Super-resolution 3D tomography of interactions and competition in the nuclear pore complex (original) (raw)
References
Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). ArticleCASPubMedPubMed Central Google Scholar
Suntharalingam, M. & Wente, S.R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell4, 775–789 (2003). ArticleCASPubMed Google Scholar
Fried, H. & Kutay, U. Nucleocytoplasmic transport: taking an inventory. Cell. Mol. Life Sci.60, 1659–1688 (2003). ArticleCASPubMed Google Scholar
Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol.4, 757–766 (2003). ArticleCASPubMed Google Scholar
Denning, D.-P., Patel, S.S., Uversky, V., Fink, A.L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl. Acad. Sci. USA100, 2450–2455 (2003). ArticleCASPubMedPubMed Central Google Scholar
Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol.8, 195–208 (2007). ArticleCASPubMed Google Scholar
Palmeri, D. & Malim, M.H. Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol. Cell. Biol.19, 1218–1225 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hoelz, A., Debler, E.W. & Blobel, G. The structure of the nuclear pore complex. Annu. Rev. Biochem.80, 613–643 (2011). ArticleCASPubMed Google Scholar
Rout, M.P. & Blobel, G. Isolation of the yeast nuclear pore complex. J. Cell Biol.123, 771–783 (1993). ArticleCASPubMed Google Scholar
Terry, L.J. & Wente, S.R. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot. Cell8, 1814–1827 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rout, M.P. & Aitchison, J.D. The nuclear pore complex as a transport machine. J. Biol. Chem.276, 16593–16596 (2001). ArticleCASPubMed Google Scholar
Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic6, 421–427 (2005). ArticleCASPubMed Google Scholar
Lim, R.Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science318, 640–643 (2007). ArticleCASPubMed Google Scholar
Rout, M.P., Aitchison, J.D., Magnasco, M.O. & Chait, B.T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol.13, 622–628 (2003). ArticleCASPubMed Google Scholar
Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell130, 512–523 (2007). ArticleCASPubMed Google Scholar
Mohr, D., Frey, S., Fischer, T., Güttler, T. & Görlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J.28, 2541–2553 (2009). ArticleCASPubMedPubMed Central Google Scholar
Frey, S., Richter, R.P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science314, 815–817 (2006). ArticleCASPubMed Google Scholar
la Cour, T. et al. Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel.17, 527–536 (2004). ArticleCASPubMed Google Scholar
Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol. Cell. Proteomics9, 2205–2224 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ma, J. & Yang, W. Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc. Natl. Acad. Sci. USA107, 7305–7310 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ma, J., Goryaynov, A., Sarma, A. & Yang, W. Self-regulated viscous channel in the nuclear pore complex. Proc. Natl. Acad. Sci. USA109, 7326–7331 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ma, J. et al. High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat. Commun.4, 2414 (2013). ArticlePubMedCAS Google Scholar
Kutay, U., Izaurralde, E., Bischoff, F.R., Mattaj, I.W. & Görlich, D. Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J.16, 1153–1163 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bayliss, R., Littlewood, T., Strawn, L.A., Wente, S.R. & Stewart, M. GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta. J. Biol. Chem.277, 50597–50606 (2002). ArticleCASPubMed Google Scholar
Patel, S.S., Belmont, B.J., Sante, J.M. & Rexach, M.F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell129, 83–96 (2007). ArticleCASPubMed Google Scholar
Peters, R. Translocation through the nuclear pore: Kaps pave the way. BioEssays31, 466–477 (2009). ArticleCASPubMed Google Scholar
Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import. J. Cell Biol.152, 411–417 (2001). ArticleCASPubMedPubMed Central Google Scholar
Isgro, T.A. & Schulten, K. Association of nuclear pore FG-repeat domains to NTF2 import and export complexes. J. Mol. Biol.366, 330–345 (2007). ArticleCASPubMed Google Scholar
Iwamoto, M., Asakawa, H., Hiraoka, Y. & Haraguchi, T. Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms. Genes Cells15, 661–669 (2010). ArticleCASPubMed Google Scholar
Katahira, J., Straesser, K., Saiwaki, T., Yoneda, Y. & Hurt, E. Complex formation between Tap and p15 affects binding to FG-repeat nucleoporins and nucleocytoplasmic shuttling. J. Biol. Chem.277, 9242–9246 (2002). ArticleCASPubMed Google Scholar
Ghavami, A., Veenhoff, L.M., van der Giessen, E. & Onck, P.R. Probing the disordered domain of the nuclear pore complex through coarse-grained molecular dynamics simulations. Biophys. J.107, 1393–1402 (2014). ArticleCASPubMedPubMed Central Google Scholar
Dange, T., Grünwald, D., Grünwald, A., Peters, R. & Kubitscheck, U. Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J. Cell Biol.183, 77–86 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wagner, R.S., Kapinos, L.E., Marshall, N.J., Stewart, M. & Lim, R.Y. Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics. Biophys. J.108, 918–927 (2015). ArticleCASPubMedPubMed Central Google Scholar
Tetenbaum-Novatt, J., Hough, L.E., Mironska, R., McKenney, A.S. & Rout, M.P. Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions. Mol. Cell. Proteomics11, 31–46 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kerr, A.R. & Schirmer, E.C. FG repeats facilitate integral protein trafficking to the inner nuclear membrane. Commun. Integr. Biol.4, 557–559 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yang, W., Gelles, J. & Musser, S.M. Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl. Acad. Sci. USA101, 12887–12892 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yang, W. & Musser, S.M. Nuclear import time and transport efficiency depend on importin beta concentration. J. Cell Biol.174, 951–961 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yang, W. & Musser, S.M. Visualizing single molecules interacting with nuclear pore complexes by narrow-field epifluorescence microscopy. Methods39, 316–328 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sun, C., Yang, W., Tu, L.C. & Musser, S.M. Single-molecule measurements of importin alpha/cargo complex dissociation at the nuclear pore. Proc. Natl. Acad. Sci. USA105, 8613–8618 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mortensen, K.I., Churchman, L.S., Spudich, J.A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods7, 377–381 (2010). ArticleCASPubMedPubMed Central Google Scholar
Quan, T., Zeng, S. & Huang, Z.L. Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging. J. Biomed. Opt.15, 066005 (2010). ArticlePubMed Google Scholar
Robbins, M.S. & Hadwen, B.J. The noise performance of electron multiplying charge-coupled devices. IEEE Trans. Electron. Dev.50, 1227–1232 (2003). Article Google Scholar
Deschout, H., Neyts, K. & Braeckmans, K. The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy. J. Biophotonics5, 97–109 (2012). ArticleCASPubMed Google Scholar