Structural basis of recognition of interferon-α receptor by tyrosine kinase 2 (original) (raw)
References
Leonard, W.J. & O'Shea, J.J. Jaks and STATs: biological implications. Annu. Rev. Immunol.16, 293–322 (1998). CASPubMed Google Scholar
Haan, C., Kreis, S., Margue, C. & Behrmann, I. Jaks and cytokine receptors: an intimate relationship. Biochem. Pharmacol.72, 1538–1546 (2006). CASPubMed Google Scholar
Casanova, J.L., Holland, S.M. & Notarangelo, L.D. Inborn errors of human JAKs and STATs. Immunity36, 515–528 (2012). CASPubMedPubMed Central Google Scholar
Kontzias, A., Kotlyar, A., Laurence, A., Changelian, P. & O'Shea, J.J. Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr. Opin. Pharmacol.12, 464–470 (2012). CASPubMedPubMed Central Google Scholar
Radtke, S. et al. The Jak1 SH2 domain does not fulfill a classical SH2 function in Jak/STAT signaling but plays a structural role for receptor interaction and up-regulation of receptor surface expression. J. Biol. Chem.280, 25760–25768 (2005). CASPubMed Google Scholar
Richter, M.F., Dumenil, G., Uze, G., Fellous, M. & Pellegrini, S. Specific contribution of Tyk2 JH regions to the binding and the expression of the interferon α/β receptor component IFNAR1. J. Biol. Chem.273, 24723–24729 (1998). CASPubMed Google Scholar
Zhao, Y., Wagner, F., Frank, S.J. & Kraft, A.S. The amino-terminal portion of the JAK2 protein kinase is necessary for binding and phosphorylation of the granulocyte-macrophage colony-stimulating factor receptor β chain. J. Biol. Chem.270, 13814–13818 (1995). CASPubMed Google Scholar
Chen, M. et al. The amino terminus of JAK3 is necessary and sufficient for binding to the common γ chain and confers the ability to transmit interleukin 2-mediated signals. Proc. Natl. Acad. Sci. USA94, 6910–6915 (1997). CASPubMedPubMed Central Google Scholar
Cacalano, N.A. et al. Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. EMBO J.18, 1549–1558 (1999). CASPubMedPubMed Central Google Scholar
Murakami, M. et al. Critical cytoplasmic region of the interleukin-6 signal transducer gp130 is conserved in the cytokine receptor family. Proc. Natl. Acad. Sci. USA88, 11349–11353 (1991). CASPubMedPubMed Central Google Scholar
Pelletier, S., Gingras, S., Funakoshi-Tago, M., Howell, S. & Ihle, J.N. Two domains of the erythropoietin receptor are sufficient for Jak2 binding/activation and function. Mol. Cell. Biol.26, 8527–8538 (2006). CASPubMedPubMed Central Google Scholar
Lebrun, J.J., Ali, S., Ullrich, A. & Kelly, P.A. Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. J. Biol. Chem.270, 10664–10670 (1995). CASPubMed Google Scholar
Yan, H., Krishnan, K., Lim, J.T., Contillo, L.G. & Krolewski, J.J. Molecular characterization of an alpha interferon receptor 1 subunit (IFNaR1) domain required for TYK2 binding and signal transduction. Mol. Cell. Biol.16, 2074–2082 (1996). CASPubMedPubMed Central Google Scholar
Tanner, J.W., Chen, W., Young, R.L., Longmore, G.D. & Shaw, A.S. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J. Biol. Chem.270, 6523–6530 (1995). CASPubMed Google Scholar
Usacheva, A. et al. Contribution of the Box 1 and Box 2 motifs of cytokine receptors to Jak1 association and activation. J. Biol. Chem.277, 48220–48226 (2002). CASPubMed Google Scholar
Royer, Y., Staerk, J., Costuleanu, M., Courtoy, P.J. & Constantinescu, S.N. Janus kinases affect thrombopoietin receptor cell surface localization and stability. J. Biol. Chem.280, 27251–27261 (2005). CASPubMed Google Scholar
Haan, C., Heinrich, P.C. & Behrmann, I. Structural requirements of the interleukin-6 signal transducer gp130 for its interaction with Janus kinase 1: the receptor is crucial for kinase activation. Biochem. J.361, 105–111 (2002). CASPubMedPubMed Central Google Scholar
Haan, C., Hermanns, H.M., Heinrich, P.C. & Behrmann, I. A single amino acid substitution (Trp666→Ala) in the interbox1/2 region of the interleukin-6 signal transducer gp130 abrogates binding of JAK1, and dominantly impairs signal transduction. Biochem. J.349, 261–266 (2000). CASPubMedPubMed Central Google Scholar
Bogdan, C. The function of type I interferons in antimicrobial immunity. Curr. Opin. Immunol.12, 419–424 (2000). CASPubMed Google Scholar
García-Sastre, A. & Biron, C.A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science312, 879–882 (2006). PubMed Google Scholar
Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol.6, 836–848 (2006). CASPubMed Google Scholar
Theofilopoulos, A.N., Baccala, R., Beutler, B. & Kono, D.H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol.23, 307–336 (2005). CASPubMed Google Scholar
Velazquez, L., Fellous, M., Stark, G.R. & Pellegrini, S. A protein tyrosine kinase in the interferon α/β signaling pathway. Cell70, 313–322 (1992). CASPubMed Google Scholar
Colamonici, O. et al. Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol. Cell. Biol.14, 8133–8142 (1994). CASPubMedPubMed Central Google Scholar
Colamonici, O.R., Uyttendaele, H., Domanski, P., Yan, H. & Krolewski, J.J. p135tyk2, an interferon-α-activated tyrosine kinase, is physically associated with an interferon-α receptor. J. Biol. Chem.269, 3518–3522 (1994). CASPubMed Google Scholar
Ragimbeau, J. et al. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J.22, 537–547 (2003). CASPubMedPubMed Central Google Scholar
Lupardus, P.J. et al. Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Structure19, 45–55 (2011). CASPubMedPubMed Central Google Scholar
Smith, W.J., Nassar, N., Bretscher, A., Cerione, R.A. & Karplus, P.A. Structure of the active N-terminal domain of Ezrin: conformational and mobility changes identify keystone interactions. J. Biol. Chem.278, 4949–4956 (2003). CASPubMed Google Scholar
Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J.19, 4449–4462 (2000). CASPubMedPubMed Central Google Scholar
Pearson, M.A., Reczek, D., Bretscher, A. & Karplus, P.A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell101, 259–270 (2000). CASPubMed Google Scholar
Ceccarelli, D.F., Song, H.K., Poy, F., Schaller, M.D. & Eck, M.J. Crystal structure of the FERM domain of focal adhesion kinase. J. Biol. Chem.281, 252–259 (2006). CASPubMed Google Scholar
Eck, M.J., Shoelson, S.E. & Harrison, S.C. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature362, 87–91 (1993). CASPubMed Google Scholar
Yang, J. et al. Crystal structure of human protein-tyrosine phosphatase SHP-1. J. Biol. Chem.278, 6516–6520 (2003). CASPubMed Google Scholar
Lee, C.H. et al. Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase. Structure2, 423–438 (1994). CASPubMed Google Scholar
Bradshaw, J.M. & Waksman, G. Molecular recognition by SH2 domains. Adv. Protein Chem.61, 161–210 (2002). PubMed Google Scholar
Poy, F. et al. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol. Cell4, 555–561 (1999). CASPubMed Google Scholar
Yoh, S.M., Cho, H., Pickle, L., Evans, R.M. & Jones, K.A. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev.21, 160–174 (2007). CASPubMedPubMed Central Google Scholar
Kaneko, T. et al. Loops govern SH2 domain specificity by controlling access to binding pockets. Sci. Signal.3, ra34 (2010). PubMedPubMed Central Google Scholar
Moser, M., Legate, K.R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science324, 895–899 (2009). CASPubMed Google Scholar
Pearlman, S.M., Serber, Z. & Ferrell, J.E. Jr. A mechanism for the evolution of phosphorylation sites. Cell147, 934–946 (2011). CASPubMedPubMed Central Google Scholar
Liu, B.A. et al. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol. Cell22, 851–868 (2006). PubMed Google Scholar
Pantoliano, M.W. et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen.6, 429–440 (2001). CASPubMed Google Scholar
Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc.2, 2212–2221 (2007). CASPubMed Google Scholar
Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr.59, 1131–1137 (2003). PubMed Google Scholar
Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr.66, 213–221 (2010). CASPubMedPubMed Central Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). PubMed Google Scholar
Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr.66, 12–21 (2010). CASPubMed Google Scholar
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol.372, 774–797 (2007). CASPubMed Google Scholar
Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA98, 10037–10041 (2001). CASPubMedPubMed Central Google Scholar
Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res.38, W529–W533 (2010). CASPubMedPubMed Central Google Scholar
Do, C.B., Mahabhashyam, M.S., Brudno, M. & Batzoglou, S. ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res.15, 330–340 (2005). CASPubMedPubMed Central Google Scholar