huss, J. M., Kopp, R. P. & Kelly, D. P. Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α. J. Biol. Chem.277, 40265–40274 (2002). ArticleCASPubMed Google Scholar
Whitaker, R. M., Corum, D., Beeson, C. C. & Schnellmann, R. G. Mitochondrial biogenesis as a pharmacological target: A new approach to acute and chronic diseases. Annu. Rev. Pharmacol. Toxicol.56, 229–249 (2016). ArticleCASPubMed Google Scholar
Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr.93, 884S–890S (2011). ArticleCASPubMedPubMed Central Google Scholar
Cameron, R. B., Beeson, C. C. & Schnellmann, R. G. Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases. J. Med. Chem.59, 10411–10434 (2016). ArticleCASPubMedPubMed Central Google Scholar
Villena, J. A. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J.282, 647–672 (2015). ArticleCASPubMed Google Scholar
Finck, B. N. & Kelly, D. P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest.116, 615–622 (2006). ArticleCASPubMedPubMed Central Google Scholar
Palikaras, K. & Tavernarakis, N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol.56, 182–188 (2014). ArticleCASPubMed Google Scholar
Lee, H. C. & Wei, Y. H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int. J. Biochem. Cell Biol.37, 822–834 (2005). ArticleCASPubMed Google Scholar
Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA105, 14447–14452 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kong, X. et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONEhttp://dx.doi.org/10.1371/journal.pone.0011707 (2010).
Handschin, C., Rhee, J., Lin, J., Tarr, P. T. & Spiegelman, B. M. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proc. Natl Acad. Sci. USA100, 7111–7116 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nisoli, E. et al. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc. Natl Acad. Sci. USA101, 16507–16512 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science310, 314–317 (2005). ArticleCASPubMed Google Scholar
Whitaker, R. M., Wills, L. P., Stallons, L. J. & Schnellmann, R. G. cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J. Pharmacol. Exp. Ther.347, 626–634 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lemasters, J. J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuven. Res.8, 3–5 (2005). ArticleCAS Google Scholar
Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet.26, 211–215 (2000). ArticleCASPubMed Google Scholar
Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet.26, 207–210 (2000). ArticleCASPubMed Google Scholar
Delettre, C., Lenaers, G., Pelloquin, L., Belenguer, P. & Hamel, C. P. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol. Genet. Metab.75, 97–107 (2002). ArticleCASPubMed Google Scholar
Labbe, K., Murley, A. & Nunnari, J. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol.30, 357–391 (2014). ArticleCASPubMed Google Scholar
Chan, D. C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet.46, 265–287 (2012). ArticleCASPubMed Google Scholar
Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med.356, 1736–1741 (2007). ArticleCASPubMed Google Scholar
Rossignol, R. et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res.64, 985–993 (2004). ArticleCASPubMed Google Scholar
Mishra, P., Carelli, V., Manfredi, G. & Chan, D. C. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab.19, 630–641 (2014). ArticleCASPubMedPubMed Central Google Scholar
Song, M. & Dorn, G. W. II. Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart. Cell Metab.21, 195–205 (2015). ArticleCASPubMedPubMed Central Google Scholar
Ziegler, D. V., Wiley, C. D. & Velarde, M. C. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell14, 1–7 (2015). ArticleCASPubMed Google Scholar
Yoon, Y. S. et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol.209, 468–480 (2006). ArticleCASPubMed Google Scholar
Shutt, T., Geoffrion, M., Milne, R. & McBride, H. M. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep.13, 909–915 (2012). ArticleCASPubMedPubMed Central Google Scholar
Song, Z., Chen, H., Fiket, M., Alexander, C. & Chan, D. C. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol.178, 749–755 (2007). ArticleCASPubMedPubMed Central Google Scholar
Anand, R. et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol.204, 919–929 (2014). ArticleCASPubMedPubMed Central Google Scholar
Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell126, 177–189 (2006). ArticleCASPubMed Google Scholar
Boissan, M. et al. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science344, 1510–1515 (2014). ArticleCASPubMedPubMed Central Google Scholar
Mishra, P. & Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol.212, 379–387 (2016). This review summarizes recent studies and mechanisms that relate metabolism and mitochondrial energetics to mitochondrial dynamics. ArticleCASPubMedPubMed Central Google Scholar
Twig, G., Hyde, B. & Shirihai, O. S. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta1777, 1092–1097 (2008). ArticleCASPubMed Google Scholar
Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab.17, 491–506 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mears, J. A. et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol.18, 20–26 (2011). ArticleCASPubMed Google Scholar
Otera, H., Ishihara, N. & Mihara, K. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta1833, 1256–1268 (2013). ArticleCASPubMed Google Scholar
Richter, V. et al. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J. Cell Biol.204, 477–486 (2014). ArticleCASPubMedPubMed Central Google Scholar
van der Bliek, A. M., Shen, Q. & Kawajiri, S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol.http://dx.doi.org/10.1101/cshperspect.a011072 (2013).
Chang, C. R. & Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. NY Acad. Sci.1201, 34–39 (2010). ArticleCASPubMed Google Scholar
Chang, C. R. & Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem.282, 21583–21587 (2007). ArticleCASPubMed Google Scholar
Slupe, A. M. et al. A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury. J. Biol. Chem.288, 12353–12365 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cereghetti, G. M. et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl Acad. Sci. USA105, 15803–15808 (2008). ArticleCASPubMedPubMed Central Google Scholar
Eiyama, A. & Okamoto, K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol.33, 95–101 (2015). ArticleCASPubMed Google Scholar
Greene, A. W. et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep.13, 378–385 (2012). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol.189, 211–221 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA107, 378–383 (2010). ArticleCASPubMed Google Scholar
Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol.191, 1367–1380 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature496, 372–376 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chan, N. C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet.20, 1726–1737 (2011). ArticleCASPubMedPubMed Central Google Scholar
Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science331, 456–461 (2011). ArticleCASPubMed Google Scholar
Groenewoud, M. J. & Zwartkruis, F. J. Rheb and mammalian target of rapamycin in mitochondrial homoeostasis. Open Biol.3, 130185 (2013). ArticleCASPubMedPubMed Central Google Scholar
Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science351, 275–281 (2016). ArticleCASPubMedPubMed Central Google Scholar
Zhang, C.-S. & Lin, S.-C. AMPK promotes autophagy by facilitating mitochondrial fission. Cell Metab.23, 399–401 (2016). This study suggests a direct role for AMPK in mitophagy by phosphorylating MFF, a mitophagy receptor on the outer mitochondrial membrane, to initiate fission and therefore mitophagy. ArticleCASPubMed Google Scholar
Chen, G. et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell54, 362–377 (2014). ArticleCASPubMed Google Scholar
Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol.14, 177–185 (2012). ArticleCASPubMed Google Scholar
Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep.11, 45–51 (2010). ArticleCASPubMed Google Scholar
Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ.16, 939–946 (2009). ArticleCASPubMed Google Scholar
Thomas, R. L., Kubli, D. A. & Gustafsson, A. B. Bnip3-mediated defects in oxidative phosphorylation promote mitophagy. Autophagy7, 775–777 (2011). ArticlePubMed Google Scholar
Hanna, R. A. et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem.287, 19094–19104 (2012). ArticleCASPubMedPubMed Central Google Scholar
Scherz-Shouval, R. & Elazar, Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci.36, 30–38 (2011). ArticleCASPubMed Google Scholar
Li, Y. et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J. Biol. Chem.282, 35803–35813 (2007). ArticleCASPubMed Google Scholar
Maiuri, M. C. et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J.26, 2527–2539 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ishihara, M. et al. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Renal Physiol.305, F495–F509 (2013). CASPubMed Google Scholar
Tang, C., He, L., Liu, J. & Dong, Z. Mitophagy: Basic Mechanism and Potential Role in Kidney Diseases. Kidney Diseases1, 71–79 (2015). ArticlePubMedPubMed Central Google Scholar
Che, R., Yuan, Y., Huang, S. & Zhang, A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am. J. Physiol. - Renal Physiol.306, F367–F378 (2014). ArticleCASPubMed Google Scholar
Shusterman, N. et al. Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study. Am. J. Med.83, 65–71 (1987). ArticleCASPubMed Google Scholar
Thadhani, R., Pascual, M. & Bonventre, J. V. Acute renal failure. N. Engl. J. Med.334, 1448–1460 (1996). ArticleCASPubMed Google Scholar
Kelly, K. J. & Molitoris, B. A. Acute renal failure in the new millennium: time to consider combination therapy. Semin. Nephrol.20, 4–19 (2000). CASPubMed Google Scholar
Waikar, S. S., Liu, K. D. & Chertow, G. M. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin. J. Am. Soc. Nephrol.3, 844–861 (2008). ArticlePubMed Google Scholar
Selewski, D. T. & Symons, J. M. Acute kidney injury. Pediatr. Rev.35, 30–41 (2014). ArticlePubMed Google Scholar
Paraskevas, K. I. & Mikhailidis, D. P. Contrast-induced acute kidney injury in patients undergoing carotid artery stenting: an underestimated issue. Angiologyhttp://dx.doi.org/10.1177/0003319716668934 (2016).
Schefold, J. C., Filippatos, G., Hasenfuss, G., Anker, S. D. & von Haehling, S. Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat. Rev. Nephrol.12, 610–623 (2016). ArticleCASPubMed Google Scholar
Basile, D. P., Anderson, M. D. & Sutton, T. A. Pathophysiology of acute kidney injury. Compr. Physiol.2, 1303–1353 (2012). PubMedPubMed Central Google Scholar
Ishimoto, Y. & Inagi, R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol. Dial. Transplant.31, 1062–1069 (2016). ArticleCASPubMed Google Scholar
Emma, F., Montini, G., Parikh, S. M. & Salviati, L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol.12, 267–280 (2016). ArticleCASPubMedPubMed Central Google Scholar
Funk, J. A. & Schnellmann, R. G. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Renal Physiol.302, F853–F864 (2012). ArticlePubMed Google Scholar
Tran, M. et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest.121, 4003–4014 (2011). ArticleCASPubMedPubMed Central Google Scholar
Parikh, S. M. Therapeutic targeting of the mitochondrial dysfunction in septic acute kidney injury. Curr. Opin. Crit. Care19, 554–559 (2013). ArticlePubMedPubMed Central Google Scholar
Johnson, A. C., Stahl, A. & Zager, R. A. Triglyceride accumulation in injured renal tubular cells: alterations in both synthetic and catabolic pathways. Kidney Int.67, 2196–2209 (2005). ArticleCASPubMed Google Scholar
Zager, R. A., Johnson, A. C. & Hanson, S. Y. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int.67, 111–121 (2005). ArticleCASPubMed Google Scholar
Portilla, D. Role of fatty acid beta-oxidation and calcium-independent phospholipase A2 in ischemic acute renal failure. Curr. Opin. Nephrol. Hypertens.8, 473–477 (1999). ArticleCASPubMed Google Scholar
Idrovo, J. P., Yang, W. L., Nicastro, J., Coppa, G. F. & Wang, P. Stimulation of carnitine palmitoyltransferase 1 improves renal function and attenuates tissue damage after ischemia/reperfusion. J. Surg. Res.177, 157–164 (2012). ArticleCASPubMedPubMed Central Google Scholar
Smith, J. A., Stallons, L. J. & Schnellmann, R. G. Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am. J. Physiol. Renal Physiol.307, F435–F444 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lan, R. et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol.27, 3356–3367 (2016). ArticleCASPubMedPubMed Central Google Scholar
Venkatachalam, M. A., Weinberg, J. M., Kriz, W. & Bidani, A. K. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol.26, 1765–1776 (2015). ArticleCASPubMedPubMed Central Google Scholar
Eklund, T., Wahlberg, J., Ungerstedt, U. & Hillered, L. Interstitial lactate, inosine and hypoxanthine in rat kidney during normothermic ischaemia and recirculation. Acta Physiol. Scand.143, 279–286 (1991). ArticleCASPubMed Google Scholar
Zhan, M., Brooks, C., Liu, F., Sun, L. & Dong, Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int.83, 568–581 (2013). ArticleCASPubMedPubMed Central Google Scholar
Brooks, C., Wei, Q., Cho, S. G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest.119, 1275–1285 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cho, S. G., Du, Q., Huang, S. & Dong, Z. Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. Am. J. Physiol. Renal Physiol.299, F199–F206 (2010). ArticleCASPubMedPubMed Central Google Scholar
Liu, S. et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy8, 826–837 (2012). ArticleCASPubMed Google Scholar
Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol.22, 902–913 (2011). ArticleCASPubMedPubMed Central Google Scholar
Duann, P., Lianos, E. A., Ma, J. & Lin, P. H. Autophagy, innate immunity and tissue repair in acute kidney injury. Int. J. Mol. Sci.17, 662 (2016). ArticleCASPubMed Central Google Scholar
Wei, Q., Dong, G., Chen, J. K., Ramesh, G. & Dong, Z. Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. Kidney Int.84, 138–148 (2013). ArticleCASPubMedPubMed Central Google Scholar
Stallons, L. J., Whitaker, R. M. & Schnellmann, R. G. Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol. Lett.224, 326–332 (2014). ArticleCASPubMed Google Scholar
Tran, M. T. et al. PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection. Nature531, 528–532 (2016). This investigation shows the importance of NAD biosynthesis in the recovery phase of AKI and of PGC1αas an important regulator of NAD biosynthesis, highlighting this pathway as a therapeutic target for AKI. ArticleCASPubMedPubMed Central Google Scholar
Jesinkey, S. R. et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J. Am. Soc. Nephrol.25, 1157–1162 (2014). This study provides the first proof of principle that stimulation of mitochondrial biogenesis after AKI can restore mitochondrial function and renal function. ArticleCASPubMedPubMed Central Google Scholar
Garrett, S. M., Whitaker, R. M., Beeson, C. C. & Schnellmann, R. G. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J. Pharmacol. Exp. Ther.350, 257–264 (2014). ArticleCASPubMedPubMed Central Google Scholar
Perico, L., Morigi, M. & Benigni, A. Mitochondrial sirtuin 3 and renal diseases. Nephron134, 14–19 (2016). ArticleCASPubMed Google Scholar
Maahs, D. M. & Rewers, M. Mortality and renal disease in type 1 diabetes mellitus—progress made, more to be done. J. Clin. Endocrinol. Metab.91, 3757–3759 (2006). ArticleCASPubMed Google Scholar
Collins, A. J. et al. US Renal Data System 2011 annual data report. Am. J. Kidney Dis.59, A7 (2012). ArticlePubMed Google Scholar
Miranda-Diaz, A. G., Pazarin-Villasenor, L., Yanowsky-Escatell, F. G. & Andrade-Sierra, J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J. Diabetes Res.2016, 7047238 (2016). ArticleCASPubMedPubMed Central Google Scholar
Flemming, N. B., Gallo, L. A., Ward, M. S. & Forbes, J. M. Tapping into mitochondria to find novel targets for diabetes complications. Curr. Drug Targets17, 1341–1349 (2016). This review summarizes the role of mitochondrial ROS production in diabetes, which is a controversial contributor to the development and progression of diabetes. ArticleCASPubMed Google Scholar
Coughlan, M. T. et al. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin. Sci. (Lond.)130, 711–720 (2016). This study showed that diabetes-induced changes in mitochondrial morphology and energetics occur prior to renal lesions, suggesting that mitochondrial dysfunction is a primary cause of diabetes rather than a contributor. ArticleCAS Google Scholar
Higgins, G. C. & Coughlan, M. T. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol.171, 1917–1942 (2014). ArticleCASPubMedPubMed Central Google Scholar
Coughlan, M. T. & Sharma, K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int.90, 272–279 (2016). ArticleCASPubMed Google Scholar
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature414, 813–820 (2001). ArticleCASPubMed Google Scholar
Lonn, E. et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA293, 1338–1347 (2005). ArticlePubMed Google Scholar
Hallan, S. & Sharma, K. The role of mitochondria in diabetic kidney disease. Curr. Diab. Rep.16, 61 (2016). ArticleCASPubMed Google Scholar
Burch, H. B. et al. Metabolic effects of large fructose loads in different parts of the rat nephron. J. Biol. Chem.255, 8239–8244 (1980). CASPubMed Google Scholar
Lanaspa, M. A. et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J. Am. Soc. Nephrol.25, 2526–2538 (2014). ArticleCASPubMedPubMed Central Google Scholar
Diggle, C. P. et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J. Histochem. Cytochem.57, 763–774 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab.27, 105–117 (2016). ArticleCASPubMed Google Scholar
Wang, W. et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab.15, 186–200 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tang, W. X., Wu, W. H., Zeng, X. X., Bo, H. & Huang, S. M. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney. Endocr41, 236–247 (2012). ArticleCAS Google Scholar
Hickey, F. B. et al. IHG-1 increases mitochondrial fusion and bioenergetic function. Diabetes63, 4314–4325 (2014). ArticleCASPubMed Google Scholar
Guo, K. et al. Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS ONE10, e0125176 (2015). ArticleCASPubMedPubMed Central Google Scholar
Imasawa, T. et al. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J.31, 294–307 (2017). ArticleCASPubMed Google Scholar
Qi, W. et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat. Med.23, 753–762 (2017). ArticleCASPubMedPubMed Central Google Scholar
Szeto, H. H. et al. Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int.90, 997–1011 (2016). ArticleCASPubMed Google Scholar
Lempiainen, J., Finckenberg, P., Levijoki, J. & Mervaala, E. AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br. J. Pharmacol.166, 1905–1915 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ruderman, N. B., Carling, D., Prentki, M. & Cacicedo, J. M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest.123, 2764–2772 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dugan, L. L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest.123, 4888–4899 (2013). ArticleCASPubMedPubMed Central Google Scholar
Pillai, V. B. et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem.285, 3133–3144 (2010). ArticleCASPubMed Google Scholar
Palacios, O. M. et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging (Albany NY)1, 771–783 (2009). ArticleCAS Google Scholar
Nogueiras, R. et al. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol. Rev.92, 1479–1514 (2012) ArticleCASPubMed Google Scholar
Morigi, M. et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest.125, 715–726 (2015). ArticlePubMedPubMed Central Google Scholar
Singh, J. P., Singh, A. P. & Bhatti, R. Explicit role of peroxisome proliferator-activated receptor γ in gallic acid-mediated protection against ischemia-reperfusion-induced acute kidney injury in rats. J. Surg. Res.187, 631–639 (2014). ArticleCASPubMed Google Scholar
Chung, B. H. et al. Protective effect of peroxisome proliferator activated receptor γ agonists on diabetic and non-diabetic renal diseases. Nephrol. (Carlton, Vic.)10 (Suppl.), S40–S43 (2005). ArticleCAS Google Scholar
Sivarajah, A. et al. Agonists of peroxisome-proliferator activated receptor-γ reduce renal ischemia/reperfusion injury. Am. J. Nephrol.23, 267–276 (2003). ArticleCASPubMed Google Scholar
Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation98, 2088–2093 (1998). ArticleCASPubMed Google Scholar
Wu, Q. Q. et al. Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO-1. Am. J. Physiol. Renal Physiol.300, F1180–F1192 (2011). ArticleCASPubMedPubMed Central Google Scholar
Park, C. W. et al. PPARα agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int.69, 1511–1517 (2006). ArticleCASPubMed Google Scholar
Stadler, K., Goldberg, I. J. & Susztak, K. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr. Diabetes Rep.15, 40 (2015). ArticleCAS Google Scholar
Al-Rasheed, N. M. et al. Fenofibrate attenuates diabetic nephropathy in experimental diabetic rat's model via suppression of augmented TGF-β1/Smad3 signaling pathway. Arch. Physiol. Biochem.122, 186–194 (2016). ArticleCASPubMed Google Scholar
Kawanami, D., Matoba, K. & Utsunomiya, K. Dyslipidemia in diabetic nephropathy. Ren. Replace. Ther.2, 16 (2016). Article Google Scholar
Szeto, H. H. & Birk, A. V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin. Pharmacol. Ther.96, 672–683 (2014). The Szeto peptides described in this study are novel, as they prevent the peroxidation of cardiolipin and therefore preserve mitochondrial function, demonstrating that they are renoprotective. ArticleCASPubMed Google Scholar
Hanske, J. et al. Conformational properties of cardiolipin-bound cytochrome c. Proc. Natl Acad. Sci. USA109, 125–130 (2012). ArticleCASPubMed Google Scholar
Basova, L. V. et al. Cardiolipin switch in mitochondria: shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry46, 3423–3434 (2007). ArticleCASPubMed Google Scholar
Sedeek, M., Nasrallah, R., Touyz, R. M. & Hebert, R. L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol.24, 1512–1518 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bai, J. & Cederbaum, A. I. Mitochondrial catalase and oxidative injury. Biol. Signals Recept.10, 189–199 (2001). ArticleCASPubMed Google Scholar
Scarpulla, R. C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev.88, 611–638 (2008). ArticleCASPubMed Google Scholar
Kaufman, B. A. et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell18, 3225–3236 (2007). ArticleCASPubMedPubMed Central Google Scholar
Virbasius, J. V. & Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl Acad. Sci. USA91, 1309–1313 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell98, 115–124 (1999). ArticleCASPubMed Google Scholar
Halseth, A. E., Ensor, N. J., White, T. A., Ross, S. A. & Gulve, E. A. Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations. Biochem. Biophys. Res. Commun.294, 798–805 (2002). ArticleCASPubMed Google Scholar
Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet366, 1849–1861 (2005). ArticleCASPubMed Google Scholar