- Poste, G. Bring on the biomarkers. Nature 469, 156–157 (2011).
Article CAS PubMed Google Scholar
- Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).
Article PubMed Google Scholar
- Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).
Article CAS PubMed Google Scholar
- Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Lebouvier, T. et al. Pathological lesions in colonic biopsies during Parkinson's disease. Gut 57, 1741–1743 (2008).
Article CAS PubMed Google Scholar
- Blennow, K. & Zetterberg, H. Understanding biomarkers of neurodegeneration: ultrasensitive detection techniques pave the way for mechanistic understanding. Nat. Med. 21, 217–219 (2015).
Article CAS PubMed Google Scholar
- Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).
PubMed Google Scholar
- de Jong, O. G. et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J. Extracell. Vesicles http://dx.doi.org/10.3402/jev.v1i0.18396, (2012).
- Eldh, M. et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS ONE 5, e15353 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Alexander, M. et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun. 6, 7321 (2015).
Article CAS PubMed Google Scholar
- Guescini, M., Genedani, S., Stocchi, V. & Agnati, L. F. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. (Vienna) 117, 1–4 (2010).
Article CAS Google Scholar
- Chiasserini, D. et al. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. J. Proteomics 106, 191–204 (2014).
Article CAS PubMed Google Scholar
- Shi, M. et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathol. 128, 639–650 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Cheng, L., Sharples, R. A., Scicluna, B. J. & Hill, A. F. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J. Extracell. Vesicles http://dx.doi.org/10.3402/jev.v3.23743, (2014).
- Faure, J. et al. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31, 642–648 (2006).
Article CAS PubMed Google Scholar
- Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).
Article CAS PubMed Google Scholar
- Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012).
Article CAS PubMed PubMed Central Google Scholar
- van Niel, G. et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21, 708–721 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Perez-Hernandez, D. et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 288, 11649–11661 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Carayon, K. et al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J. Biol. Chem. 286, 34426–34439 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J. & Sixma, J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94, 3791–3799 (1999).
CAS PubMed Google Scholar
- Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Lotvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).
Article PubMed Google Scholar
- Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).
CAS PubMed PubMed Central Google Scholar
- Muralidharan-Chari, V., Clancy, J. W., Sedgwick, A. & D'Souza-Schorey, C. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci. 123, 1603–1611 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Bellingham, S. A., Coleman, B. M. & Hill, A. F. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 40, 10937–10949 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Huang, X. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14, 319 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).
Article CAS PubMed Google Scholar
- Thakur, B. K. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766–769 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Keerthikumar, S. et al. ExoCarta: a Web-based compendium of exosomal cargo. J. Mol. Biol. 428, 688–692 (2016).
Article CAS PubMed Google Scholar
- Nordin, J. Z. et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11, 879–883 (2015).
Article CAS PubMed Google Scholar
- Montecalvo, A. et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756–766 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Kramer-Albers, E. M. et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin. Appl. 1, 1446–1461 (2007).
Article CAS PubMed Google Scholar
- Antonucci, F. et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 31, 1231–1240 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–977 (1983).
Article CAS PubMed Google Scholar
- Budnik, V., Ruiz-Canada, C. & Wendler, F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 17, 160–172 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Zhuang, X. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19, 1769–1779 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).
Article CAS PubMed Google Scholar
- Cooper, J. M. et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 29, 1476–1485 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Claudio, L. Ultrastructural features of the blood–brain barrier in biopsy tissue from Alzheimer's disease patients. Acta Neuropathol. 91, 6–14 (1996).
Article CAS PubMed Google Scholar
- Ridder, K. et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol. 12, e1001874 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Zakharov, A., Papaiconomou, C., Djenic, J., Midha, R. & Johnston, M. Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil. Neuropathol. Appl. Neurobiol. 29, 563–573 (2003).
Article CAS PubMed Google Scholar
- Weed, L. The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J. Med. Res. 31, 51–59 (1914).
CAS PubMed PubMed Central Google Scholar
- Glimcher, S. A., Holman, D. W., Lubow, M. & Grzybowski, D. M. Ex vivo model of cerebrospinal fluid outflow across human arachnoid granulations. Invest. Ophthalmol. Vis. Sci. 49, 4721–4728 (2008).
Article PubMed Google Scholar
- Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Haqqani, A. S. et al. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS 10, 4 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Looze, C. et al. Proteomic profiling of human plasma exosomes identifies PPARγ as an exosome-associated protein. Biochem. Biophys. Res. Commun. 378, 433–438 (2009).
Article CAS PubMed Google Scholar
- Tomlinson, P. R. et al. Identification of distinct circulating exosomes in Parkinson's disease. Ann. Clin. Transl. Neurol. 2, 353–361 (2015).
Article PubMed PubMed Central Google Scholar
- de Menezes-Neto, A. et al. Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J. Extracell. Vesicles 4, 27378 (2015).
Article CAS PubMed Google Scholar
- Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).
Article CAS PubMed Google Scholar
- Ilieva, H., Polymenidou, M. & Cleveland, D. W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).
Article CAS PubMed PubMed Central Google Scholar
- McNaught, K. S., Belizaire, R., Isacson, O., Jenner, P. & Olanow, C. W. Altered proteasomal function in sporadic Parkinson's disease. Exp. Neurol. 179, 38–46 (2003).
Article CAS PubMed Google Scholar
- Winklhofer, K. F. & Haass, C. Mitochondrial dysfunction in Parkinson's disease. Biochim. Biophys. Acta 1802, 29–44 (2010).
Article CAS PubMed Google Scholar
- Vanden Broeck, L., Callaerts, P. & Dermaut, B. TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol. Med. 20, 66–71 (2014).
Article CAS PubMed Google Scholar
- Terwel, D., Dewachter, I. & Van Leuven, F. Axonal transport, tau protein, and neurodegeneration in Alzheimer's disease. Neuromolecular Med. 2, 151–165 (2002).
Article CAS PubMed Google Scholar
- Katayama, T. et al. Induction of neuronal death by ER stress in Alzheimer's disease. J. Chem. Neuroanat. 28, 67–78 (2004).
Article CAS PubMed Google Scholar
- Leitman, J., Ulrich Hartl, F. & Lederkremer, G. Z. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat. Commun. 4, 2753 (2013).
Article CAS PubMed Google Scholar
- Joshi, P. et al. Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ. 21, 582–593 (2014).
Article CAS PubMed Google Scholar
- Yuyama, K. et al. A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide. FEBS Lett. 589, 84–88 (2015).
Article CAS PubMed Google Scholar
- Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).
Article CAS PubMed Google Scholar
- Polymenidou, M. & Cleveland, D. W. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147, 498–508 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Wadia, J. S., Schaller, M., Williamson, R. A. & Dowdy, S. F. Pathologic prion protein infects cells by lipid-raft dependent macropinocytosis. PLoS ONE 3, e3314 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Gousset, K. et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11, 328–336 (2009).
Article CAS PubMed Google Scholar
- Vella, L. J. et al. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J. Pathol. 211, 582–590 (2007).
Article CAS PubMed Google Scholar
- Schatzl, H. M. et al. A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J. Virol. 71, 8821–8831 (1997).
CAS PubMed PubMed Central Google Scholar
- Fevrier, B. et al. Cells release prions in association with exosomes. Proc. Natl Acad. Sci. USA 101, 9683–9688 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Alais, S. et al. Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol. Cell 100, 603–615 (2008).
Article CAS PubMed Google Scholar
- Gross, J. C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).
Article CAS PubMed Google Scholar
- Arellano-Anaya, Z. E. et al. Prion strains are differentially released through the exosomal pathway. Cell. Mol. Life Sci. 72, 1185–1196 (2015).
Article CAS PubMed Google Scholar
- Guo, B. B., Bellingham, S. A. & Hill, A. F. Stimulating the release of exosomes increases the intercellular transfer of prions. J. Biol. Chem. 291, 5128–5137 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Vella, L. J., Greenwood, D. L., Cappai, R., Scheerlinck, J. P. & Hill, A. F. Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet. Immunol. Immunopathol. 124, 385–393 (2008).
Article CAS PubMed Google Scholar
- Lee, V. M., Balin, B. J., Otvos, L. Jr & Trojanowski, J. Q. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251, 675–678 (1991).
Article CAS PubMed Google Scholar
- Yamaguchi, H. et al. Alzheimer type dementia: diffuse type of senile plaques demonstrated by beta protein immunostaining. Prog. Clin. Biol. Res. 317, 467–474 (1989).
CAS PubMed Google Scholar
- Harper, J. D. & Lansbury, P. T. Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).
Article CAS PubMed Google Scholar
- Baker, H. F., Ridley, R. M., Duchen, L. W., Crow, T. J. & Bruton, C. J. Induction of β(A4)-amyloid in primates by injection of Alzheimer's disease brain homogenate. Mol. Neurobiol. 8, 25–39 (1994).
Article CAS PubMed Google Scholar
- Kane, M. D. et al. Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606–3611 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Rajendran, L. et al. Alzheimer's disease β-amyloid peptides are released in association with exosomes. Proc. Natl Acad. Sci. USA 103, 11172–11177 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Yuyama, K., Sun, H., Mitsutake, S. & Igarashi, Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J. Biol. Chem. 287, 10977–10989 (2012).
Article CAS PubMed PubMed Central Google Scholar
- An, K. et al. Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo. Mol. Brain 6, 47 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Dinkins, M. B., Dasgupta, S., Wang, G., Zhu, G. & Bieberich, E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease. Neurobiol. Aging 35, 1792–1800 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Yuyama, K. et al. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J. Biol. Chem. 289, 24488–24498 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Josephs, K. A. Frontotemporal dementia and related disorders: deciphering the enigma. Ann. Neurol. 64, 4–14 (2008).
Article CAS PubMed Google Scholar
- Santa-Maria, I. et al. Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes. J. Biol. Chem. 287, 20522–20533 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Saman, S. et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287, 3842–3849 (2012).
Article CAS PubMed Google Scholar
- Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).
Article CAS PubMed PubMed Central Google Scholar
- McCann, H., Stevens, C. H., Cartwright, H. & Halliday, G. M. α-synucleinopathy phenotypes. Parkinsonism Relat. Disord. 20, S62–S67 (2014).
Article PubMed Google Scholar
- Spillantini, M. G. et al. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. Neurosci. Lett. 251, 205–208 (1998).
Article CAS PubMed Google Scholar
- Irizarry, M. C. et al. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson's disease and cortical Lewy body disease contain α-synuclein immunoreactivity. J. Neuropathol. Exp. Neurol. 57, 334–337 (1998).
Article CAS PubMed Google Scholar
- Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).
Article PubMed PubMed Central Google Scholar
- Lee, H. J., Patel, S. & Lee, S. J. Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25, 6016–6024 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Lee, H. J., Suk, J. E., Bae, E. J. & Lee, S. J. Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochem. Biophys. Res. Commun. 372, 423–428 (2008).
Article CAS PubMed Google Scholar
- Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504–506 (2008).
Article CAS PubMed Google Scholar
- Danzer, K. M. et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 7, 42 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Grey, M. et al. Acceleration of α-synuclein aggregation by exosomes. J. Biol. Chem. 290, 2969–2982 (2015).
Article CAS PubMed Google Scholar
- Emmanouilidou, E. et al. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Alvarez-Erviti, L. et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42, 360–367 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Martin, I., Kim, J. W., Dawson, V. L. & Dawson, T. M. LRRK2 pathobiology in Parkinson's disease. J. Neurochem. 131, 554–565 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Fraser, K. B. et al. LRRK2 secretion in exosomes is regulated by 14-3-3. Hum. Mol. Genet. 22, 4988–5000 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).
Article CAS PubMed Google Scholar
- Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).
Article CAS PubMed Google Scholar
- Rutherford, N. J. et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 4, e1000193 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Guo, W. et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat. Struct. Mol. Biol. 18, 822–830 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Yang, C. et al. The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS ONE 5, e15878 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Mackenzie, I. R., Frick, P. & Neumann, M. The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol. 127, 347–357 (2014).
Article CAS PubMed Google Scholar
- Shibata, N. et al. Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J. Neuropathol. Exp. Neurol. 55, 481–490 (1996).
Article CAS PubMed Google Scholar
- Deng, H. X. et al. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann. Neurol. 67, 739–748 (2010).
CAS PubMed PubMed Central Google Scholar
- Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4, 124–134 (2013).
Article CAS PubMed Google Scholar
- Chia, R. et al. Superoxide dismutase 1 and tgSOD1G93A mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis. PLoS ONE 5, e10627 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Munch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl Acad. Sci. USA 108, 3548–3553 (2011).
Article PubMed PubMed Central Google Scholar
- Feneberg, E. et al. Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 351–356 (2014).
Article CAS PubMed Google Scholar
- Feiler, M. S. et al. TDP-43 is intercellularly transmitted across axon terminals. J. Cell Biol. 211, 897–911 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Gomes, C., Keller, S., Altevogt, P. & Costa, J. Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci. Lett. 428, 43–46 (2007).
Article CAS PubMed Google Scholar
- Grad, L. I. et al. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc. Natl Acad. Sci. USA 111, 3620–3625 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Silva, J. et al. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer 51, 409–418 (2012).
Article CAS PubMed Google Scholar
- Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Stuendl, A. et al. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson's disease and dementia with Lewy bodies. Brain 139, 481–494 (2016).
Article PubMed Google Scholar
- Goetzl, E. J. et al. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 85, 40–47 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Fiandaca, M. S. et al. Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case–control study. Alzheimers Dement. 11, 600–607.e1 (2015).
Article PubMed Google Scholar
- Foulds, P. G. et al. Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol. 118, 647–658 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kasai, T. et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol. 117, 55–62 (2009).
Article CAS PubMed Google Scholar
- Zandberga, E. et al. Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer. Genes Chromosomes Cancer 52, 356–369 (2013).
Article CAS PubMed Google Scholar
- Tan, L., Yu, J. T. & Tan, L. Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol. Neurobiol. 51, 1249–1262 (2015).
Article CAS PubMed Google Scholar
- Schipper, H. M., Maes, O. C., Chertkow, H. M. & Wang, E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul. Syst. Bio. 1, 263–274 (2007).
PubMed PubMed Central Google Scholar
- Cogswell, J. P. et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis. 14, 27–41 (2008).
Article CAS PubMed Google Scholar
- Geekiyanage, H., Jicha, G. A., Nelson, P. T. & Chan, C. Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease. Exp. Neurol. 235, 491–496 (2012).
Article CAS PubMed Google Scholar
- Kiko, T. et al. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer's disease. J. Alzheimers Dis. 39, 253–259 (2014).
Article CAS PubMed Google Scholar
- Freischmidt, A. et al. Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain 137, 2938–2950 (2014).
Article PubMed Google Scholar
- Bhatnagar, S. et al. Increased microRNA-34c abundance in Alzheimer's disease circulating blood plasma. Front. Mol. Neurosci. 7, 2 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Shehadeh, L., Mitsi, G., Adi, N., Bishopric, N. & Papapetropoulos, S. Expression of Lewy body protein septin 4 in postmortem brain of Parkinson's disease and control subjects. Mov. Disord. 24, 204–210 (2009).
Article PubMed Google Scholar
- Filatova, E. V., Alieva, A., Shadrina, M. I. & Slominsky, P. A. MicroRNAs: possible role in pathogenesis of Parkinson's disease. Biochemistry (Mosc.) 77, 813–819 (2012).
Article CAS Google Scholar
- Chandrasekaran, S. & Bonchev, D. A network view on Parkinson's disease. Comput. Struct. Biotechnol. J. 7, e201304004 (2013).
Article PubMed PubMed Central Google Scholar
- Margis, R., Margis, R. & Rieder, C. R. Identification of blood microRNAs associated to Parkinson's disease. J. Biotechnol. 152, 96–101 (2011).
Article CAS PubMed Google Scholar
- Martins, M. et al. Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson's disease. PLoS ONE 6, e25443 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Burgos, K. et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PLoS ONE 9, e94839 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Serafin, A. et al. Overexpression of blood microRNAs 103a, 30b, and 29a in L-dopa-treated patients with PD. Neurology 84, 645–653 (2015).
Article CAS PubMed Google Scholar
- Kawahara, Y. & Mieda-Sato, A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl Acad. Sci. USA 109, 3347–3352 (2012).
Article PubMed PubMed Central Google Scholar
- Freischmidt, A., Muller, K., Ludolph, A. C. & Weishaupt, J. H. Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 1, 42 (2013).
Article PubMed PubMed Central Google Scholar
- Freischmidt, A. et al. Serum microRNAs in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 36, 2660.e15–2660.e20 (2015).
Article CAS Google Scholar
- Liu, C. G., Song, J., Zhang, Y. Q. & Wang, P. C. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer's disease. Mol. Med. Rep. 10, 2395–2400 (2014).
Article CAS PubMed Google Scholar
- Lugli, G. et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS ONE 10, e0139233 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Cheng, L. et al. Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Mol. Psychiatry 20, 1188–1196 (2015).
Article CAS PubMed Google Scholar
- Gui, Y. X., Liu, H., Zhang, L. S., Lv, W. & Hu, X. Y. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6, 37043–37053 (2015).
Article PubMed PubMed Central Google Scholar
- Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, 3.22 (2006).
Google Scholar
- Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).
Article PubMed PubMed Central Google Scholar
- Kalra, H. et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13, 3354–3364 (2013).
Article CAS PubMed Google Scholar
- Lobb, R. J. et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 27031 (2015).
Article PubMed Google Scholar
- Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).
Article CAS Google Scholar
- Hsu, C. et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189, 223–232 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010).
Article CAS PubMed Google Scholar
- Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).
Article CAS PubMed Google Scholar
- Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).
Article CAS Google Scholar
- Gitler, A. D. et al. The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis. Proc. Natl Acad. Sci. USA 105, 145–150 (2008).
Article PubMed Google Scholar
- Topp, J. D., Gray, N. W., Gerard, R. D. & Horazdovsky, B. F. Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor. J. Biol. Chem. 279, 24612–24623 (2004).
Article CAS PubMed Google Scholar
- Nishimura, A. L. et al. A novel locus for late onset amyotrophic lateral sclerosis/motor neurone disease variant at 20q13. J. Med. Genet. 41, 315–320 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Wang, Y., Cui, J., Sun, X. & Zhang, Y. Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ. 18, 732–742 (2011).
Article CAS PubMed Google Scholar