Structural basis of recognition of interferon-α receptor by tyrosine kinase 2 (original) (raw)

References

  1. Leonard, W.J. & O'Shea, J.J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).
    CAS PubMed Google Scholar
  2. Haan, C., Kreis, S., Margue, C. & Behrmann, I. Jaks and cytokine receptors: an intimate relationship. Biochem. Pharmacol. 72, 1538–1546 (2006).
    CAS PubMed Google Scholar
  3. Casanova, J.L., Holland, S.M. & Notarangelo, L.D. Inborn errors of human JAKs and STATs. Immunity 36, 515–528 (2012).
    CAS PubMed PubMed Central Google Scholar
  4. Kontzias, A., Kotlyar, A., Laurence, A., Changelian, P. & O'Shea, J.J. Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr. Opin. Pharmacol. 12, 464–470 (2012).
    CAS PubMed PubMed Central Google Scholar
  5. Radtke, S. et al. The Jak1 SH2 domain does not fulfill a classical SH2 function in Jak/STAT signaling but plays a structural role for receptor interaction and up-regulation of receptor surface expression. J. Biol. Chem. 280, 25760–25768 (2005).
    CAS PubMed Google Scholar
  6. Richter, M.F., Dumenil, G., Uze, G., Fellous, M. & Pellegrini, S. Specific contribution of Tyk2 JH regions to the binding and the expression of the interferon α/β receptor component IFNAR1. J. Biol. Chem. 273, 24723–24729 (1998).
    CAS PubMed Google Scholar
  7. Zhao, Y., Wagner, F., Frank, S.J. & Kraft, A.S. The amino-terminal portion of the JAK2 protein kinase is necessary for binding and phosphorylation of the granulocyte-macrophage colony-stimulating factor receptor β chain. J. Biol. Chem. 270, 13814–13818 (1995).
    CAS PubMed Google Scholar
  8. Chen, M. et al. The amino terminus of JAK3 is necessary and sufficient for binding to the common γ chain and confers the ability to transmit interleukin 2-mediated signals. Proc. Natl. Acad. Sci. USA 94, 6910–6915 (1997).
    CAS PubMed PubMed Central Google Scholar
  9. Cacalano, N.A. et al. Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. EMBO J. 18, 1549–1558 (1999).
    CAS PubMed PubMed Central Google Scholar
  10. Murakami, M. et al. Critical cytoplasmic region of the interleukin-6 signal transducer gp130 is conserved in the cytokine receptor family. Proc. Natl. Acad. Sci. USA 88, 11349–11353 (1991).
    CAS PubMed PubMed Central Google Scholar
  11. Pelletier, S., Gingras, S., Funakoshi-Tago, M., Howell, S. & Ihle, J.N. Two domains of the erythropoietin receptor are sufficient for Jak2 binding/activation and function. Mol. Cell. Biol. 26, 8527–8538 (2006).
    CAS PubMed PubMed Central Google Scholar
  12. Lebrun, J.J., Ali, S., Ullrich, A. & Kelly, P.A. Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. J. Biol. Chem. 270, 10664–10670 (1995).
    CAS PubMed Google Scholar
  13. Yan, H., Krishnan, K., Lim, J.T., Contillo, L.G. & Krolewski, J.J. Molecular characterization of an alpha interferon receptor 1 subunit (IFNaR1) domain required for TYK2 binding and signal transduction. Mol. Cell. Biol. 16, 2074–2082 (1996).
    CAS PubMed PubMed Central Google Scholar
  14. Tanner, J.W., Chen, W., Young, R.L., Longmore, G.D. & Shaw, A.S. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J. Biol. Chem. 270, 6523–6530 (1995).
    CAS PubMed Google Scholar
  15. Usacheva, A. et al. Contribution of the Box 1 and Box 2 motifs of cytokine receptors to Jak1 association and activation. J. Biol. Chem. 277, 48220–48226 (2002).
    CAS PubMed Google Scholar
  16. Royer, Y., Staerk, J., Costuleanu, M., Courtoy, P.J. & Constantinescu, S.N. Janus kinases affect thrombopoietin receptor cell surface localization and stability. J. Biol. Chem. 280, 27251–27261 (2005).
    CAS PubMed Google Scholar
  17. Haan, C., Heinrich, P.C. & Behrmann, I. Structural requirements of the interleukin-6 signal transducer gp130 for its interaction with Janus kinase 1: the receptor is crucial for kinase activation. Biochem. J. 361, 105–111 (2002).
    CAS PubMed PubMed Central Google Scholar
  18. Haan, C., Hermanns, H.M., Heinrich, P.C. & Behrmann, I. A single amino acid substitution (Trp666→Ala) in the interbox1/2 region of the interleukin-6 signal transducer gp130 abrogates binding of JAK1, and dominantly impairs signal transduction. Biochem. J. 349, 261–266 (2000).
    CAS PubMed PubMed Central Google Scholar
  19. Bogdan, C. The function of type I interferons in antimicrobial immunity. Curr. Opin. Immunol. 12, 419–424 (2000).
    CAS PubMed Google Scholar
  20. García-Sastre, A. & Biron, C.A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312, 879–882 (2006).
    PubMed Google Scholar
  21. Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).
    CAS PubMed Google Scholar
  22. Theofilopoulos, A.N., Baccala, R., Beutler, B. & Kono, D.H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).
    CAS PubMed Google Scholar
  23. Velazquez, L., Fellous, M., Stark, G.R. & Pellegrini, S. A protein tyrosine kinase in the interferon α/β signaling pathway. Cell 70, 313–322 (1992).
    CAS PubMed Google Scholar
  24. Colamonici, O. et al. Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol. Cell. Biol. 14, 8133–8142 (1994).
    CAS PubMed PubMed Central Google Scholar
  25. Colamonici, O.R., Uyttendaele, H., Domanski, P., Yan, H. & Krolewski, J.J. p135tyk2, an interferon-α-activated tyrosine kinase, is physically associated with an interferon-α receptor. J. Biol. Chem. 269, 3518–3522 (1994).
    CAS PubMed Google Scholar
  26. Ragimbeau, J. et al. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J. 22, 537–547 (2003).
    CAS PubMed PubMed Central Google Scholar
  27. Lupardus, P.J. et al. Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Structure 19, 45–55 (2011).
    CAS PubMed PubMed Central Google Scholar
  28. Smith, W.J., Nassar, N., Bretscher, A., Cerione, R.A. & Karplus, P.A. Structure of the active N-terminal domain of Ezrin: conformational and mobility changes identify keystone interactions. J. Biol. Chem. 278, 4949–4956 (2003).
    CAS PubMed Google Scholar
  29. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 19, 4449–4462 (2000).
    CAS PubMed PubMed Central Google Scholar
  30. Pearson, M.A., Reczek, D., Bretscher, A. & Karplus, P.A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000).
    CAS PubMed Google Scholar
  31. Ceccarelli, D.F., Song, H.K., Poy, F., Schaller, M.D. & Eck, M.J. Crystal structure of the FERM domain of focal adhesion kinase. J. Biol. Chem. 281, 252–259 (2006).
    CAS PubMed Google Scholar
  32. Eck, M.J., Shoelson, S.E. & Harrison, S.C. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362, 87–91 (1993).
    CAS PubMed Google Scholar
  33. Yang, J. et al. Crystal structure of human protein-tyrosine phosphatase SHP-1. J. Biol. Chem. 278, 6516–6520 (2003).
    CAS PubMed Google Scholar
  34. Lee, C.H. et al. Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase. Structure 2, 423–438 (1994).
    CAS PubMed Google Scholar
  35. Bradshaw, J.M. & Waksman, G. Molecular recognition by SH2 domains. Adv. Protein Chem. 61, 161–210 (2002).
    PubMed Google Scholar
  36. Poy, F. et al. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol. Cell 4, 555–561 (1999).
    CAS PubMed Google Scholar
  37. Yoh, S.M., Cho, H., Pickle, L., Evans, R.M. & Jones, K.A. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev. 21, 160–174 (2007).
    CAS PubMed PubMed Central Google Scholar
  38. Kaneko, T. et al. Loops govern SH2 domain specificity by controlling access to binding pockets. Sci. Signal. 3, ra34 (2010).
    PubMed PubMed Central Google Scholar
  39. Moser, M., Legate, K.R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899 (2009).
    CAS PubMed Google Scholar
  40. Pearlman, S.M., Serber, Z. & Ferrell, J.E. Jr. A mechanism for the evolution of phosphorylation sites. Cell 147, 934–946 (2011).
    CAS PubMed PubMed Central Google Scholar
  41. Liu, B.A. et al. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22, 851–868 (2006).
    PubMed Google Scholar
  42. Pantoliano, M.W. et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 6, 429–440 (2001).
    CAS PubMed Google Scholar
  43. Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007).
    CAS PubMed Google Scholar
  44. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
    CAS PubMed PubMed Central Google Scholar
  45. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).
    PubMed Google Scholar
  46. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
    CAS PubMed PubMed Central Google Scholar
  47. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    PubMed Google Scholar
  48. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
    CAS PubMed Google Scholar
  49. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
    CAS PubMed Google Scholar
  50. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).
    CAS PubMed PubMed Central Google Scholar
  51. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010).
    CAS PubMed PubMed Central Google Scholar
  52. Do, C.B., Mahabhashyam, M.S., Brudno, M. & Batzoglou, S. ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res. 15, 330–340 (2005).
    CAS PubMed PubMed Central Google Scholar

Download references