Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet393, 434–445 (2019). ArticleCASPubMed Google Scholar
EC. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 (Text with EEA relevance). Off. J. Eur. Union20, 168–213 (2011). Google Scholar
Office of the Federal Register. Federal Register81, 33581–34240 (2016).
Mayor, S. Eating more fibre linked to reduced risk of non-communicable diseases and death, review finds. BMJ364, l159 (2019). Article Google Scholar
National Institute for Health and Care Excellence. Irritable bowel syndrome in adults: diagnosis and management (NICE, 2017).
McKenzie, Y. A. et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet.29, 549–575 (2016). ArticleCASPubMed Google Scholar
Lamb, C. A. et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut68, s1–s106 (2019). ArticlePubMed Google Scholar
World Gastroenterology Organisation WGO Practice Guideline – Diet and the Gut (WGO, 2018).
National Institute for Health and Care Excellence. Constipation: management. (NICE, 2020).
Jarvis, M. C. Plant cell walls: supramolecular assemblies. Food Hydrocoll.25, 257–262 (2011). ArticleCAS Google Scholar
Grundy, M. M. L. et al. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br. J. Nutr.116, 816–833 (2016). ArticleCASPubMedPubMed Central Google Scholar
Lockyer, S. & Nugent, A. P. Health effects of resistant starch. Nutr. Bull.42, 10–41 (2017). Article Google Scholar
Lovegrove, A. et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr.57, 237–253 (2017). ArticleCASPubMed Google Scholar
Sikora, P., Tosh, S. M., Brummer, Y. & Olsson, O. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Food Chem.137, 83–91 (2013). ArticleCASPubMed Google Scholar
Ngouémazong, D. E. et al. Quantifying structural characteristics of partially de-esterified pectins. Food Hydrocoll.25, 434–443 (2011). ArticleCAS Google Scholar
Nasatto, P. L. et al. Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers7, 777–803 (2015). ArticleCAS Google Scholar
Cummings, J. H. & Stephen, A. M. Carbohydrate terminology and classification. Eur. J. Clin. Nutr.61, S5–S18 (2007). ArticleCASPubMed Google Scholar
Food and Agriculture Organization. Food energy – methods of analysis and conversion factors. Report of a Technical Workshop no. 77. (FAO, Rome, 2003).
Renard, C. M. G. C., Crepeau, M. J. & Thibault, J. F. Influence of ionic strength, pH and dielectric constant on hydration properties of native and modified fibres from sugar-beet and wheat bran. Ind. Crop. Prod.3, 75–84 (1994). ArticleCAS Google Scholar
Fleury, N. & Lahaye, M. Chemical and physico-chemical characterisation of fibres from Laminaria digitata (kombu breton): a physiological approach. J. Sci. Food Agric.55, 389–400 (1991). ArticleCAS Google Scholar
Gibb, R. D., McRorie, J. W. Jr., Russell, D. A., Hasselblad, V. & D’Alessio, D. A. Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. Am. J. Clin. Nutr.102, 1604–1614 (2015). ArticleCASPubMed Google Scholar
Dhital, S., Gidley, M. J. & Warren, F. J. Inhibition of α-amylase activity by cellulose: kinetic analysis and nutritional implications. Carbohydr. Polym.123, 305–312 (2015). ArticleCASPubMed Google Scholar
Takahashi, T., Karita, S., Ogawa, N. & Goto, M. Crystalline cellulose reduces plasma glucose concentrations and stimulates water absorption by increasing the digesta viscosity in rats. J. Nutr.135, 2405–2410 (2005). ArticleCASPubMed Google Scholar
Ratanpaul, V., Williams, B. A., Black, J. L. & Gidley, M. J. Review: Effects of fibre, grain starch digestion rate and the ileal brake on voluntary feed intake in pigs. Animal13, 2745–2754 (2019). ArticleCASPubMed Google Scholar
Dikeman, C. L. & Fahey, G. C. Viscosity as related to dietary fiber: a review. Crit. Rev. Food Sci. Nutr.46, 649–663 (2006). ArticleCASPubMed Google Scholar
Gawkowska, D., Cybulska, J. & Zdunek, A. Structure-related gelling of pectins and linking with other natural compounds: a review. Polymers.10, 762 (2018). ArticlePubMed CentralCAS Google Scholar
Morris, E. R. in Dietary Fibre — A Component of Food. (eds Schweizer, T. F. & Edwards, C. A.) 41–56 (Springer, 1992).
Morris, E. R. in Advanced Dietary Fibre Technology Ch. 4 (eds McCleary, B. V. & Prosky, L.) (Blackwell Science Ltd, 2001).
Müller, M., Canfora, E. E. & Blaak, E. E. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients10, 275 (2018). ArticlePubMed CentralCAS Google Scholar
Chutkan, R., Fahey, G., Wright, W. L. & McRorie, J. Viscous versus nonviscous soluble fiber supplements: mechanisms and evidence for fiber-specific health benefits. J. Am. Acad. Nurse Pract.24, 476–487 (2012). ArticlePubMed Google Scholar
Vuksan, V. et al. Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br. J. Nutr.106, 1349–1352 (2011). ArticleCASPubMed Google Scholar
Topping, D. L., Oakenfull, D., Trimble, R. P. & Illman, R. J. A viscous fibre (methylcellulose) lowers blood glucose and plasma triacylglycerols and increases liver glycogen independently of volatile fatty acid production in the rat. Br. J. Nutr.59, 21–30 (1988). ArticleCASPubMed Google Scholar
Anderson, J. W. et al. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. Am. J. Clin. Nutr.71, 472–479 (2000). ArticleCASPubMed Google Scholar
Fabek, H., Messerschmidt, S., Brulport, V. & Goff, H. D. The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocoll.35, 718–726 (2014). ArticleCAS Google Scholar
EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on the substantiation of a health claim related to barley beta-glucans and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J.9, 2470 (2011). ArticleCAS Google Scholar
Degirolamo, C., Modica, S., Palasciano, G. & Moschetta, A. Bile acids and colon cancer: solving the puzzle with nuclear receptors. Trends Mol. Med.17, 564–572 (2011). ArticleCASPubMed Google Scholar
Zacherl, C., Eisner, P. & Engel, K.-H. In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres. Food Chem.126, 423–428 (2011). ArticleCAS Google Scholar
Oh, H. et al. Different dietary fibre sources and risks of colorectal cancer and adenoma: a dose–response meta-analysis of prospective studies. Br. J. Nutr.122, 605–615 (2019). ArticleCASPubMed Google Scholar
Qi, J. et al. Cellulosic fraction of rice bran fibre alters the conformation and inhibits the activity of porcine pancreatic lipase. J. Funct. Foods19, 39–48 (2015). ArticleCAS Google Scholar
Leng-Peschlow, E. Interference of dietary fibres with gastrointestinal enzymes in vitro. Digestion44, 200–210 (1989). ArticleCASPubMed Google Scholar
Mackie, A., Rigby, N., Harvey, P. & Bajka, B. Increasing dietary oat fibre decreases the permeability of intestinal mucus. J. Funct. Foods26, 418–427 (2016). ArticleCASPubMedPubMed Central Google Scholar
Fåk, F. et al. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS ONE10, e0127252 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA107, 14691–14696 (2010). ArticlePubMedPubMed Central Google Scholar
Martinez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep.11, 527–538 (2015). ArticleCASPubMed Google Scholar
Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun.5, 3654 (2014). ArticleCASPubMed Google Scholar
El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol.11, 497–504 (2013). ArticleCASPubMed Google Scholar
Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J.6, 1535–1543 (2012). ArticleCASPubMedPubMed Central Google Scholar
Stephen, A. M. et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev.30, 149–190 (2017). ArticleCASPubMed Google Scholar
McRorie, J. Clinical data support that psyllium is not fermented in the gut. Am. J. Gastroenterol.108, 1541 (2013). ArticlePubMed Google Scholar
Yao, C. K. et al. Poor reproducibility of breath hydrogen testing: implications for its application in functional bowel disorders. U Eur. Gastroenterol. J.5, 284–292 (2017). ArticleCAS Google Scholar
Major, G. et al. Demonstration of differences in colonic volumes, transit, chyme consistency, and response to psyllium between healthy and constipated subjects using magnetic resonance imaging. Neurogastroenterol. Motil.30, e13400 (2018). ArticleCASPubMed Google Scholar
Gunn, D. et al. Contrasting effects of viscous and particulate fibers on colonic fermentation in vitro and in vivo, and their impact on intestinal water studied by MRI in a randomized trial. Am. J. Clin. Nutr.112, 595–602 (2020). ArticlePubMed Google Scholar
Cuervo, A., Salazar, N., Ruas-Madiedo, P., Gueimonde, M. & Gonzalez, S. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr. Res.33, 811–816 (2013). ArticleCASPubMed Google Scholar
Soret, R. et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology138, 1772–1782 (2010). ArticleCASPubMed Google Scholar
Gill, P. A., van Zelm, M. C., Muir, J. G. & Gibson, P. R. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment. Pharmacol. Ther.48, 15–34 (2018). ArticleCASPubMed Google Scholar
Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science341, 569–573 (2013). ArticleCASPubMed Google Scholar
Hiippala, K. et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients10, 988 (2018). ArticlePubMed CentralCAS Google Scholar
Mithieux, G. Metabolic effects of portal vein sensing. Diabetes Obes. Metab.16, 56–60 (2014). ArticleCASPubMed Google Scholar
Henningsson, Å., Björck, I. & Nyman, M. Short-chain fatty acid formation at fermentation of indigestible carbohydrates. Näringsforskning45, 165–168 (2001). Article Google Scholar
Patnode, M. L. et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell179, 59–73.e13 (2019). ArticleCASPubMedPubMed Central Google Scholar
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell165, 1332–1345 (2016). ArticleCASPubMed Google Scholar
Reichardt, N. et al. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J.12, 610–622 (2018). ArticleCASPubMed Google Scholar
Titgemeyer, E. C., Bourquin, L. D., Fahey, G. C. Jr & Garleb, K. A. Fermentability of various fiber sources by human fecal bacteria in vitro. Am. J. Clin. Nutr.53, 1418–1424 (1991). ArticleCASPubMed Google Scholar
Mortensen, P. B. & Nordgaard-Andersen, I. The dependence of the in vitro fermentation of dietary fibre to short-chain fatty acids on the contents of soluble non-starch polysaccharides. Scand. J. Gastroenterol.28, 418–422 (1993). ArticleCASPubMed Google Scholar
Bourquin, L. D., Titgemeyer, E. C., Fahey, G. C. Jr. & Garleb, K. A. Fermentation of dietary fibre by human colonic bacteria: disappearance of, short-chain fatty acid production from, and potential water-holding capacity of, various substrates. Scand. J. Gastroenterol.28, 249–255 (1993). ArticleCASPubMed Google Scholar
Pylkas, A. M., Juneja, L. R. & Slavin, J. L. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. J. Med. Food8, 113–116 (2005). ArticleCASPubMed Google Scholar
Lewis, S. J. & Heaton, K. W. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut41, 245–251 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab.20, 779–786 (2014). ArticleCASPubMedPubMed Central Google Scholar
Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell167, 1339–1353.e21 (2016). ArticleCASPubMedPubMed Central Google Scholar
Brownlee, I. A., Havler, M. E., Dettmar, P. W., Allen, A. & Pearson, J. P. Colonic mucus: secretion and turnover in relation to dietary fibre intake. Proc. Nutr. Soc.62, 245–249 (2003). ArticleCASPubMed Google Scholar
Hedemann, M. S., Theil, P. K. & Bach Knudsen, K. E. The thickness of the intestinal mucous layer in the colon of rats fed various sources of non-digestible carbohydrates is positively correlated with the pool of SCFA but negatively correlated with the proportion of butyric acid in digesta. Br. J. Nutr.102, 117–125 (2009). ArticleCASPubMed Google Scholar
Riva, A. et al. A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome. Nat. Commun.10, 4366 (2019). ArticlePubMedPubMed CentralCAS Google Scholar
Kerckhoffs, A. P. et al. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J. Gastroenterol.15, 2887–2892 (2009). ArticlePubMedPubMed Central Google Scholar
Parkes, G. C. et al. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol. Motil.24, 31–39 (2012). ArticleCASPubMed Google Scholar
Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol.13, R79 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rajca, S. et al. Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm. Bowel Dis.20, 978–986 (2014). PubMed Google Scholar
Wills, E. S. et al. Fecal microbial composition of ulcerative colitis and Crohn’s disease patients in remission and subsequent exacerbation. PLoS ONE9, e90981 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Edwards, C. H. et al. Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. Am. J. Clin. Nutr.102, 791–800 (2015). ArticleCASPubMedPubMed Central Google Scholar
Stewart, M. L. & Slavin, J. L. Particle size and fraction of wheat bran influence short-chain fatty acid production in vitro. Br. J. Nutr.102, 1404–1407 (2009). ArticleCASPubMed Google Scholar
Raghavendra, S. N. et al. Grinding characteristics and hydration properties of coconut residue: a source of dietary fiber. J. Food Eng.72, 281–286 (2006). Article Google Scholar
Lewis, S. J. & Heaton, K. W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol.32, 920–924 (1997). ArticleCASPubMed Google Scholar
Guillon, F., Auffret, A., Robertson, J. A., Thibault, J. F. & Barry, J. L. Relationships between physical characteristics of sugar-beet fibre and its fermentability by human faecal flora. Carbohydr. Polym.37, 185–197 (1998). ArticleCAS Google Scholar
Aslam, M. F., Ellis, P. R., Berry, S. E., Latunde-Dada, G. O. & Sharp, P. A. Enhancing mineral bioavailability from cereals: current strategies and future perspectives. Nutr. Bull.43, 184–188 (2018). ArticleCASPubMedPubMed Central Google Scholar
Latunde-Dada, G. O. et al. Micromilling enhances iron bioaccessibility from wholegrain wheat. J. Agric. Food Chem.62, 11222–11227 (2014). ArticleCASPubMed Google Scholar
Abrams, S. A., Griffin, I. J. & Hawthorne, K. M. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J. Nutr.137, 2524S–2526S (2007). ArticleCASPubMed Google Scholar
Whisner, C. M. et al. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br. J. Nutr.110, 1292–1303 (2013). ArticleCASPubMed Google Scholar
Kasper, H., Rabast, U., Fassl, H. & Fehle, F. The effect of dietary fiber on the postprandial serum vitamin A concentration in man. Am. J. Clin. Nutr.32, 1847–1849 (1979). ArticleCASPubMed Google Scholar
Basu, T. K. & Donaldson, D. Intestinal absorption in health and disease: micronutrients. Best Pract. Res. Clin. Gastroenterol.17, 957–979 (2003). ArticleCASPubMed Google Scholar
Adams, S., Sello, C., Qin, G.-X., Che, D. & Han, R. Does dietary fiber affect the levels of nutritional components after feed formulation? Fibers6, 29 (2018). ArticleCAS Google Scholar
Chan, Y.-M., Aufreiter, S., O’Keefe, S. J. & O’Connor, D. L. Switching to a fibre-rich and low-fat diet increases colonic folate contents among African Americans. Appl. Physiol. Nutr. Metab.44, 127–132 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Riedl, J., Linseisen, J., Hoffmann, J. & Wolfram, G. Some dietary fibers reduce the absorption of carotenoids in women. J. Nutr.129, 2170–2176 (1999). ArticleCASPubMed Google Scholar
Bueno, L., Praddaude, F., Fioramonti, J. & Ruckebusch, Y. Effect of dietary fiber on gastrointestinal motility and jejunal transit time in dogs. Gastroenterology.80, 701–707 (1981). ArticleCASPubMed Google Scholar
de Vries, J., Miller, P. E. & Verbeke, K. Effects of cereal fiber on bowel function: a systematic review of intervention trials. World J. Gastroenterol.21, 8952–8963 (2015). ArticlePubMedPubMed Central Google Scholar
Burkitt, D. P., Walker, A. R. & Painter, N. S. Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet2, 1408–1412 (1972). ArticleCASPubMed Google Scholar
Harvey, R. F., Pomare, E. W. & Heaton, K. W. Effects of increased dietary fibre on intestinal transit. Lancet1, 1278–1280 (1973). ArticleCASPubMed Google Scholar
Baird, I. M. et al. The effects of two dietary fiber supplements on gastrointestinal transit, stool weight and frequency, and bacterial flora, and fecal bile acids in normal subjects. Metabolism26, 117–128 (1977). ArticleCASPubMed Google Scholar
Gear, J. S., Brodribb, A. J., Ware, A. & Mann, J. I. Fibre and bowel transit times. Br. J. Nutr.45, 77–82 (1981). ArticleCASPubMed Google Scholar
Stevens, J., VanSoest, P. J., Robertson, J. B. & Levitsky, D. A. Comparison of the effects of psyllium and wheat bran on gastrointestinal transit time and stool characteristics. J. Am. Diet. Assoc.88, 323–326 (1988). CASPubMed Google Scholar
Muller-Lissner, S. A. Effect of wheat bran on weight of stool and gastrointestinal transit time: a meta analysis. Br. Med. J.296, 615–617 (1988). ArticleCAS Google Scholar
Rao, S. S. et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin. Gastroenterol. Hepatol.7, 537–544 (2009). ArticlePubMed Google Scholar
Maqbool, S., Parkman, H. P. & Friedenberg, F. K. Wireless capsule motility: comparison of the SmartPill GI monitoring system with scintigraphy for measuring whole gut transit. Dig. Dis. Sci.54, 2167–2174 (2009). ArticlePubMed Google Scholar
Timm, D. et al. The use of a wireless motility device (SmartPill(R)) for the measurement of gastrointestinal transit time after a dietary fibre intervention. Br. J. Nutr.105, 1337–1342 (2011). ArticleCASPubMed Google Scholar
Spiller, G. A., Shipley, E. A., Chernoff, M. C. & Cooper, W. C. Bulk laxative efficacy of a psyllium seed hydrocolloid and of a mixture of cellulose and pectin. J. Clin. Pharmacol.19, 313–320 (1979). ArticleCASPubMed Google Scholar
Bouhnik, Y. et al. Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. J. Nutr.129, 113–116 (1999). ArticleCASPubMed Google Scholar
Vuksan, V. et al. Using cereal to increase dietary fiber intake to the recommended level and the effect of fiber on bowel function in healthy persons consuming North American diets. Am. J. Clin. Nutr.88, 1256–1262 (2008). CASPubMed Google Scholar
Suares, N. C. & Ford, A. C. Systematic review: the effects of fibre in the management of chronic idiopathic constipation. Aliment. Pharmacol. Ther.33, 895–901 (2011). ArticleCASPubMed Google Scholar
Christodoulides, S. et al. Systematic review with meta-analysis: effect of fibre supplementation on chronic idiopathic constipation in adults. Aliment. Pharmacol. Ther.44, 103–116 (2016). ArticleCASPubMed Google Scholar
Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell149, 753–767 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bliss, D. Z. et al. Dietary fiber supplementation for fecal incontinence: a randomized clinical trial. Res. Nurs. Health37, 367–378 (2014). ArticlePubMedPubMed Central Google Scholar
Washington, N., Harris, M., Mussellwhite, A. & Spiller, R. C. Moderation of lactulose-induced diarrhea by psyllium: effects on motility and fermentation. Am. J. Clin. Nutr.67, 317–321 (1998). ArticleCASPubMed Google Scholar
Tomlin, J. & Read, N. W. The effect of inert plastic particles on colonic function in human volunteers. Gastroenterology94, A463–A463 (1988). Article Google Scholar
Hongisto, S. M., Paajanen, L., Saxelin, M. & Korpela, R. A combination of fibre-rich rye bread and yoghurt containing Lactobacillus GG improves bowel function in women with self-reported constipation. Eur. J. Clin. Nutr.60, 319–324 (2006). ArticleCASPubMed Google Scholar
Holma, R., Hongisto, S. M., Saxelin, M. & Korpela, R. Constipation is relieved more by rye bread than wheat bread or laxatives without increased adverse gastrointestinal effects. J. Nutr.140, 534–541 (2010). ArticleCASPubMed Google Scholar
de Vries, J., Birkett, A., Hulshof, T., Verbeke, K. & Gibes, K. Effects of cereal, fruit and vegetable fibers on human fecal weight and transit time: a comprehensive review of intervention trials. Nutrients8, 130 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Gibson, G. R. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol.14, 491–502 (2017). ArticlePubMed Google Scholar
So, D. et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am. J. Clin. Nutr.107, 965–983 (2018). ArticlePubMed Google Scholar
Macfarlane, G. T., Steed, H. & Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol.104, 305–344 (2008). CASPubMed Google Scholar
Ramirez-Farias, C. et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr.101, 541–550 (2009). ArticleCASPubMed Google Scholar
Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell141, 1241–1252 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wilson, B. & Whelan, K. Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. J. Gastroenterol. Hepatol.32, 64–68 (2017). ArticleCASPubMed Google Scholar
Gibson, G. R., Beatty, E. R., Wang, X. & Cummings, J. H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology.108, 975–982 (1995). ArticleCASPubMed Google Scholar
Davis, L. M., Martinez, I., Walter, J. & Hutkins, R. A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int. J. Food Microbiol.144, 285–292 (2010). ArticleCASPubMed Google Scholar
Tap, J. et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Env. Microbiol.17, 4954–4964 (2015). ArticleCAS Google Scholar
de Preter, V. et al. Baseline microbiota activity and initial bifidobacteria counts influence responses to prebiotic dosing in healthy subjects. Aliment. Pharmacol. Ther.27, 504–513 (2008). ArticlePubMedCAS Google Scholar
Kolida, S., Meyer, D. & Gibson, G. R. A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur. J. Clin. Nutr.61, 1189–1195 (2007). ArticleCASPubMed Google Scholar
Bouhnik, Y. et al. Prolonged administration of low-dose inulin stimulates the growth of bifidobacteria in humans. Nutr. Res.27, 187–193 (2007). ArticleCAS Google Scholar
Bouhnik, Y. et al. Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers. Nutr. J.6, 42–42 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Healey, G. et al. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br. J. Nutr.119, 176–189 (2018). ArticleCASPubMed Google Scholar
Lacy, B. E. et al. Bowel disorders. Gastroenterology150, 1393–1407.e5 (2016). Article Google Scholar
Palsson, O. S. et al. Rome IV diagnostic questionnaires and tables for investigators and clinicians. Gastroenterology150, 1481–1491 (2016). Article Google Scholar
Rao, S. S., Yu, S. & Fedewa, A. Systematic review: dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. Aliment. Pharmacol. Ther.41, 1256–1270 (2015). ArticleCASPubMed Google Scholar
Nagarajan, N. et al. The role of fiber supplementation in the treatment of irritable bowel syndrome: a systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol.27, 1002–1010 (2015). ArticleCASPubMed Google Scholar
Ford, A. C. et al. Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis. BMJ337, a2313 (2008). ArticlePubMedPubMed Central Google Scholar
Moayyedi, P. et al. The effect of fiber supplementation on irritable bowel syndrome: a systematic review and meta-analysis. Am. J. Gastroenterol.109, 1367–1374 (2014). ArticleCASPubMed Google Scholar
Major, G. et al. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterology152, 124–133.e2 (2017). ArticlePubMed Google Scholar
Hunter, J. O., Tuffnell, Q. & Lee, A. J. Controlled trial of oligofructose in the management of irritable bowel syndrome. J. Nutr.129, 1451S–1453S (1999). ArticleCASPubMed Google Scholar
Olesen, M. & Gudmand-Hoyer, E. Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am. J. Clin. Nutr.72, 1570–1575 (2000). ArticleCASPubMed Google Scholar
Paineau, D. et al. The effects of regular consumption of short-chain fructo-oligosaccharides on digestive comfort of subjects with minor functional bowel disorders. Br. J. Nutr.99, 311–318 (2008). ArticleCASPubMed Google Scholar
Silk, D. B., Davis, A., Vulevic, J., Tzortzis, G. & Gibson, G. R. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther.29, 508–518 (2009). ArticleCASPubMed Google Scholar
Wilson, B., Rossi, M., Dimidi, E. & Whelan, K. Prebiotics in irritable bowel syndrome and other functional bowel disorders in adults: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr.109, 1098–1111 (2019). ArticlePubMed Google Scholar
Ford, A. C. et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am. J. Gastroenterol.109, 1547–1561 (2014). ArticlePubMed Google Scholar
Hotchkiss, A. T., Olano-Martin, E., Grace, W. E., Gibson, G. R. & Rastall, R. A. Pectic oligosaccharides as prebiotics. Oligosacch. Food Agric.849, 54–62 (2003). ArticleCAS Google Scholar
Russo, L. et al. Partially hydrolyzed guar gum in the treatment of irritable bowel syndrome with constipation: effects of gender, age, and body mass index. Saudi J. Gastroenterol.21, 104–110 (2015). ArticlePubMedPubMed Central Google Scholar
Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology140, 1729–1737 (2011). ArticleCASPubMed Google Scholar
Cao, Y., Shen, J. & Ran, Z. H. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol. Res. Pract.2014, 872725 (2014). PubMedPubMed Central Google Scholar
Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet390, 2769–2778 (2018). Article Google Scholar
Wedlake, L., Slack, N., Andreyev, H. J. & Whelan, K. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm. Bowel Dis.20, 576–586 (2014). ArticlePubMed Google Scholar
Cavaglieri, C. R. et al. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci.73, 1683–1690 (2003). ArticleCASPubMed Google Scholar
Asarat, M., Apostolopoulos, V., Vasiljevic, T. & Donkor, O. Short-chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro. Immunol. Invest.45, 205–222 (2016). ArticleCASPubMed Google Scholar
Lindsay, J. O. et al. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut55, 348–355 (2006). ArticleCASPubMedPubMed Central Google Scholar
De Preter, V. et al. Metabolic profiling of the impact of oligofructose-enriched inulin in Crohn’s disease patients: a double-blinded randomized controlled trial. Clin. Transl. Gastroenterol.4, e30 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Treem, W. R., Ahsan, N., Shoup, M. & Hyams, J. S. Fecal short-chain fatty acids in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr.18, 159–164 (1994). ArticleCASPubMed Google Scholar
Takaishi, H. et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol.298, 463–472 (2008). ArticleCASPubMed Google Scholar
Ananthakrishnan, A. N. et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology145, 970–977 (2013). ArticleCASPubMed Google Scholar
Li, F., Liu, X., Wang, W. & Zhang, D. Consumption of vegetables and fruit and the risk of inflammatory bowel disease: a meta-analysis. Eur. J. Gastroenterol. Hepatol.27, 623–630 (2015). ArticlePubMed Google Scholar
Andersen, V. et al. Fibre intake and the development of inflammatory bowel disease: a European prospective multi-centre cohort study (EPIC-IBD). J. Crohns Colitis12, 129–136 (2018). ArticlePubMed Google Scholar
Brotherton, C. S., Martin, C. A., Long, M. D., Kappelman, M. D. & Sandler, R. S. Avoidance of fiber is associated with greater risk of Crohn’s disease flare in a 6-month period. Clin. Gastroenterol. Hepatol.14, 1130–1136 (2016). ArticlePubMed Google Scholar
Rezapour, M., Ali, S. & Stollman, N. Diverticular disease: an update on pathogenesis and management. Gut Liver12, 125–132 (2018). ArticleCASPubMed Google Scholar
Lanas, A., Abad-Baroja, D. & Lanas-Gimeno, A. Progress and challenges in the management of diverticular disease: which treatment? Therap. Adv. Gastroenterol.11, 1756284818789055 (2018). ArticlePubMedPubMed Central Google Scholar
Onur, M. R., Akpinar, E., Karaosmanoglu, A. D., Isayev, C. & Karcaaltincaba, M. Diverticulitis: a comprehensive review with usual and unusual complications. Insights Imaging8, 19–27 (2017). ArticlePubMed Google Scholar
Strate, L. L. et al. Western dietary pattern increases, and prudent dietary pattern decreases, risk of incident diverticulitis in a prospective cohort study. Gastroenterology.152, 1023–1030.e2 (2017). ArticlePubMed Google Scholar
Crowe, F. L. et al. Source of dietary fibre and diverticular disease incidence: a prospective study of UK women. Gut63, 1450–1456 (2014). ArticlePubMed Google Scholar
Peery, A. F. et al. A high-fiber diet does not protect against asymptomatic diverticulosis. Gastroenterology142, 266–272.e1 (2012). ArticlePubMed Google Scholar
Aune, D., Sen, A., Norat, T. & Riboli, E. Dietary fibre intake and the risk of diverticular disease: a systematic review and meta-analysis of prospective studies. Eur. J. Nutr.59, 421–432 (2020). ArticlePubMed Google Scholar
Wick, J. Y. Diverticular disease: eat your fiber! Consult. Pharm.27, 613–618 (2012). ArticlePubMed Google Scholar
Dahl, C. et al. Evidence for dietary fibre modification in the recovery and prevention of reoccurrence of acute, uncomplicated diverticulitis: a systematic literature review. Nutrients.10, 137 (2018). ArticlePubMed Central Google Scholar
Unlu, C., Daniels, L., Vrouenraets, B. C. & Boermeester, M. A. A systematic review of high-fibre dietary therapy in diverticular disease. Int. J. Colorectal Dis.27, 419–427 (2012). ArticlePubMed Google Scholar
Brodribb, A. J. Treatment of symptomatic diverticular disease with a high-fibre diet. Lancet1, 664–666 (1977). ArticleCASPubMed Google Scholar
Ornstein, M. H. et al. Are fibre supplements really necessary in diverticular disease of the colon? A controlled clinical trial. Br. Med. J.282, 1353–1356 (1981). ArticleCAS Google Scholar
Hodgson, W. J. The placebo effect. Is it important in diverticular disease? Am. J. Gastroenterol.67, 157–162 (1977). CASPubMed Google Scholar
Eberhardt, F. et al. Role of dietary fibre in older adults with asymptomatic (AS) or symptomatic uncomplicated diverticular disease (SUDD): systematic review and meta-analysis. Maturitas130, 57–67 (2019). ArticleCASPubMed Google Scholar
Dukas, L., Willett, W. C. & Giovannucci, E. L. Association between physical activity, fiber intake, and other lifestyle variables and constipation in a study of women. Am. J. Gastroenterol.98, 1790–1796 (2003). ArticlePubMed Google Scholar
Dimidi, E., Cox, C., Grant, R., Scott, S. M. & Whelan, K. Perceptions of constipation among the general public and people with constipation differ strikingly from those of general and specialist doctors and the Rome IV criteria. Am. J. Gastroenterol.114, 1116–1129 (2019). ArticlePubMed Google Scholar
Sanjoaquin, M. A., Appleby, P. N., Spencer, E. A. & Key, T. J. Nutrition and lifestyle in relation to bowel movement frequency: a cross-sectional study of 20630 men and women in EPIC-Oxford. Public Health Nutr.7, 77–83 (2004). ArticlePubMed Google Scholar
Alrefaai, L., Cade, J. E. & Burley, V. J. Dietary fibre intake and constipation in the UK Women’s Cohort Study. Proc. Nutr. Soc.72, E287–E287 (2013). Article Google Scholar
Lewis, S. J. & Heaton, K. W. Roughage revisited: the effect on intestinal function of inert plastic particles of different sizes and shape. Dig. Dis. Sci.44, 744–748 (1999). ArticleCASPubMed Google Scholar
Wrick, K. L. et al. The influence of dietary fiber source on human intestinal transit and stool output. J. Nutr.113, 1464–1479 (1983). ArticleCASPubMed Google Scholar
McRorie, J. W. Jr. & McKeown, N. M. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet.117, 251–264 (2017). ArticlePubMed Google Scholar
O’Keefe, S. J. The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. Lancet Gastroenterol. Hepatol.4, 984–996 (2019). ArticlePubMedPubMed Central Google Scholar
Muir, J. G. et al. Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone. Am. J. Clin. Nutr.79, 1020–1028 (2004). ArticleCASPubMed Google Scholar
Govers, M. J., Gannon, N. J., Dunshea, F. R., Gibson, P. R. & Muir, J. G. Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: a study in pigs. Gut45, 840–847 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tuncil, Y. E. et al. Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota when presented in a mixture. J. Funct. Foods32, 347–357 (2017). ArticleCAS Google Scholar
Harmayani, E. et al. Healthy food traditions of Asia: exploratory case studies from Indonesia, Thailand, Malaysia, and Nepal. J. Ethnic Foods6, 1 (2019). Article Google Scholar
McRorie, J. W. Jr. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 2: what to look for and how to recommend an effective fiber therapy. Nutr. Today50, 90–97 (2015). ArticlePubMedPubMed Central Google Scholar
Zielinski, G., DeVries, J. W., Craig, S. A. & Bridges, A. R. Dietary fiber methods in Codex Alimentarius: current status and ongoing discussions. Cereal Food World58, 148–152 (2013). Article Google Scholar
Food and Agriculture Organization/World Health Organization Codex Alimentarius Commission. Codex Alimentarius: Guidelines on Nutrition Labelling CAC/GL 2-1985. (FAO, 2010).