Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285, 1182–1186 (1971). CASPubMed Google Scholar
Takahashi, Y., Kitadai, Y., Bucana, C. D., Cleary, K. R. & Ellis, L. M. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res.55, 3964–3968 (1995). CASPubMed Google Scholar
Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. N. Engl. J. Med.324, 1–8 (1991). CASPubMed Google Scholar
Graham, C. H., Rivers, J., Kerbel, R. S., Stankiewicz, K. S. & White, W. L. Extent of vascularization as a prognostic indicator in thin (<0.76 mm) malignant melanomas. Am. J. Pathol.145, 510–514 (1994). CASPubMedPubMed Central Google Scholar
Weidner, N., Carroll, P. R., Flax, J., Blumenfeld, W. & Folkman, J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol.143, 401–409 (1993). CASPubMedPubMed Central Google Scholar
Macchiarini, P., Fontanini, G., Hardin, M. J., Squartini, F. & Angeletti, C. A. Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet340, 145–146 (1992). CASPubMed Google Scholar
Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science219, 983–985 (1983). CASPubMed Google Scholar
Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun.161, 851–858 (1989). CASPubMed Google Scholar
Chaudhry, I. H., O‘Donovan, D. G., Brenchley, P. E., Reid, H. & Roberts, I. S. Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology39, 409–415 (2001). CASPubMed Google Scholar
Mise, M. et al. Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology23, 455–464 (1996). CASPubMed Google Scholar
Obermair, A. et al. Correlation of vascular endothelial growth factor expression and microvessel density in cervical intraepithelial neoplasia. J. Natl Cancer Inst.89, 1212–1217 (1997). CASPubMed Google Scholar
Toi, M. et al. Vascular endothelial growth factor and platelet-derived endothelial cell growth factor are frequently coexpressed in highly vascularized human breast cancer. Clin. Cancer Res.1, 961–964 (1995). CASPubMed Google Scholar
O‘Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell79, 315–328 (1994). PubMed Google Scholar
O‘Reilly, M. S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med.2, 689–692 (1996). PubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). CASPubMed Google Scholar
Pezzella, F. et al. Angiogenesis in primary lung cancer and lung secondaries. Eur. J. Cancer32A, 2494–2500 (1996). CASPubMed Google Scholar
Pezzella, F. et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am. J. Pathol.151, 1417–1423 (1997). CASPubMedPubMed Central Google Scholar
Vasudev, N. S. & Reynolds, A. R. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis17, 471–494 (2014). CASPubMedPubMed Central Google Scholar
Ebos, J. M. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol.8, 210–221 (2011). CASPubMedPubMed Central Google Scholar
Jayson, G. C., Kerbel, R., Ellis, L. M. & Harris, A. L. Antiangiogenic therapy in oncology: current status and future directions. Lancet388, 518–529 (2016). CASPubMed Google Scholar
Sanchez-Gastaldo, A., Kempf, E., Gonzalez Del Alba, A. & Duran, I. Systemic treatment of renal cell cancer: a comprehensive review. Cancer Treat. Rev.60, 77–89 (2017). CASPubMed Google Scholar
Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med.359, 378–390 (2008). CASPubMed Google Scholar
Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350, 2335–2342 (2004). CASPubMed Google Scholar
Tabernero, J. et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol.16, 499–508 (2015). CASPubMed Google Scholar
Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet389, 56–66 (2017). CASPubMed Google Scholar
Grothey, A. et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet381, 303–312 (2013). CASPubMed Google Scholar
Van Cutsem, E. et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol.30, 3499–3506 (2012). PubMed Google Scholar
Kindler, H. L. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol.28, 3617–3622 (2010). CASPubMedPubMed Central Google Scholar
Kelly, W. K. et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J. Clin. Oncol.30, 1534–1540 (2012). CASPubMedPubMed Central Google Scholar
Flaherty, K. T. et al. Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. J. Clin. Oncol.31, 373–379 (2013). CASPubMed Google Scholar
Miller, K. D. et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol.23, 792–799 (2005). CASPubMed Google Scholar
Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med.357, 2666–2676 (2007). CASPubMed Google Scholar
Miles, D. W. et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2–negative metastatic breast cancer. J. Clin. Oncol.28, 3239–3247 (2010). CASPubMed Google Scholar
Robert, N. J. et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol.29, 1252–1260 (2011). CASPubMed Google Scholar
Brufsky, A. M. et al. RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol.29, 4286–4293 (2011). CASPubMed Google Scholar
Vrdoljak, E. et al. Final results of the TANIA randomised phase III trial of bevacizumab after progression on first-line bevacizumab therapy for HER2-negative locally recurrent/metastatic breast cancer. Ann. Oncol.27, 2046–2052 (2016). CASPubMed Google Scholar
Gianni, L. et al. AVEREL: a randomized phase III trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J. Clin. Oncol.31, 1719–1725 (2013). CASPubMed Google Scholar
Kurzrock, R. & Stewart, D. J. Exploring the benefit/risk associated with antiangiogenic agents for the treatment of non–small cell lung cancer patients. Clin. Cancer Res.23, 1137–1148 (2017). CASPubMed Google Scholar
Khasraw, M., Ameratunga, M. & Grommes, C. Bevacizumab for the treatment of high-grade glioma: an update after phase III trials. Expert Opin. Biol. Ther.14, 729–740 (2014). CASPubMed Google Scholar
Motzer, R. J. et al. Adjuvant sunitinib for high-risk renal cell carcinoma after nephrectomy: subgroup analyses and updated overall survival results. Eur. Urol.73, 62–68 (2018). CASPubMed Google Scholar
de Gramont, A. et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol.13, 1225–1233 (2012). PubMed Google Scholar
Allegra, C. J. et al. Bevacizumab in stage II-III colon cancer: 5-year update of the National Surgical Adjuvant Breast and Bowel Project C-08 trial. J. Clin. Oncol.31, 359–364 (2013). CASPubMed Google Scholar
Haas, N. B. et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet387, 2008–2016 (2016). CASPubMedPubMed Central Google Scholar
Motzer, R. J. et al. Randomized phase III trial of adjuvant pazopanib versus placebo after nephrectomy in patients with localized or locally advanced renal cell carcinoma. J. Clin. Oncol.35, 3916–3923 (2017). CASPubMedPubMed Central Google Scholar
Wakelee, H. A. et al. Adjuvant chemotherapy with or without bevacizumab in patients with resected non-small-cell lung cancer (E1505): an open-label, multicentre, randomised, phase 3 trial. Lancet. Oncol.18, 1610–1623 (2017). CASPubMedPubMed Central Google Scholar
Bruix, J. et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol.16, 1344–1354 (2015). CASPubMed Google Scholar
Rana, P., Pritchard, K. I. & Kerbel, R. Plasma vascular endothelial growth factor as a predictive biomarker: door closed? Eur. J. Cancer70, 143–145 (2017). PubMed Google Scholar
Llovet, J. M. & Hernandez-Gea, V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin. Cancer Res.20, 2072–2079 (2014). CASPubMed Google Scholar
Kerbel, R. S. Reappraising antiangiogenic therapy for breast cancer. Breast20, S56–S60 (2011). PubMed Google Scholar
Saharinen, P., Eklund, L. & Alitalo, K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat. Rev. Drug Discov.16, 635–661 (2017). CASPubMed Google Scholar
Reck, M. et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet. Oncol.15, 143–155 (2014). CASPubMed Google Scholar
Monk, B. J. et al. Final results of a phase 3 study of trebananib plus weekly paclitaxel in recurrent ovarian cancer (TRINOVA-1): long-term survival, impact of ascites, and progression-free survival-2. Gynecol. Oncol.143, 27–34 (2016). CASPubMed Google Scholar
Johnson, P. J. et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J. Clin. Oncol.31, 3517–3524 (2013). CASPubMed Google Scholar
Leenders, W. P., Küsters, B. & de Waal, R. M. Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium9, 83–87 (2002). PubMed Google Scholar
Dome, B., Hendrix, M. J. C., Paku, S., Tovari, J. & Timar, J. Alternative vascularization mechanisms in cancer — pathology and therapeutic implications. Am. J. Pathol.170, 1–15 (2007). CASPubMedPubMed Central Google Scholar
Donnem, T. et al. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med.2, 427–436 (2013). CASPubMedPubMed Central Google Scholar
Maniotis, A. J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol.155, 739–752 (1999). CASPubMedPubMed Central Google Scholar
Pezzella, F. & Gatter, K. C. Evidence showing that tumors can grow without angiogenesis and can switch between angiogenic and nonangiogenic phenotypes. J. Natl Cancer Inst.108, djw032 (2016). PubMedPubMed Central Google Scholar
Winkler, F. Hostile takeover: how tumours hijack pre-existing vascular environments to thrive. J. Pathol.242, 267–272 (2017). PubMed Google Scholar
Lugassy, C. et al. Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an alternative to intravascular cancer dissemination. Cancer Microenviron.7, 139–152 (2014). PubMedPubMed Central Google Scholar
Lenzi, P., Bocci, G. & Natale, G. John Hunter and the origin of the term “angiogenesis”. Angiogenesis19, 255–256 (2016). PubMed Google Scholar
Greenblatt, M. & Shubi, P. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl Cancer Inst.41, 111–124 (1968). CASPubMed Google Scholar
Ide, A. G., Baker, N. H. & Warren, S. L. Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol.42, 891–899 (1939). Google Scholar
Greene, H. S. Heterologous transplantation of mammalian tumors: I. The transfer of rabbit tumors to alien species. J. Exp. Med.73, 461–474 (1941). CASPubMedPubMed Central Google Scholar
Bugge, T. H. et al. Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood90, 4522–4531 (1997). CASPubMed Google Scholar
Fidler, I. J. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res.35, 218–224 (1975). CASPubMed Google Scholar
Gille, J. et al. Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. Int. J. Cancer120, 1899–1908 (2007). CASPubMed Google Scholar
Szabo, V. et al. Mechanism of tumour vascularization in experimental lung metastases. J. Pathol.235, 384–396 (2015). CASPubMed Google Scholar
Kuczynski, E. A. et al. Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J. Natl Cancer Inst.108, djw030 (2016). PubMed Central Google Scholar
Yamaguchi, R. Y. et al. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology28, 68–77 (1998). CASPubMed Google Scholar
Hu, J. et al. Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene24, 1212–1219 (2005). CASPubMed Google Scholar
Offersen, B. V., Pfeiffer, P., Hamilton-Dutoit, S. & Overgaard, J. Patterns of angiogenesis in nonsmall-cell lung carcinoma. Cancer91, 1500–1509 (2001). CASPubMed Google Scholar
Jeong, H. S. et al. Investigation of the lack of angiogenesis in the formation of lymph node metastases. J. Natl Cancer Inst.107, djv155 (2015). PubMedPubMed Central Google Scholar
Leenders, W. et al. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int. J. Cancer105, 437–443 (2003). CASPubMed Google Scholar
Kusters, B. et al. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res.62, 341–345 (2002). CASPubMed Google Scholar
Kim, E. S. et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc. Natl Acad. Sci. USA99, 11399–11404 (2002). CASPubMedPubMed Central Google Scholar
Lazaris, A. et al. Vascularization of colorectal carcinoma liver metastasis: insight into stratification of patients for anti-angiogenic therapies. J. Pathol. Clin. Res.4, 184–192 (2018). CASPubMedPubMed Central Google Scholar
Bridgeman, V. L. et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J. Pathol.241, 362–374 (2017). CASPubMed Google Scholar
Erichsen, J. Zwei falle von carcinosis acuta miliaris. Virchows Arch.21, 465–479 (1861). Google Scholar
Moxon, W. Case of transplantation of epithelial cancer from the trachea to the pulmunary tissue, probably by desecent of cancer germs down the bronchial tubes. Trans. Pathol. Soc.20, 28–29 (1869). Google Scholar
Sardari Nia, P. et al. Different growth patterns of non-small cell lung cancer represent distinct biologic subtypes. Ann. Thorac. Surg.85, 395–405 (2008). PubMed Google Scholar
Guedj, N. et al. Angiogenesis and extracellular matrix remodelling in bronchioloalveolar carcinomas: distinctive patterns in mucinous and non-mucinous tumours. Histopathology44, 251–256 (2004). CASPubMed Google Scholar
Travis, W. D. et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thorac. Oncol.10, 1243–1260 (2015). PubMed Google Scholar
Sardari Nia, P., Hendriks, J., Friedel, G., Van Schil, P. & Van Marck, E. Distinct angiogenic and non-angiogenic growth patterns of lung metastases from renal cell carcinoma. Histopathology51, 354–361 (2007). CASPubMed Google Scholar
Passalidou, E. et al. Vascular phenotype in angiogenic and non-angiogenic lung non-small cell carcinomas. Br. J. Cancer86, 244–249 (2002). CASPubMedPubMed Central Google Scholar
Yousem, S. A. Peripheral squamous cell carcinoma of lung: patterns of growth with particular focus on airspace filling. Hum. Pathol.40, 861–867 (2009). PubMed Google Scholar
Adighibe, O. et al. Is nonangiogenesis a novel pathway for cancer progression? A study using 3-dimensional tumour reconstructions. Br. J. Cancer94, 1176–1179 (2006). CASPubMedPubMed Central Google Scholar
Travis, W. D. et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol.6, 244–285 (2011). PubMedPubMed Central Google Scholar
Lu, S. et al. Spread through air spaces (STAS) is an independent predictor of recurrence and lung cancer-specific death in squamous cell carcinoma. J. Thorac. Oncol.12, 223–234 (2017). PubMed Google Scholar
Kadota, K. et al. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage I lung adenocarcinomas. J. Thorac. Oncol.10, 806–814 (2015). CASPubMedPubMed Central Google Scholar
Warth, A. et al. Prognostic impact of intra-alveolar tumor spread in pulmonary adenocarcinoma. Am. J. Surg. Pathol.39, 793–801 (2015). PubMed Google Scholar
Donnem, T. et al. Non-angiogenic tumours and their influence on cancer biology. Nat. Rev. Cancer18, 323–336 (2018). CASPubMed Google Scholar
Adighibe, O. et al. Why some tumours trigger neovascularisation and others don’t: the story thus far. Chin. J. Cancer35, 18 (2016). PubMedPubMed Central Google Scholar
Paakko, P., Risteli, J., Risteli, L. & Autio-Harmainen, H. Immunohistochemical evidence that lung carcinomas grow on alveolar basement membranes. Am. J. Surg. Pathol.14, 464–473 (1990). CASPubMed Google Scholar
Rosenblatt, M. B., Lisa, J. R. & Collier, F. Primary and metastatic bronciolo-alveolar carcinoma. Dis. Chest52, 147–152 (1967). CASPubMed Google Scholar
Breast Cancer Progression Working Party. Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Lancet355, 1787–1788 (2000). Google Scholar
Mizuuchi, H. et al. Solitary pulmonary metastasis from malignant melanoma of the bulbar conjunctiva presenting as a pulmonary ground glass nodule: report of a case. Thorac. Cancer6, 97–100 (2015). PubMedPubMed Central Google Scholar
Kojiro, M. Pathology of Hepatocellular Carcinoma 63–75 (Blackwell Publishing, 2006).
Vermeulen, P. B. et al. Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J. Pathol.195, 336–342 (2001). CASPubMed Google Scholar
International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology49, 658–664 (2009). Google Scholar
Nakashima, O., Sugihara, S., Kage, M. & Kojiro, M. Pathomorphologic characteristics of small hepatocellular carcinoma: a special reference to small hepatocellular carcinoma with indistinct margins. Hepatology22, 101–105 (1995). CASPubMed Google Scholar
Nakashima, Y., Nakashima, O., Hsia, C. C., Kojiro, M. & Tabor, E. Vascularization of small hepatocellular carcinomas: correlation with differentiation. Liver19, 12–18 (1999). CASPubMed Google Scholar
Matsui, O. et al. Dynamic computed tomography during arterial portography: the most sensitive examination for small hepatocellular carcinomas. J. Comput. Assist. Tomogr.9, 19–24 (1985). CASPubMed Google Scholar
Kita, K., Itoshima, T. & Tsuji, T. Observation of microvascular casts of human hepatocellular carcinoma by scanning electron microscopy. Gastroenterol. Japon.26, 319–328 (1991). CAS Google Scholar
Sugihara, S., Kojiro, M. & Nakashima, T. Ultrastructural study of hepatocellular carcinoma with replacing growth pattern. Acta Pathol. Japon.35, 549–559 (1985). CAS Google Scholar
Park, H. J., Choi, B. I., Lee, E. S., Park, S. B. & Lee, J. B. How to differentiate borderline hepatic nodules in hepatocarcinogenesis: emphasis on imaging diagnosis. Liver Cancer6, 189–203 (2017). CASPubMedPubMed Central Google Scholar
Kozaka, K. et al. A subgroup of intrahepatic cholangiocarcinoma with an infiltrating replacement growth pattern and a resemblance to reactive proliferating bile ductules: ‘bile ductular carcinoma’. Histopathology51, 390–400 (2007). CASPubMed Google Scholar
Kin, M., Torimura, T., Ueno, T., Inuzuka, S. & Tanikawa, K. Sinusoidal capillarization in small hepatocellular carcinoma. Pathol. Int.44, 771–778 (1994). CASPubMed Google Scholar
Géraud, C. et al. Endothelial transdifferentiation in hepatocellular carcinoma: loss of Stabilin-2 expression in peri-tumourous liver correlates with increased survival. Liver Int.33, 1428–1440 (2013). PubMed Google Scholar
Nakashima, T. et al. Histologic growth pattern of hepatocellular carcinoma: relationship to orcein (hepatitis B surface antigen)-positive cells in cancer tissue. Hum. Pathol.13, 563–568 (1982). CASPubMed Google Scholar
Kanai, T. et al. Pathology of small hepatocellular carcinoma. A proposal for a new gross classification. Cancer60, 810–819 (1987). CASPubMed Google Scholar
Stessels, F. et al. Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br. J. Cancer90, 1429–1436 (2004). CASPubMedPubMed Central Google Scholar
Van den Eynden, G. G. et al. The histological growth pattern of colorectal cancer liver metastases has prognostic value. Clin. Exp. Metastasis29, 541–549 (2012). PubMed Google Scholar
van Dam, P. J. et al. International consensus guidelines for scoring the histopathological growth patterns of liver metastasis. Br. J. Cancer117, 1427–1441 (2017). PubMedPubMed Central Google Scholar
Mouta Carreira, C. et al. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res.61, 8079–8084 (2001). CASPubMed Google Scholar
Terayama, N., Terada, T. & Nakanuma, Y. A morphometric and immunohistochemical study on angiogenesis of human metastatic carcinomas of the liver. Hepatology24, 816–819 (1996). CASPubMed Google Scholar
Gervaz, P. et al. Angiogenesis of liver metastases: role of sinusoidal endothelial cells. Dis. Colon Rectum43, 980–986 (2000). CASPubMed Google Scholar
Paku, S. & Lapis, K. Morphological aspects of angiogenesis in experimental liver metastases. Am. J. Pathol.143, 926–936 (1993). CASPubMedPubMed Central Google Scholar
van Dam, P. J. et al. Histopathological growth patterns as a candidate biomarker for immunomodulatory therapy. Semin. Cancer Biol.52, 86–93 (2018). PubMed Google Scholar
Frentzas, S. et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat. Med.22, 1294–1302 (2016). CASPubMedPubMed Central Google Scholar
Fernandez Moro, C., Bozoky, B. & Gerling, M. Growth patterns of colorectal cancer liver metastases and their impact on prognosis: a systematic review. BMJ Open Gastroenterol.5, e000217 (2018). PubMedPubMed Central Google Scholar
Dezso, K. et al. Structural analysis of oval-cell-mediated liver regeneration in rats. Hepatology56, 1457–1467 (2012). CASPubMed Google Scholar
Oertel, M., Menthena, A., Dabeva, M. D. & Shafritz, D. A. Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology130, 507–520; quiz 590 (2006). PubMed Google Scholar
Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature505, 97–102 (2014). PubMed Google Scholar
Kruger, A. et al. Pattern and load of spontaneous liver metastasis dependent on host immune status studied with a lacZ transduced lymphoma. Blood84, 3166–3174 (1994). CASPubMed Google Scholar
Pogue-Geile, K. et al. Defective mismatch repair and benefit from bevacizumab for colon cancer: findings from NSABP C-08. J. Natl Cancer Inst.105, 989–992 (2013). CASPubMedPubMed Central Google Scholar
Nielsen, K., Rolff, H. C., Eefsen, R. L. & Vainer, B. The morphological growth patterns of colorectal liver metastases are prognostic for overall survival. Mod. Pathol.27, 1641–1648 (2014). CASPubMed Google Scholar
Allison, K. H., Fligner, C. L. & Parks, W. T. Radiographically occult, diffuse intrasinusoidal hepatic metastases from primary breast carcinomas: a clinicopathologic study of 3 autopsy cases. Arch. Pathol. Lab. Med.128, 1418–1423 (2004). PubMed Google Scholar
Simone, C., Murphy, M., Shifrin, R., Zuluaga Toro, T. & Reisman, D. Rapid liver enlargement and hepatic failure secondary to radiographic occult tumor invasion: two case reports and review of the literature. J. Med. Case Rep.6, 402 (2012). PubMedPubMed Central Google Scholar
Watson, A. J. Diffuse intra-sinusoidal metastatic carcinoma of the liver. J. Pathol. Bacteriol.69, 207–217 (1955). CASPubMed Google Scholar
Loddenkemper, C. et al. Frequency and diagnostic patterns of lymphomas in liver biopsies with respect to the WHO classification. Virchows Arch.450, 493–502 (2007). PubMedPubMed Central Google Scholar
Baumhoer, D., Tzankov, A., Dirnhofer, S., Tornillo, L. & Terracciano, L. M. Patterns of liver infiltration in lymphoproliferative disease. Histopathology53, 81–90 (2008). CASPubMed Google Scholar
Shetty, S. et al. Recruitment mechanisms of primary and malignant B cells to the human liver. Hepatology56, 1521–1531 (2012). CASPubMed Google Scholar
Willis, R. A. The Spread of Tumours in the Human Body (J&A Churchill, 1934).
Ewing, J. Neoplastic Diseases — A Treatise On Tumors 2nd edn (W.B. Saunders Company, 1922).
Winkler, F. et al. Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia57, 1306–1315 (2009). PubMed Google Scholar
Bentolila, L. A. et al. Imaging of angiotropism/vascular co-option in a murine model of brain melanoma: implications for melanoma progression along extravascular pathways. Sci. Rep.6, 23834 (2016). CASPubMedPubMed Central Google Scholar
Yao, H. et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature560, 55–60 (2018). CASPubMed Google Scholar
Jain, R. K. et al. Angiogenesis in brain tumours. Nat. Rev. Neurosci.8, 610–622 (2007). CASPubMed Google Scholar
Verhoeff, J. J. et al. Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme. BMC Cancer9, 444 (2009). PubMedPubMed Central Google Scholar
Wesseling, P., van der Laak, J. A., de Leeuw, H., Ruiter, D. J. & Burger, P. C. Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections. J. Neurosurg.81, 902–909 (1994). CASPubMed Google Scholar
Bernsen, H., Van der Laak, J., Kusters, B., Van der Ven, A. & Wesseling, P. Gliomatosis cerebri: quantitative proof of vessel recruitment by cooptation instead of angiogenesis. J. Neurosurg.103, 702–706 (2005). PubMed Google Scholar
Claes, A., Idema, A. J. & Wesseling, P. Diffuse glioma growth: a guerilla war. Acta Neuropathol.114, 443–458 (2007). PubMedPubMed Central Google Scholar
Caspani, E. M., Crossley, P. H., Redondo-Garcia, C. & Martinez, S. Glioblastoma: a pathogenic crosstalk between tumor cells and pericytes. PLOS ONE9, e101402 (2014). PubMedPubMed Central Google Scholar
Lyle, L. T. et al. Alterations in pericyte subpopulations are associated with elevated blood-tumor barrier permeability in experimental brain metastasis of breast cancer. Clin. Cancer Res.22, 5287–5299 (2016). CASPubMedPubMed Central Google Scholar
Nagano, N., Sasaki, H., Aoyagi, M. & Hirakawa, K. Invasion of experimental rat brain tumor: early morphological changes following microinjection of C6 glioma cells. Acta Neuropathol.86, 117–125 (1993). CASPubMed Google Scholar
Lugassy, C. et al. Pericytic-like angiotropism of glioma and melanoma cells. Am. J. Dermatopathol.24, 473–478 (2002). PubMed Google Scholar
Watkins, S. et al. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat. Commun.5, 4196 (2014). CASPubMed Google Scholar
Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science284, 1994–1998 (1999). CASPubMed Google Scholar
Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell153, 139–152 (2013). CASPubMedPubMed Central Google Scholar
Gerstner, E. R. et al. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat. Rev. Clin. Oncol.6, 229–236 (2009). CASPubMedPubMed Central Google Scholar
Baker, G. J. et al. Mechanisms of glioma formation: iterative perivascular glioma growth and invasion leads to tumor progression, VEGF-independent vascularization, and resistance to antiangiogenic therapy. Neoplasia16, 543–561 (2014). PubMedPubMed Central Google Scholar
Sakariassen, P. O. et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc. Natl Acad. Sci. USA103, 16466–16471 (2006). CASPubMedPubMed Central Google Scholar
Montana, V. & Sontheimer, H. Bradykinin promotes the chemotactic invasion of primary brain tumors. J. Neurosci.31, 4858–4867 (2011). CASPubMedPubMed Central Google Scholar
Yadav, V. N. et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: a genetic knockdown study. Oncotarget7, 83701–83719 (2016). PubMedPubMed Central Google Scholar
Griveau, A. et al. A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell33, 874–889 (2018). CASPubMedPubMed Central Google Scholar
Berghoff, A. S. et al. Invasion patterns in brain metastases of solid cancers. Neuro Oncol.15, 1664–1672 (2013). PubMedPubMed Central Google Scholar
Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med.16, 116–122 (2010). CASPubMed Google Scholar
Siam, L. et al. The metastatic infiltration at the metastasis/brain parenchyma-interface is very heterogeneous and has a significant impact on survival in a prospective study. Oncotarget6, 29254–29267 (2015). PubMedPubMed Central Google Scholar
Hung, T. et al. Angiotropism in primary cutaneous melanoma with brain metastasis: a study of 20 cases. Am. J. Dermatopathol.35, 650–654 (2013). PubMed Google Scholar
Bugyik, E. et al. Lack of angiogenesis in experimental brain metastases. J. Neuropathol. Exp. Neurol.70, 979–991 (2011). PubMed Google Scholar
Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell156, 1002–1016 (2014). CASPubMedPubMed Central Google Scholar
Carbonell, W. S., Ansorge, O., Sibson, N. & Muschel, R. The vascular basement membrane as “soil” in brain metastasis. PLOS ONE4, e5857 (2009). PubMedPubMed Central Google Scholar
Dome, B., Timar, J. & Paku, S. A novel concept of glomeruloid body formation in experimental cerebral metastases. J. Neuropathol. Exp. Neurol.62, 655–661 (2003). PubMed Google Scholar
Spanberger, T. et al. Extent of peritumoral brain edema correlates with prognosis, tumoral growth pattern, HIF1a expression and angiogenic activity in patients with single brain metastases. Clin. Exp. Metastasis30, 357–368 (2013). CASPubMed Google Scholar
Dome, B., Paku, S., Somlai, B. & Timar, J. Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J. Pathol.197, 355–362 (2002). PubMed Google Scholar
Lugassy, C. et al. Ultrastructural and immunohistochemical studies of the periendothelial matrix in human melanoma: evidence for an amorphous matrix containing laminin. J. Cutan. Pathol.26, 78–83 (1999). CASPubMed Google Scholar
Barnhill, R. L. & Lugassy, C. Angiotropic malignant melanoma and extravascular migratory metastasis: description of 36 cases with emphasis on a new mechanism of tumour spread. Pathology36, 485–490 (2004). PubMed Google Scholar
Bald, T. et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature507, 109–113 (2014). CASPubMed Google Scholar
Van Es, S. L., Colman, M., Thompson, J. F., McCarthy, S. W. & Scolyer, R. A. Angiotropism is an independent predictor of local recurrence and in-transit metastasis in primary cutaneous melanoma. Am. J. Surg. Pathol.32, 1396–1403 (2008). PubMed Google Scholar
Wilmott, J. et al. Angiotropism is an independent predictor of microscopic satellites in primary cutaneous melanoma. Histopathology61, 889–898 (2012). PubMed Google Scholar
Colpaert, C. G. et al. Cutaneous breast cancer deposits show distinct growth patterns with different degrees of angiogenesis, hypoxia and fibrin deposition. Histopathology42, 530–540 (2003). CASPubMed Google Scholar
Naresh, K. N., Nerurkar, A. Y. & Borges, A. M. Angiogenesis is redundant for tumour growth in lymph node metastases. Histopathology38, 466–470 (2001). CASPubMed Google Scholar
Vermeulen, P. B., Sardari Nia, P., Colpaert, C., Dirix, L. Y. & Van Marck, E. Lack of angiogenesis in lymph node metastases of carcinomas is growth pattern-dependent. Histopathology40, 105–107 (2002). CASPubMed Google Scholar
Qian, C. N., Resau, J. H. & Teh, B. T. Prospects for vasculature reorganization in sentinel lymph nodes. Cell Cycle6, 514–517 (2007). CASPubMed Google Scholar
Lee, S. Y. et al. Changes in specialized blood vessels in lymph nodes and their role in cancer metastasis. J. Transl Med.10, 206 (2012). PubMedPubMed Central Google Scholar
Mandelcorn, E. D., Palestine, A. G., Dubovy, S. & Davis, J. L. Vascular co-option in lung cancer metastatic to the eye after treatment with bevacizumab. J. Ophthalmic Inflamm. Infect.1, 35–38 (2010). PubMedPubMed Central Google Scholar
Inoue, M., Hager, J. H., Ferrara, N., Gerber, H. P. & Hanahan, D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell1, 193–202 (2002). CASPubMed Google Scholar
Bugajski, A., Nowogrodzka-Zagorska, M., Lenko, J. & Miodonski, A. J. Angiomorphology of the human renal clear cell carcinoma. A light and scanning electron microscopic study. Virchows Arch.415, 103–113 (1989). CAS Google Scholar
Ronny, F. M. et al. Glomerular sparing pattern in primary kidney neoplasms: clinical, morphological and immunohistochemical study. Am. J. Clin. Exp. Urol.2, 76–81 (2014). PubMedPubMed Central Google Scholar
Araki, H. et al. Relationship of pathologic factors to efficacy of sorafenib treatment in patients with metastatic clear cell renal cell carcinoma. Am. J. Clin. Pathol.143, 492–499 (2015). CASPubMed Google Scholar
Fukatsu, A. et al. Growth pattern, an important pathologic prognostic parameter for clear cell renal cell carcinoma. Am. J. Clin. Pathol.140, 500–505 (2013). PubMed Google Scholar
Qian, C. N. Hijacking the vasculature in ccRCC — co-option, remodelling and angiogenesis. Nat. Rev. Urol.10, 300–304 (2013). CASPubMed Google Scholar
Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol.25, 1315–1321 (2007). CASPubMed Google Scholar
Raymaekers, K., Stegen, S., van Gastel, N. & Carmeliet, G. The vasculature: a vessel for bone metastasis. Bonekey Rep.4, 742 (2015). PubMedPubMed Central Google Scholar
Duarte, D. et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell22, 64–77 (2018). CASPubMedPubMed Central Google Scholar
Liao, D. & Johnson, R. S. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev.26, 281–290 (2007). CASPubMed Google Scholar
Terayama, N., Terada, T. & Nakanuma, Y. Histologic growth patterns of metastatic carcinomas of the liver. Jpn. J. Clin. Oncol.26, 24–29 (1996). CASPubMed Google Scholar
Kojiro, M. ‘Nodule-in-nodule’ appearance in hepatocellular carcinoma: its significance as a morphologic marker of dedifferentiation. Intervirology47, 179–183 (2004). PubMed Google Scholar
Bugyik, E. et al. Mechanisms of vascularization in murine models of primary and metastatic tumor growth. Chin. J. Cancer35, 19 (2016). PubMedPubMed Central Google Scholar
Milne, E. N., Margulis, A. R., Noonan, C. D. & Stoughton, J. T. Histologic type-specific vascular patterns in rat tumors. Cancer20, 1635–1646 (1967). CASPubMed Google Scholar
Guerin, E., Man, S., Xu, P. & Kerbel, R. S. A model of postsurgical advanced metastatic breast cancer more accurately replicates the clinical efficacy of antiangiogenic drugs. Cancer Res.73, 2743–2748 (2013). CASPubMedPubMed Central Google Scholar
Strand, T. E., Rostad, H., Strom, E. H. & Hasleton, P. The percentage of lepidic growth is an independent prognostic factor in invasive adenocarcinoma of the lung. Diagn. Pathol.10, 94 (2015). PubMedPubMed Central Google Scholar
Simonsen, T. G., Gaustad, J. V. & Rofstad, E. K. Intertumor heterogeneity in vascularity and invasiveness of artificial melanoma brain metastases. J. Exp. Clin. Cancer Res.34, 150 (2015). PubMedPubMed Central Google Scholar
Rubenstein, J. L. et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia2, 306–314 (2000). CASPubMedPubMed Central Google Scholar
Leenders, W. P. et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res.10, 6222–6230 (2004). CASPubMed Google Scholar
Keunen, O. et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl Acad. Sci. USA108, 3749–3754 (2011). CASPubMedPubMed Central Google Scholar
di Tomaso, E. et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res.71, 19–28 (2011). PubMedPubMed Central Google Scholar
de Groot, J. F. et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol.12, 233–242 (2010). PubMedPubMed Central Google Scholar
Noguchi, M. et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer75, 2844–2852 (1995). CASPubMed Google Scholar
Carretta, A. et al. Evaluation of radiological and pathological prognostic factors in surgically-treated patients with bronchoalveolar carcinoma. Eur. J. Cardiothorac. Surg.20, 367–371 (2001). CASPubMed Google Scholar
Higashiyama, M. et al. Prognostic value of bronchiolo-alveolar carcinoma component of small lung adenocarcinoma. Ann. Thorac. Surg.68, 2069–2073 (1999). CASPubMed Google Scholar
Reinmuth, N. et al. Prognostic significance of vessel architecture and vascular stability in non-small cell lung cancer. Lung Cancer55, 53–60 (2007). PubMed Google Scholar
Pastorino, U. et al. Immunocytochemical markers in stage I lung cancer: relevance to prognosis. J. Clin. Oncol.15, 2858–2865 (1997). CASPubMed Google Scholar
Renyi-Vamos, F. et al. Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin. Cancer Res.11, 7344–7353 (2005). CASPubMed Google Scholar
Sardari Nia, P. et al. Prognostic value of nonangiogenic and angiogenic growth patterns in non-small-cell lung cancer. Br. J. Cancer91, 1293–1300 (2004). CASPubMedPubMed Central Google Scholar
Eefsen, R. L. et al. Growth pattern of colorectal liver metastasis as a marker of recurrence risk. Clin. Exp. Metastasis32, 369–381 (2015). CASPubMed Google Scholar
Barnhill, R. et al. Replacement and desmoplastic histopathological growth patterns: a pilot study of prediction of outcome in patients with uveal melanoma liver metastases. J. Pathol. Clin. Res.4, 227–240 (2018). CASPubMedPubMed Central Google Scholar
Barnhill, R., Dy, K. & Lugassy, C. Angiotropism in cutaneous melanoma: a prognostic factor strongly predicting risk for metastasis. J. Invest. Dermatol.119, 705–706 (2002). CASPubMed Google Scholar
Brunner, S. M. et al. Prognosis according to histochemical analysis of liver metastases removed at liver resection. Br. J. Surg.101, 1681–1691 (2014). CASPubMed Google Scholar
Gilbert, M. R. Antiangiogenic therapy for glioblastoma: complex biology and complicated results. J. Clin. Oncol.34, 1567–1569 (2016). CASPubMed Google Scholar
Kunkel, P. et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res.61, 6624–6628 (2001). CASPubMed Google Scholar
Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell15, 220–231 (2009). CASPubMedPubMed Central Google Scholar
Lucio-Eterovic, A. K., Piao, Y. & de Groot, J. F. Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin. Cancer Res.15, 4589–4599 (2009). CASPubMed Google Scholar
Lu, K. V. et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell22, 21–35 (2012). CASPubMedPubMed Central Google Scholar
Navis, A. C. et al. Effects of dual targeting of tumor cells and stroma in human glioblastoma xenografts with a tyrosine kinase inhibitor against c-MET and VEGFR2. PLOS ONE8, e58262 (2013). CASPubMedPubMed Central Google Scholar
Wick, W., Wick, A., Weiler, M. & Weller, M. Patterns of progression in malignant glioma following anti-VEGF therapy: perceptions and evidence. Curr. Neurol. Neurosci. Rep.11, 305–312 (2011). CASPubMed Google Scholar
Norden, A. D. et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology70, 779–787 (2008). CASPubMed Google Scholar
Kleinschmidt-DeMasters, B. K. & Damek, D. M. The imaging and neuropathological effects of bevacizumab (avastin) in patients with leptomeningeal carcinomatosis. J. Neurooncol.96, 375–384 (2010). CASPubMed Google Scholar
Abrams, T. J. et al. Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol. Cancer Ther.2, 1011–1021 (2003). CASPubMed Google Scholar
Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res.59, 5209–5218 (1999). CASPubMed Google Scholar
Bagri, A. et al. Effects of anti-VEGF treatment duration on tumor growth, tumor regrowth, and treatment efficacy. Clin. Cancer Res.16, 3887–3900 (2010). CASPubMed Google Scholar
Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15, 232–239 (2009). CASPubMedPubMed Central Google Scholar
Barrios, C. H. et al. Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res. Treat.121, 121–131 (2010). CASPubMedPubMed Central Google Scholar
Bergh, J. et al. First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: results of a prospective, randomized phase III study. J. Clin. Oncol.30, 921–929 (2012). CASPubMed Google Scholar
Crown, J. P. et al. Phase III trial of sunitinib in combination with capecitabine versus capecitabine monotherapy for the treatment of patients with pretreated metastatic breast cancer. J. Clin. Oncol.31, 2870–2878 (2013). CASPubMed Google Scholar
Robert, N. J. et al. Sunitinib plus paclitaxel versus bevacizumab plus paclitaxel for first-line treatment of patients with advanced breast cancer: a phase III, randomized, open-label trial. Clin. Breast Cancer11, 82–92 (2011). CASPubMedPubMed Central Google Scholar
Giantonio, B. J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol.25, 1539–1544 (2007). CASPubMed Google Scholar
Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science359, 920–926 (2018). CASPubMedPubMed Central Google Scholar
Simoneau, E. et al. The histological growth patterns of colorectal cancer liver metastasis are associated with disease progression post portal vein embolization. HPB19, S59 (2017). Google Scholar
Lu, J. et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell23, 171–185 (2013). CASPubMedPubMed Central Google Scholar
Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T. & Vu, V. T. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr. Mol. Med.9, 442–458 (2009). CASPubMedPubMed Central Google Scholar
Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol.31, 2205–2218 (2013). CASPubMedPubMed Central Google Scholar
Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11, 83–95 (2007). CASPubMedPubMed Central Google Scholar
Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell168, 707–723 (2017). CASPubMedPubMed Central Google Scholar
Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl Med.9, eaak9670 (2017). PubMed Google Scholar
Bais, C. et al. Tumor microvessel density as a potential predictive marker for bevacizumab benefit: GOG-0218 biomarker analyses. J. Natl Cancer Inst.109, djx066 (2017). PubMed Central Google Scholar
Tolaney, S. M. et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc. Natl Acad. Sci.112, 14325–14330 (2015). CASPubMedPubMed Central Google Scholar
Miles, D. et al. Bevacizumab plus paclitaxel versus placebo plus paclitaxel as first-line therapy for HER2-negative metastatic breast cancer (MERiDiAN): a double-blind placebo-controlled randomised phase III trial with prospective biomarker evaluation. Eur. J. Cancer70, 146–155 (2017). CASPubMed Google Scholar
Boult, J. K. et al. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR Biomed.29, 1608–1617 (2016). CASPubMedPubMed Central Google Scholar
Budde, M. D., Gold, E., Jordan, E. K., Smith-Brown, M. & Frank, J. A. Phase contrast MRI is an early marker of micrometastatic breast cancer development in the rat brain. NMR Biomed.25, 726–736 (2012). PubMed Google Scholar
Zhu, Q. et al. Arterial blood supply of hepatocellular carcinoma is associated with efficacy of sorafenib therapy. Ann. Transl Med.3, 285 (2015). PubMedPubMed Central Google Scholar
Kudo, M., Hatanaka, K., Inoue, T. & Maekawa, K. Depiction of portal supply in early hepatocellular carcinoma and dysplastic nodule: value of pure arterial ultrasound imaging in hepatocellular carcinoma. Oncology78 (Suppl. 1), 60–67 (2010). PubMed Google Scholar
Semelka, R. C., Hussain, S. M., Marcos, H. B. & Woosley, J. T. Perilesional enhancement of hepatic metastases: correlation between MR imaging and histopathologic findings-initial observations. Radiology215, 89–94 (2000). CASPubMed Google Scholar
Wan, J. C. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer17, 223–238 (2017). CASPubMed Google Scholar
Sennino, B. et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov.2, 270–287 (2012). CASPubMedPubMed Central Google Scholar
Depner, C. et al. EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance. Nat. Commun.7, 12329 (2016). CASPubMedPubMed Central Google Scholar
Du, R. et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell13, 206–220 (2008). CASPubMedPubMed Central Google Scholar
Carbonell, W. S., DeLay, M., Jahangiri, A., Park, C. C. & Aghi, M. K. β1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma. Cancer Res.73, 3145–3154 (2013). CASPubMedPubMed Central Google Scholar
Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol.20, 966–978 (2018). CASPubMedPubMed Central Google Scholar
Jahangiri, A., Aghi, M. K. & Carbonell, W. S. β1 integrin: critical path to antiangiogenic therapy resistance and beyond. Cancer Res.74, 3–7 (2014). CASPubMed Google Scholar
Cortes-Santiago, N. et al. Soluble Tie2 overrides the heightened invasion induced by anti-angiogenesis therapies in gliomas. Oncotarget7, 16146–16157 (2016). PubMedPubMed Central Google Scholar
Scholz, A. et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol. Med.8, 39–57 (2016). CASPubMed Google Scholar
Peterson, T. E. et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc. Natl Acad. Sci. USA113, 4470–4475 (2016). CASPubMedPubMed Central Google Scholar
Wu, F. T. et al. Efficacy of cotargeting angiopoietin-2 and the VEGF pathway in the adjuvant postsurgical setting for early breast, colorectal, and renal cancers. Cancer Res.76, 6988–7000 (2016). CASPubMedPubMed Central Google Scholar
Koh, Y. J. et al. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell18, 171–184 (2010). CASPubMed Google Scholar
Kienast, Y. et al. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin. Cancer Res.19, 6730–6740 (2013). CASPubMed Google Scholar
Reardon, D. A. et al. Phase 2 and biomarker study of trebananib, an angiopoietin-blocking peptibody, with and without bevacizumab for patients with recurrent glioblastoma. Cancer124, 1438–1448 (2017). PubMed Google Scholar
St Croix, B. et al. Genes expressed in human tumor endothelium. Science289, 1197–1202 (2000). Google Scholar
Carson-Walter, E. B. et al. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res.61, 6649–6655 (2001). CASPubMed Google Scholar
Masiero, M. et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell24, 229–241 (2013). CASPubMedPubMed Central Google Scholar
Seaman, S. et al. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell31, 501–515 (2017). CASPubMedPubMed Central Google Scholar
Ruoslahti, E. Vascular zip codes in angiogenesis and metastasis. Biochem. Soc. Trans.32, 397–402 (2004). CASPubMed Google Scholar
Chaudhary, A. et al. TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell21, 212–226 (2012). CASPubMedPubMed Central Google Scholar
Noy, P. J. et al. Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth. Oncogene34, 5821–5831 (2015). CASPubMed Google Scholar
Khan, K. A. & Kerbel, R. S. A. CD276 antibody guided missile with one warhead and two targets: the tumor and its vasculature. Cancer Cell31, 469–471 (2017). CASPubMed Google Scholar
Paez-Ribes, M., Man, S., Xu, P. & Kerbel, R. S. Potential pro-invasive or metastatic effects of preclinical antiangiogenic therapy are prevented by concurrent chemotherapy. Clin. Cancer Res.21, 5488–5498 (2015). CASPubMed Google Scholar
Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest.105, R15–24 (2000). CASPubMedPubMed Central Google Scholar
Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res.60, 1878–1886 (2000). CASPubMed Google Scholar
Hashimoto, K. et al. Potent preclinical impact of metronomic low-dose oral topotecan combined with the antiangiogenic drug pazopanib for the treatment of ovarian cancer. Mol. Cancer Ther.9, 996–1006 (2010). CASPubMedPubMed Central Google Scholar
Jedeszko, C. et al. Postsurgical adjuvant or metastatic renal cell carcinoma therapy models reveal potent antitumor activity of metronomic oral topotecan with pazopanib. Sci. Transl Med.7, 282ra50 (2015). PubMed Google Scholar
Di Desidero, T., Xu, P., Man, S., Bocci, G. & Kerbel, R. S. Potent efficacy of metronomic topotecan and pazopanib combination therapy in preclinical models of primary or late stage metastatic triple-negative breast cancer. Oncotarget6, 42396–42410 (2015). PubMedPubMed Central Google Scholar
Goertz, D. E. An overview of the influence of therapeutic ultrasound exposures on the vasculature: high intensity ultrasound and microbubble-mediated bioeffects. Int. J. Hyperthermia31, 134–144 (2015). CASPubMed Google Scholar
Kim, M. et al. Amplification of oncolytic vaccinia virus widespread tumor cell killing by sunitinib through multiple mechanisms. Cancer Res.78, 922–937 (2017). PubMedPubMed Central Google Scholar
Allen, E. & Jabouille, A. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl Med.9, eaak9679 (2017). PubMedPubMed Central Google Scholar
Boyerinas, B. et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol. Res.3, 1148–1157 (2015). CASPubMedPubMed Central Google Scholar
Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with anti-angiogenic treatments and vicesversa. Nat. Rev. Clin. Oncol.15, 310–324 (2018). CASPubMed Google Scholar
Lytton, D. G. & Resuhr, L. M. Galen on abnormal swellings. J. Hist. Med. Allied Sci.33, 531–549 (1978).
Virchow, R. Die krankhaften Geschwulste (August Hirschwald, 1863).
Goldmann, E. The growth of malignant disease in man and the lower animals, with special reference to the vascular system. Proc. R. Soc. Med.1, 1–13 (1908). CASPubMedPubMed Central Google Scholar
Thiersch, K. Der Epithelialkrebs, namenthlich der Haut mit Atlas (Wilhelm Engelmann, Leipzig, Germany, 1865).
Kolin, A. & Koutoulakis, T. Role of arterial occlusion in pulmonary scar cancers. Hum. Pathol.19, 1161–1167 (1988). CASPubMed Google Scholar
Ritchie, A. C. in General Pathology (ed. Florey, H.) 551–597 (Lloyd-Luke Ltd., 1962).
Hamilton, D. J. A Text-Book of Pathology: Systematic & Practical (MacMillan and Co., 1894).
Ikeda, K. Alveolar cell carcinoma of the lung. Am. J. Clin. Pathol.15, 50–63 (1945). Google Scholar
Malassez, L. Histological examination of a case of encephaloid cancer of the lung. Arch. Physiol. Norm. Path.3, 353 (1876). Google Scholar
Hanot, V. & Gilbert, A. Etudes sur les Maladies du Foie: Cancer (Épithéliome), Sarcome Mélanomes Kystes Non Parasitaires, Angiomes (Asselin et Houzeau, 1888).
Helvestine, F. Primary carcinoma of the liver. J. Cancer Res.7, 209–227 (1922). Google Scholar
Elias, H., S. J. C. & Bouldin, R. F. Reaction of the normal liver parenchyma to metastatic carcinoma. Acta Hepatosplenol.9, 357–386 (1962). CAS Google Scholar
Elias, H., Bierring, F. & Grunnet, I. Cellular changes in the vicinity of metastatic carcinoma, observed by light and electron microscopy. Oncology18, 210–224 (1964). CAS Google Scholar
Masson, P. in Traité de Pathologie Médicale et de Thérapeutique Appliquée Vol. 27 Part II (eds Sergent, E., Ribadeau-Dumas, L. & Babonneix, L.) (A. Maloine & fils, 1923).
Scherer, H. J. Structural development in gliomas. Am. J. Cancer34, 333–351 (1938). Google Scholar
Lindgren, A. G. The vascular supply of tumours with special reference to the capillary angioarchitekture. Acta Pathol. Microbiol. Scand.22, 493–522 (1945). CASPubMed Google Scholar
Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature473, 298–307 (2011). CASPubMedPubMed Central Google Scholar
Hardee, M. E. & Zagzag, D. Mechanisms of glioma-associated neovascularization. Am. J. Pathol.181, 1126–1141 (2012). CASPubMedPubMed Central Google Scholar
Zhao, C. et al. Distinct contributions of angiogenesis and vascular co-option during the initiation of primary microtumors and micrometastases. Carcinogenesis32, 1143–1150 (2011). CASPubMed Google Scholar
Krusche, B. et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. eLife5, e14845 (2016). PubMedPubMed Central Google Scholar
Butt, Y. M. & Allen, T. C. The demise of the term bronchioloalveolar carcinoma. Arch. Pathol. Lab. Med.139, 981–983 (2015). PubMed Google Scholar
Fuchs, C. S. et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet383, 31–39 (2014). CASPubMed Google Scholar
Brose, M. et al. Final overall survival analysis of patients with locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer (RAI-rDTC) treated with sorafenib in the phase 3 DECISION trial: an exploratory crossover adjustment analyses. Ann. Oncol.27, 953PD (2016). Google Scholar
Brose, M. S. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet384, 319–328 (2014). CASPubMedPubMed Central Google Scholar
Burger, R. A. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med.365, 2473–2483 (2011). CASPubMed Google Scholar
Chinot, O. L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med.370, 709–722 (2014). CASPubMed Google Scholar
Cunningham, D. et al. Peri-operative chemotherapy with or without bevacizumab in operable oesophagogastric adenocarcinoma (UK Medical Research Council ST03): primary analysis results of a multicentre, open-label, randomised phase 2–3 trial. Lancet. Oncol.18, 357–370 (2017). CASPubMedPubMed Central Google Scholar
Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med.356, 125–134 (2007). CASPubMed Google Scholar
Escudier, B. et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol.27, 3312–3318 (2009). CASPubMed Google Scholar
Garon, E. B. et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet384, 665–673 (2014). CASPubMed Google Scholar
Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med.370, 699–708 (2014). CASPubMedPubMed Central Google Scholar
Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol.27, 3584–3590 (2009). CASPubMedPubMed Central Google Scholar
Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med.356, 115–124 (2007). CASPubMed Google Scholar
Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med.365, 2484–2496 (2011). CASPubMed Google Scholar
Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med.364, 501–513 (2011). CASPubMed Google Scholar
Raymond, E. et al. Sunitinib (SU) in patients with advanced, progressive pancreatic neuroendocrine tumors (pNET): final overall survival (OS) results from a phase III randomized study including adjustment for crossover. J. Clin. Oncol.34, 309–309 (2016). Google Scholar
Reck, M. et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J. Clin. Oncol.27, 1227–1234 (2009). CASPubMed Google Scholar
Reck, M. et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann. Oncol.21, 1804–1809 (2010). CASPubMedPubMed Central Google Scholar
Saltz, L. B. et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol.26, 2013–2019 (2008). CASPubMed Google Scholar
Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med.355, 2542–2550 (2006). CASPubMed Google Scholar
Sternberg, C. N. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol.28, 1061–1068 (2010). CASPubMed Google Scholar
Sternberg, C. N. et al. A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: final overall survival results and safety update. Eur. J. Cancer49, 1287–1296 (2013). CASPubMed Google Scholar
Tewari, K. S. et al. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med.370, 734–743 (2014). CASPubMedPubMed Central Google Scholar
Wilke, H. et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet. Oncol.15, 1224–1235 (2014). CASPubMed Google Scholar
Zhu, A. X. et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet. Oncol.16, 859–870 (2015). CASPubMed Google Scholar
Tannock, I. F. et al. Aflibercept versus placebo in combination with docetaxel and prednisone for treatment of men with metastatic castration-resistant prostate cancer (VENICE): a phase 3, double-blind randomised trial. Lancet. Oncol.14, 760–768 (2013). CASPubMed Google Scholar
Rougier, P. et al. Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer. Eur. J. Cancer49, 2633–2642 (2013). CASPubMed Google Scholar
Ramlau, R. et al. Aflibercept and docetaxel versus docetaxel alone after platinum failure in patients with advanced or metastatic non-small-cell lung cancer: a randomized, controlled phase III trial. J. Clin. Oncol.30, 3640–3647 (2012). CASPubMed Google Scholar
Bear, H. D. et al. Neoadjuvant plus adjuvant bevacizumab in early breast cancer (NSABP B-40 [NRG Oncology]): secondary outcomes of a phase 3, randomised controlled trial. Lancet. Oncol.16, 1037–1048 (2015). CASPubMedPubMed Central Google Scholar
Miller, K. et al. Bevacizumab (Bv) in the adjuvant treatment of HER2-negative breast cancer: final results from Eastern Cooperative Oncology Group E5103. J. Clin. Oncol.32, 500–500 (2014). Google Scholar
Slamon, D. et al. Abstract S1-03: Primary results from BETH, a phase 3 controlled study of adjuvant chemotherapy and trastuzumab±bevacizumab in patients with HER2-positive, node-positive or high risk node-negative breast cancer. Cancer Res.73, S1–03 (2013). Google Scholar
Bell, R. et al. Final efficacy and updated safety results of the randomized phase III BEATRICE trial evaluating adjuvant bevacizumab-containing therapy in triple-negative early breast cancer. Ann. Oncol.28, 754–760 (2017). CASPubMed Google Scholar
Allegra, C. J. et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J. Clin. Oncol.29, 11–16 (2011). CASPubMed Google Scholar
Kerr, R. S. et al. Adjuvant capecitabine plus bevacizumab versus capecitabine alone in patients with colorectal cancer (QUASAR 2): an open-label, randomised phase 3 trial. Lancet. Oncol.17, 1543–1557 (2016). CASPubMed Google Scholar
Corrie, P. G. et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. Lancet Oncol.15, 620–630 (2014). CASPubMed Google Scholar
Benson, A. B. et al. Intergroup randomized phase III study of postoperative oxaliplatin, 5-fluorouracil and leucovorin (mFOLFOX6) versus mFOLFOX6 and bevacizumab (Bev) for patients (pts) with stage II/ III rectal cancer receiving pre-operative chemoradiation. J. Clin. Oncol.34, 3616–3616 (2016). Google Scholar