- Théry, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).
Article PubMed CAS Google Scholar
- György, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667–2688 (2011).
Article PubMed PubMed Central CAS Google Scholar
- van der Pol., E., Böing, A. N., Harrison, P., Sturk, A. & Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64, 676–705 (2012).
Article CAS PubMed Google Scholar
- Akers, J. C., Gonda, D., Kim, R., Carter, B. S. & Chen, C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol. 113, 1–11 (2013).
Article PubMed PubMed Central Google Scholar
- Morello, M. et al. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 12, 3526–3536 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).
Article CAS Google Scholar
- Muralidharan-Chari, V., Clancy, J. W., Sedgwick, A. & D' Souza-Schorey, C. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci. 123, 1603–1611 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Nolte-'t Hoen, E. N., Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8, 712–720 (2012).
Article CAS PubMed Google Scholar
- van der Pol., E., van Gemert, M. J., Sturk, A., Nieuwland, R. & van Leeuwen, T. G. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 10, 919–930 (2012).
Article CAS PubMed Google Scholar
- Lacroix, R., Robert, S., Poncelet, P., Kasthuri, R. S., Key, N. S. & Dignat-George, F. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J. Thromb. Haemost. 8, 2571–2574 (2010).
Article CAS PubMed Google Scholar
- Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L. & Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420 (1987).
CAS PubMed Google Scholar
- Verweij, F. J. et al. LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation. EMBO J. 30, 2115–2129 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. 9, 654–659 (2007).
Article CAS PubMed Google Scholar
- Pilzer, D., Gasser, O., Moskovich, O., Schifferli, J. A. & Fishelson, Z. Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin. Immunopathol. 27, 375–387 (2005).
Article CAS PubMed Google Scholar
- Regev-Rudzki, N. et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell. 153, 1120–1133 (2013).
Article CAS PubMed Google Scholar
- Timar, C. I. et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood 121, 510–518 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Goh, F. G. & Midwood, K. S. Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (Oxford) 51, 7–23, (2012).
Article CAS Google Scholar
- Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80, 1948–1957 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Nakao, R. et al. Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS ONE 6, e26163 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Kaparakis, M. et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell. Microbiol. 12, 372–385 (2010).
Article CAS PubMed Google Scholar
- Hong, S. W. et al. Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy 66, 351–359 (2011).
Article CAS PubMed Google Scholar
- Kim, M. R. et al. _Staphylococcus aureus_-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both TH1 and TH17 cell responses. Allergy 67, 1271–1281 (2012).
Article CAS PubMed Google Scholar
- Prados-Rosales, R. et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J. Clin. Invest. 121, 1471–1483 (2011).
Article PubMed PubMed Central CAS Google Scholar
- Gehrmann, U. et al. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema. PLoS ONE 6, e21480 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Schiller, M. et al. During apoptosis HMGB1 is translocated into apoptotic cell-derived membraneous vesicles. Autoimmunity 46, 342–346 (2013).
Article CAS PubMed Google Scholar
- Ayna, G. et al. ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLoS ONE 7, e40069, (2012).
Article CAS PubMed PubMed Central Google Scholar
- Turiak, L. et al. Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice. J. Proteomics 74, 2025–2033 (2011).
Article CAS PubMed Google Scholar
- Cloutier, N. et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol. Med. 5, 235–249 (2013).
Article CAS PubMed Google Scholar
- Skriner, K., Adolph, K., Jungblut, P. R. & Burmester, G. R. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum. 54, 3809–3814 (2006).
Article CAS PubMed Google Scholar
- Nielsen, C. T. et al. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum. 64, 1227–1236 (2012).
Article CAS PubMed Google Scholar
- Pisetsky, D. S. Microparticles as autoantigens: making immune complexes big. Arthritis Rheum. 64, 958–961 (2012).
Article PubMed PubMed Central Google Scholar
- Ullal, A. J. et al. Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus. J. Autoimmun. 36, 173–180 (2011).
Article CAS PubMed Google Scholar
- Ullal, A. J. & Pisetsky, D. S. The role of microparticles in the generation of immune complexes in murine lupus. Clin. Immunol. 146, 1–9 (2013).
Article CAS PubMed Google Scholar
- Kapsogeorgou, E. K., Abu-Helu, R. F., Moutsopoulos, H. M. & Manoussakis, M. N. Salivary gland epithelial cell exosomes: a source of autoantigenic ribonucleoproteins. Arthritis Rheum. 52, 1517–1521 (2005).
Article CAS PubMed Google Scholar
- Mor-Vaknin, N. et al. DEK in the synovium of patients with juvenile idiopathic arthritis: characterization of DEK antibodies and posttranslational modification of the DEK autoantigen. Arthritis Rheum. 63, 556–567 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Silva, M. T. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 584, 4491–4499 (2010).
Article CAS PubMed Google Scholar
- Lamkanfi, M. Emerging inflammasome effector mechanisms. Nat. Rev. Immunol. 11, 213–220 (2011).
Article CAS PubMed Google Scholar
- Sheng, H. et al. Insulinoma-released exosomes or microparticles are immunostimulatory and can activate autoreactive T cells spontaneously developed in nonobese diabetic mice. J. Immunol. 187, 1591–1600 (2011).
Article CAS PubMed Google Scholar
- Rahman, M. J., Regn, D., Bashratyan, R. & Dai, Y. D. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes. http://dx.doi:10.2337/db13-0859.
Article PubMed CAS Google Scholar
- Kojima, F., Kapoor, M., Kawai, S. & Crofford, L. J. New insights into eicosanoid biosynthetic pathways: implications for arthritis. Expert Rev. Clin. Immunol. 2, 277–291 (2006).
Article CAS PubMed Google Scholar
- Barry, O. P., Pratico, D., Lawson, J. A. & FitzGerald, G. A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J. Clin. Invest. 99, 2118–2127 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Esser, J. et al. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J. Allergy Clin. Immunol. 126, 1032–1040 (2010).
Article CAS PubMed Google Scholar
- Gulinelli, S. et al. IL-18 associates to microvesicles shed from human macrophages by a LPS/TLR-4 independent mechanism in response to P2X receptor stimulation. Eur. J. Immunol. 42, 3334–3345 (2012).
Article CAS PubMed Google Scholar
- Nickel, W. & Rabouille, C. Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol. 10, 148–155 (2009).
Article CAS PubMed Google Scholar
- Pizzirani, C. et al. Stimulation of P2 receptors causes release of IL-1β-loaded microvesicles from human dendritic cells. Blood 109, 3856–3864 (2007).
Article CAS PubMed Google Scholar
- Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327, 580–583 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Baj-Krzyworzeka, M. et al. Tumour-derived microvesicles contain interleukin-8 and modulate production of chemokines by human monocytes. Anticancer Res. 31, 1329–1335 (2011).
CAS PubMed Google Scholar
- Truman, L. A. et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112, 5026–5036 (2008).
Article CAS PubMed Google Scholar
- Fabbri, M. TLRs as miRNA receptors. Cancer Res. 72, 6333–6337 (2012).
Article CAS PubMed Google Scholar
- Ohshima, K. et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE 5, e13247 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Lehmann, S. M. et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 15, 827–835 (2012).
Article CAS PubMed Google Scholar
- Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA 109, E2110–E2116 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Fabbri, M., Paone, A., Calore, F., Galli, R. & Croce, C. M. A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol. 10, 169–174 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Laffont, B. et al. Activated platelets can deliver mRNA regulatory Ago2–microRNA complexes to endothelial cells via microparticles. Blood 122, 253–261 (2013).
Article CAS PubMed Google Scholar
- Lo Cicero, A., Majkowska, I., Nagase, H., Di Liegro, I. & Troeberg, L. Microvesicles shed by oligodendroglioma cells and rheumatoid synovial fibroblasts contain aggrecanase activity. Matrix Biol. 31, 229–233 (2012).
Article CAS PubMed Google Scholar
- Shimoda, M. & Khokha, R. Proteolytic factors in exosomes. Proteomics 13, 1624–1636 (2013).
Article CAS PubMed Google Scholar
- Li, C. J. et al. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am. J. Pathol. 182, 1552–1562 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Ortutay, Z. et al. Synovial fluid exoglycosidases are predictors of rheumatoid arthritis and are effective in cartilage glycosaminoglycan depletion. Arthritis Rheum. 48, 2163–2172 (2003).
Article CAS PubMed Google Scholar
- Pasztoi, M. et al. Gene expression and activity of cartilage degrading glycosidases in human rheumatoid arthritis and osteoarthritis synovial fibroblasts. Arthritis Res. Ther. 11, R68 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Pasztoi, M. et al. The recently identified hexosaminidase D enzyme substantially contributes to the elevated hexosaminidase activity in rheumatoid arthritis. Immunol. Lett. 149, 71–76 (2013).
Article CAS PubMed Google Scholar
- Knijff-Dutmer, E. A., Koerts, J., Nieuwland, R., Kalsbeek-Batenburg, E. M. & van de Laar, M. A. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 46, 1498–1503 (2002).
Article CAS PubMed Google Scholar
- Berckmans, R. J. et al. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum. 46, 2857–2866 (2002).
Article CAS PubMed Google Scholar
- Sellam, J. et al. Increased levels of circulating microparticles in primary Sjogren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res. Ther. 11, R156 (2009).
Article PubMed PubMed Central CAS Google Scholar
- György, B. et al. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS ONE 7, e49726 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Wang, H. et al. Oxidized low-density lipoprotein-dependent platelet-derived microvesicles trigger procoagulant effects and amplify oxidative stress. Mol. Med. 18, 159–166 (2012).
Article CAS PubMed Google Scholar
- Rautou, P. E. et al. Microparticles, vascular function, and atherothrombosis. Circ. Res. 109, 593–606 (2011).
Article CAS PubMed Google Scholar
- Messer, L. et al. Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res. Ther. 11, R40 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Berckmans, R. J. et al. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res. Ther. 7, R536–544 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Gyorgy, B. et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes due to shared biophysical parameters. Blood 117, e39–e48 (2011).
Article CAS PubMed Google Scholar
- Jungel, A. et al. Microparticles stimulate the synthesis of prostaglandin E(2) via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum. 56, 3564–3574 (2007).
Article CAS PubMed Google Scholar
- Distler, J. H. et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc. Natl Acad. Sci. USA 102, 2892–2897 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Reich, N. et al. Microparticles stimulate angiogenesis by inducing ELR(+) CXC-chemokines in synovial fibroblasts. J. Cell. Mol. Med. 15, 756–762 (2011).
Article CAS PubMed Google Scholar
- Pereira, J. et al. Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb. Haemost. 95, 94–99 (2006).
Article CAS PubMed Google Scholar
- Ostergaard, O. et al. Unique protein signature of circulating microparticles in systemic lupus erythematosus. Arthritis Rheum. http://dx.doi.org/10.1002/art.38065.
- Pisetsky, D. S., Gauley, J. & Ullal, A. J. Microparticles as a source of extracellular DNA. Immunol. Res. 49, 227–234 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Parker, B. et al. Suppression of inflammation reduces endothelial microparticles in active systemic lupus erythematosus. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-203028.
- Guiducci, S. et al. The relationship between plasma microparticles and disease manifestations in patients with systemic sclerosis. Arthritis Rheum. 58, 2845–2853 (2008).
Article PubMed Google Scholar
- Sgonc, R. et al. Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J. Clin. Invest. 98, 785–792 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Aharon, A., Tamari, T. & Brenner, B. Monocyte derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb. Haemost. 100, 878–885 (2008).
Article CAS PubMed Google Scholar
- Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).
Article CAS PubMed Google Scholar
- Cloutier, N. et al. Platelets can enhance vascular permeability. Blood 120, 1334–1343 (2012).
Article CAS PubMed Google Scholar
- Sun, D. et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther. 18, 1606–1614 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Kooijmans, S. A. et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control Release 172, 229–238 (2013).
Article CAS PubMed Google Scholar
- Bolukbasi, M. F. et al. miR-1289 and “Zipcode”-like sequence enrich mRNAs in microvesicles. Mol. Ther. Nucleic. Acids. 1, e10 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Shen, B., Wu, N., Yang, J. M. & Gould, S. J. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J. Biol. Chem. 286, 14383–14395 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Maguire, C. A. et al. Microvesicle-associated AAV vector as a novel gene delivery system. Mol. Ther. 20, 960–971 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Wahlgren, J. et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 40, e130 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Ohno, S. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013).
Article CAS PubMed Google Scholar
- Akao, Y. et al. Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol. Ther. 19, 395–399 (2011).
Article CAS PubMed Google Scholar
- Zhuang, X. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19, 1769–1779 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Wang, G. J. et al. Thymus exosomes-like particles induce regulatory T cells. J. Immunol. 181, 5242–5248 (2008).
Article CAS PubMed Google Scholar
- Yang, X., Meng, S., Jiang, H., Chen, T. & Wu, W. Exosomes derived from interleukin-10-treated dendritic cells can inhibit trinitrobenzene sulfonic acid-induced rat colitis. Scand. J. Gastroenterol. 45, 1168–1177 (2010).
Article CAS PubMed Google Scholar
- Kim, S. H. et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174, 6440–6448 (2005).
Article CAS PubMed Google Scholar
- Ruffner, M. A. et al. B7–1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function. Eur. J. Immunol. 39, 3084–3090 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kim, S. H., Bianco, N. R., Shufesky, W. J., Morelli, A. E. & Robbins, P. D. MHC class II+ exosomes in plasma suppress inflammation in an antigen-specific and Fas ligand/Fas-dependent manner. J. Immunol. 179, 2235–2241 (2007).
Article CAS PubMed Google Scholar
- Cai, Z. et al. Immunosuppressive exosomes from TGF-beta1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res. 22, 607–610 (2012).
Article CAS PubMed Google Scholar
- Kim, S. H., Bianco, N. R., Shufesky, W. J., Morelli, A. E. & Robbins, P. D. Effectivetreatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J. Immunol. 179, 2242–2249 (2007).
Article CAS PubMed Google Scholar
- Kim, S. H. et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol. Ther. 13, 289–300 (2006).
Article CAS PubMed Google Scholar
- Bianco, N. R., Kim, S. H., Ruffner, M. A. & Robbins, P. D. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum. 60, 380–389 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Zhang, J. et al. Circulating TNFR1 exosome-like vesicles partition with the LDL fraction of human plasma. Biochem. Biophys. Res. Commun. 366, 579–584 (2008).
Article CAS PubMed Google Scholar
- Meijer, H., Reinecke, J., Becker, C., Tholen, G. & Wehling, P. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm. Res. 52, 404–407 (2003).
Article CAS PubMed Google Scholar
- Kelly, R. W. et al. Extracellular organelles (prostasomes) are immunosuppressive components of human semen. Clin. Exp. Immunol. 86, 550–556 (1991).
Article CAS PubMed PubMed Central Google Scholar
- Shen, Y. et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12, 509–520 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Savina, A., Furlan, M., Vidal, M. & Colombo, M. I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 278, 20083–20090 (2003).
Article CAS PubMed Google Scholar
- Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I. & Sanderson, R. D. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J. Biol. Chem. 288, 10093–10099 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Blanchard, N. et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 168, 3235–3241 (2002).
Article CAS PubMed Google Scholar
- Qu, Y. et al. P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. J. Immunol. 182, 5052–5062 (2009).
Article CAS PubMed Google Scholar
- Constantinescu, P. et al. P2X7 receptor activation induces cell death and microparticle release in murine erythroleukemia cells. Biochim. Biophys. Acta 1798, 1797–1804 (2010).
Article CAS PubMed Google Scholar
- Crespin, M., Vidal, C., Picard, F., Lacombe, C. & Fontenay, M. Activation of PAK1/2 during the shedding of platelet microvesicles. Blood Coagul. Fibrinolysis 20, 63–70 (2009).
Article CAS PubMed Google Scholar
- Parolini, I. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284, 34211–34222 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).
Article CAS PubMed Google Scholar
- Smith, S. K. et al. Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes. J. Biol. Chem. 276, 22732–22741 (2001).
Article CAS PubMed Google Scholar
- Barteneva, N. S. et al. Circulating microparticles: square the circle. BMC Cell Biol. 14, 23 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010).
Article CAS PubMed Google Scholar
- Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Crescitelli, R. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracellul. Vesicles, 2, 20677 (2013).
Article CAS Google Scholar