Cerutti, L., Mian, N. & Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci.25, 481–482 (2000). ArticleCASPubMed Google Scholar
Makarova, K.S., Wolf, Y.I., van der Oost, J. & Koonin, E.V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct4, 29 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ma, J.B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A-fulgidus Piwi protein. Nature434, 666–670 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yuan, Y.R. et al. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell19, 405–419 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y.L. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature456, 921–926 (2008). ArticleCASPubMedPubMed Central Google Scholar
Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D.K. & Aravin, A.A. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol. Cell51, 594–605 (2013). ArticleCASPubMed Google Scholar
Swarts, D.C. et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507, 258–261 (2014).
Wang, Y.L., Sheng, G., Juranek, S., Tuschl, T. & Patel, D.J. Structure of the guide-strand-containing argonaute silencing complex. Nature456, 209–213 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sheng, G. et al. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl. Acad. Sci. USA111, 652–657 (2014). ArticleCASPubMed Google Scholar
Nakanishi, K., Weinberg, D.E., Bartel, D.P. & Patel, D.J. Structure of yeast Argonaute with guide RNA. Nature486, 368–374 (2012). ArticleCASPubMed Central Google Scholar
Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437 (2004). ArticleCASPubMed Google Scholar
Rashid, U.J. et al. Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function. J. Biol. Chem.282, 13824–13832 (2007). ArticleCASPubMed Google Scholar
Parker, J.S., Roe, S.M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J.23, 4727–4737 (2004). ArticleCASPubMedPubMed Central Google Scholar
Parker, J.S., Roe, S.M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature434, 663–666 (2005). ArticleCASPubMedPubMed Central Google Scholar
Boland, A., Tritschler, F., Heimstadt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep.11, 522–527 (2010). ArticleCASPubMedPubMed Central Google Scholar
Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature465, 818–822 (2010). ArticleCASPubMed Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature426, 465–469 (2003). ArticleCASPubMed Google Scholar
Song, J.J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol.10, 1026–1032 (2003). ArticleCASPubMed Google Scholar
Yan, K.S. et al. Structure and conserved RNA binding of the PAZ domain. Nature426, 468–474 (2003). ArticleCASPubMed Google Scholar
Ma, J.B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol.11, 576–577 (2004). ArticleCASPubMed Google Scholar
Parker, J.S., Parizotto, E.A., Wang, M., Roe, S.M. & Barford, D. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol. Cell33, 204–214 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kunne, T., Swarts, D.C. & Brouns, S.J. Planting the seed: target recognition of short guide RNAs. Trends Microbiol.22, 74–83 (2014). ArticleCASPubMed Google Scholar
Lal, A. et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell35, 610–625 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zander, A., Holzmeister, P., Klose, D., Tinnefeld, P. & Grohmann, D. Single-molecule FRET supports the two-state model of Argonaute action. RNA Biol.11, 45–56 (2014). ArticleCASPubMed Google Scholar
Nowotny, M. & Yang, W. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J.25, 1924–1933 (2006). ArticleCASPubMedPubMed Central Google Scholar
Faehnle, C.R., Elkayam, E., Haase, A.D., Hannon, G.J. & Joshua-Tor, L. The making of a slicer: activation of human Argonaute-1. Cell Reports3, 1901–1909 (2013). ArticleCASPubMed Google Scholar
Nakanishi, K. et al. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Reports3, 1893–1900 (2013). ArticleCASPubMed Google Scholar
Kuhn, C.D. & Joshua-Tor, L. Eukaryotic Argonautes come into focus. Trends Biochem. Sci.38, 263–271 (2013). ArticleCASPubMed Google Scholar
Boland, A., Huntzinger, E., Schmidt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc. Natl. Acad. Sci. USA108, 10466–10471 (2011). ArticlePubMedPubMed Central Google Scholar
Huntzinger, E. et al. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res.41, 978–994 (2013). ArticleCASPubMed Google Scholar
Pfaff, J. et al. Structural features of Argonaute-GW182 protein interactions. Proc. Natl. Acad. Sci. USA110, E3770–E3779 (2013). ArticlePubMedPubMed Central Google Scholar
Burroughs, A.M., Iyer, L.M. & Aravind, L. Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biol. Direct8, 13 (2013). ArticleCASPubMedPubMed Central Google Scholar
Makarova, K.S., Wolf, Y.I. & Koonin, E.V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res.41, 4360–4377 (2013). ArticleCASPubMedPubMed Central Google Scholar
Price, M.N., Dehal, P.S. & Arkin, A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One5, e9490 (2010). ArticleCASPubMedPubMed Central Google Scholar
Makarova, K.S., Aravind, L., Wolf, Y.I. & Koonin, E.V. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct6, 38 (2011). ArticleCASPubMedPubMed Central Google Scholar
Garcia Silva, M.R. et al. Cloning, characterization and subcellular localization of a Trypanosoma cruzi argonaute protein defining a new subfamily distinctive of trypanosomatids. Gene466, 26–35 (2010). ArticleCASPubMed Google Scholar
Conaway, R.C., Sato, S., Tomomori-Sato, C., Yao, T. & Conaway, J.W. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci.30, 250–255 (2005). ArticleCASPubMed Google Scholar
Djikeng, A., Shi, H., Tschudi, C. & Ullu, E. RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24–26-nucleotide RNAs. RNA7, 1522–1530 (2001). CASPubMedPubMed Central Google Scholar
Tschudi, C., Shi, H., Franklin, J.B. & Ullu, E. Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei. BMC Genomics13, 427 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shi, H., Tschudi, C. & Ullu, E. An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei. RNA12, 2063–2072 (2006). ArticleCASPubMedPubMed Central Google Scholar
Barnes, R.L., Shi, H., Kolev, N.G., Tschudi, C. & Ullu, E. Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. PLoS Pathog.8, e1002678 (2012). ArticleCASPubMedPubMed Central Google Scholar
Patrick, K.L. et al. Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc. Natl. Acad. Sci. USA106, 17933–17938 (2009). ArticlePubMedPubMed Central Google Scholar
Shi, H., Chamond, N., Djikeng, A., Tschudi, C. & Ullu, E. RNA interference in Trypanosoma brucei: role of the n-terminal RGG domain and the polyribosome association of argonaute. J. Biol. Chem.284, 36511–36520 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell127, 747–757 (2006). ArticleCASPubMed Google Scholar
Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science315, 241–244 (2007). ArticleCASPubMed Google Scholar
Sijen, T., Steiner, F.A., Thijssen, K.L. & Plasterk, R.H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science315, 244–247 (2007). ArticleCASPubMed Google Scholar
Guang, S. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature465, 1097–1101 (2010). ArticleCASPubMedPubMed Central Google Scholar
Seth, M. et al. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev. Cell27, 656–663 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wedeles, C.J., Wu, M.Z. & Claycomb, J.M. Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev. Cell27, 664–671 (2013). ArticleCASPubMed Google Scholar
Meister, G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet.14, 447–459 (2013). ArticleCASPubMed Google Scholar
Cheloufi, S., Dos Santos, C.O., Chong, M.M. & Hannon, G.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature465, 584–589 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science328, 1694–1698 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fabian, M.R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol.19, 586–593 (2012). ArticleCASPubMed Google Scholar
Hauptmann, J. et al. Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat. Struct. Mol. Biol.20, 814–817 (2013). ArticleCASPubMed Google Scholar
van Rij, R.P. et al. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev.20, 2985–2995 (2006). ArticleCASPubMedPubMed Central Google Scholar
Li, Y., Lu, J., Han, Y., Fan, X. & Ding, S.W. RNA interference functions as an antiviral immunity mechanism in mammals. Science342, 231–234 (2013). ArticleCASPubMed Google Scholar
Maillard, P.V. et al. Antiviral RNA interference in mammalian cells. Science342, 235–238 (2013). ArticleCASPubMed Google Scholar
Wee, L.M., Flores-Jasso, C.F., Salomon, W.E. & Zamore, P.D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell151, 1055–1067 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nishimasu, H. et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature491, 284–287 (2012). ArticleCASPubMed Google Scholar
Mochizuki, K. & Gorovsky, M.A.A. Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev.19, 77–89 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sandoval, P.Y., Swart, E.C., Arambasic, M. & Nowacki, M. Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev. Cell28, 174–188 (2014). ArticleCASPubMed Google Scholar
Frank, F., Hauver, J., Sonenberg, N. & Nagar, B. Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs. EMBO J.31, 3588–3595 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell133, 116–127 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kawaoka, S., Izumi, N., Katsuma, S. & Tomari, Y. 3′ end formation of PIWI-interacting RNAs in vitro. Mol. Cell43, 1015–1022 (2011). ArticleCASPubMed Google Scholar
Luteijn, M.J. & Ketting, R.F. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat. Rev. Genet.14, 523–534 (2013). ArticleCASPubMed Google Scholar
Simon, B. et al. Recognition of 2′-O-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein. Structure19, 172–180 (2011). ArticleCASPubMed Google Scholar
Tian, Y., Simanshu, D.K., Ma, J.B. & Patel, D.J. Structural basis for piRNA 2′-O-methylated 3′-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc. Natl. Acad. Sci. USA108, 903–910 (2011). ArticlePubMed Google Scholar
Shi, H. et al. Role of the Trypanosoma brucei HEN1 family methyltransferase in small interfering RNA modification. Eukaryot. Cell13, 77–86 (2014). ArticleCASPubMedPubMed Central Google Scholar
Horwich, M.D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol.17, 1265–1272 (2007). ArticleCASPubMed Google Scholar
van Wolfswinkel, J.C. et al. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell139, 135–148 (2009). ArticleCASPubMed Google Scholar
Hutvagner, G. & Simard, M.J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol.9, 22–32 (2008). ArticleCASPubMed Google Scholar
Jinek, M. & Doudna, J.A. A three-dimensional view of the molecular machinery of RNA interference. Nature457, 405–412 (2009). ArticleCASPubMed Google Scholar
Hur, J.K., Zinchenko, M.K., Djuranovic, S. & Green, R. Regulation of Argonaute slicer activity by guide RNA 3′ end interactions with the N-terminal lobe. J. Biol. Chem.288, 7829–7840 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kwak, P.B. & Tomari, Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat. Struct. Mol. Biol.19, 145–151 (2012). ArticleCASPubMed Google Scholar
Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). ArticleCASPubMed Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003). ArticleCASPubMed Google Scholar
Kawamata, T., Seitz, H. & Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat. Struct. Mol. Biol.16, 953–960 (2009). ArticleCASPubMed Google Scholar
Yoda, M. et al. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol.17, 17–23 (2010). ArticleCASPubMed Google Scholar
Iyer, L.M., Makarova, K.S., Koonin, E.V. & Aravind, L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res.32, 5260–5279 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kinch, L.N., Ginalski, K., Rychlewski, L. & Grishin, N.V. Identification of novel restriction endonuclease-like fold families among hypothetical proteins. Nucleic Acids Res.33, 3598–3605 (2005). ArticleCASPubMedPubMed Central Google Scholar
Knizewski, L., Kinch, L.N., Grishin, N.V., Rychlewski, L. & Ginalski, K. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches. BMC Struct. Biol.7, 40 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J., Kasciukovic, T. & White, M.F. The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster. PLoS ONE7, e47232 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lemak, S. et al. Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S] cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus. J. Am. Chem. Soc.135, 17476–17487 (2013). ArticleCASPubMedPubMed Central Google Scholar
Grazulis, S. et al. Structure of the metal-independent restriction enzyme BfiI reveals fusion of a specific DNA-binding domain with a nonspecific nuclease. Proc. Natl. Acad. Sci. USA102, 15797–15802 (2005). ArticleCASPubMedPubMed Central Google Scholar
Geserick, P., Kaiser, F., Klemm, U., Kaufmann, S.H. & Zerrahn, J. Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. Int. Immunol.16, 1535–1548 (2004). ArticleCASPubMed Google Scholar
Aravind, L. & Koonin, E.V. DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res.27, 4658–4670 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rana, R.R., Zhang, M., Spear, A.M., Atkins, H.S. & Byrne, B. Bacterial TIR-containing proteins and host innate immune system evasion. Med. Microbiol. Immunol. (Berl.)202, 1–10 (2013). ArticleCAS Google Scholar
Brikos, C. & O'Neill, L.A. Signalling of toll-like receptors. Handb. Exp. Pharmacol.183, 21–50 (2008).
Palsson-McDermott, E.M. & O'Neill, L.A. Building an immune system from nine domains. Biochem. Soc. Trans.35, 1437–1444 (2007). ArticleCASPubMed Google Scholar
Burch-Smith, T.M. & Dinesh-Kumar, S.P. The functions of plant TIR domains. Sci. STKE2007, pe46 (2007). ArticlePubMed Google Scholar
Boubakri, H., de Septenville, A.L., Viguera, E. & Michel, B. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J.29, 145–157 (2010). ArticleCASPubMed Google Scholar