Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature470, 59–65 (2011). This study provides one of the first frameworks for using an ensemble approach to detect structural variants as part of phase 1 for the 1KGP. CASPubMedPubMed Central Google Scholar
Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature526, 75–81 (2015). This paper describes the development of the 1KGP phase 3 release set, which is currently one of the largest and most diverse reference sets. CASPubMedPubMed Central Google Scholar
Sudmant, P. H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science349, aab3761 (2015). PubMedPubMed Central Google Scholar
Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet.14, 125–138 (2013). CASPubMed Google Scholar
Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet.19, 453–467 (2018). CASPubMed Google Scholar
Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet.12, 363–376 (2011). CASPubMedPubMed Central Google Scholar
Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell177, 70–84 (2019). CASPubMedPubMed Central Google Scholar
Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat. Genet.37, 727–732 (2005). CASPubMed Google Scholar
Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet.77, 78–88 (2005). CASPubMedPubMed Central Google Scholar
Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nat. Rev. Genet.10, 551–564 (2009). CASPubMedPubMed Central Google Scholar
International HapMap Consortium. The International HapMap Project. Nature426, 789–796 (2003). Google Scholar
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet.43, 491–498 (2011). CASPubMedPubMed Central Google Scholar
Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature501, 506–511 (2013). CASPubMedPubMed Central Google Scholar
UK10K Consortium. The UK10K project identifies rare variants in health and disease. Nature526, 82–90 (2015). Google Scholar
Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol.32, 246–251 (2014). CASPubMed Google Scholar
Exome Aggregation Consortium et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature536, 285–291 (2016). PubMed Central Google Scholar
Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet.17, 333–351 (2016). CASPubMed Google Scholar
Macintyre, G., Ylstra, B. & Brenton, J. D. Sequencing structural variants in cancer for precision therapeutics. Trends Genet.32, 530–542 (2016). CASPubMed Google Scholar
Yi, K. & Ju, Y. S. Patterns and mechanisms of structural variations in human cancer. Exp. Mol. Med.50, 98 (2018). PubMed Central Google Scholar
Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science318, 420–426 (2007). CASPubMedPubMed Central Google Scholar
Yoon, S., Xuan, Z., Makarov, V., Ye, K. & Sebat, J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res.19, 1586–1592 (2009). CASPubMedPubMed Central Google Scholar
Hajirasouliha, I. et al. Detection and characterization of novel sequence insertions using paired-end next-generation sequencing. Bioinformatics26, 1277–1283 (2010). CASPubMedPubMed Central Google Scholar
Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods6, 677–681 (2009). CASPubMedPubMed Central Google Scholar
Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res.21, 974–984 (2011). CASPubMedPubMed Central Google Scholar
Korbel, J. O. et al. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol.10, R23 (2009). PubMedPubMed Central Google Scholar
Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics28, i333–i339 (2012). CASPubMedPubMed Central Google Scholar
Handsaker, R. E., Korn, J. M., Nemesh, J. & McCarroll, S. A. Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat. Genet.43, 269–276 (2011). CASPubMedPubMed Central Google Scholar
Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol.15, R84 (2014). PubMedPubMed Central Google Scholar
Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016). Google Scholar
Sindi, S. S., Önal, S., Peng, L. C., Wu, H.-T. & Raphael, B. J. An integrative probabilistic model for identification of structural variation in sequencing data. Genome Biol.13, R22 (2012). PubMedPubMed Central Google Scholar
Zhao, X., Emery, S. B., Myers, B., Kidd, J. M. & Mills, R. E. Resolving complex structural genomic rearrangements using a randomized approach. Genome Biol.17, 126 (2016). PubMedPubMed Central Google Scholar
Michaelson, J. J. & Sebat, J. forestSV: structural variant discovery through statistical learning. Nat. Methods9, 819–821 (2012). CASPubMedPubMed Central Google Scholar
Kosugi, S. et al. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol.20, 117 (2019). This paper extensively compares the sensitivity of SV detection algorithms and the combinations of these algorithms. PubMedPubMed Central Google Scholar
Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun.10, 1784 (2019). This study generates one of the most comprehensive multiplatform haplotype-specific SV discovery sets and provides potential frameworks for their integration. PubMedPubMed Central Google Scholar
Wong, K., Keane, T. M., Stalker, J. & Adams, D. J. Enhanced structural variant and breakpoint detection using SVMerge by integration of multiple detection methods and local assembly. Genome Biol.11, R128 (2010). PubMedPubMed Central Google Scholar
Lam, H. Y. K. et al. Detecting and annotating genetic variations using the HugeSeq pipeline. Nat. Biotechnol.30, 226–229 (2012). CASPubMedPubMed Central Google Scholar
Parikh, H. et al. svclassify: a method to establish benchmark structural variant calls. BMC Genom.17, 64 (2016). Google Scholar
Collins, R. L. et al. An open resource of structural variation for medical and population genetics. bioRxivhttps://doi.org/10.1101/578674 (2019).
Abel, H. J. et al. Mapping and characterization of structural variation in 17,795 deeply sequenced human genomes. bioRxivhttps://doi.org/10.1101/508515 (2018).
Hehir-Kwa, J. Y. et al. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants. Nat. Commun.7, 12989 (2016). CASPubMedPubMed Central Google Scholar
Werling, D. M. et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet.50, 727–736 (2018). CASPubMedPubMed Central Google Scholar
Chiang, C. et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat. Methods12, 966–968 (2015). CASPubMedPubMed Central Google Scholar
Mimori, T. et al. iSVP: an integrated structural variant calling pipeline from high-throughput sequencing data. BMC Syst. Biol.7, S8 (2013). PubMedPubMed Central Google Scholar
Zarate, S. et al. Parliament2: fast structural variant calling using optimized combinations of callers. bioRxivhttps://doi.org/10.1101/424267 (2018).
Mohiyuddin, M. et al. MetaSV: an accurate and integrative structural-variant caller for next generation sequencing. Bioinformatics31, 2741–2744 (2015). CASPubMedPubMed Central Google Scholar
Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun.8, 14061 (2017). CASPubMedPubMed Central Google Scholar
Becker, T. et al. FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods. Genome Biol.19, 38 (2018). PubMedPubMed Central Google Scholar
Pounraja, V. K., Jayakar, G., Jensen, M., Kelkar, N. & Girirajan, S. A machine-learning approach for accurate detection of copy number variants from exome sequencing. Genome Res.29, 1134–1143 (2019). CASPubMedPubMed Central Google Scholar
Huddleston, J. & Eichler, E. E. An incomplete understanding of human genetic variation. Genetics202, 1251–1254 (2016). CASPubMedPubMed Central Google Scholar
Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nat. Genet.36, 949–951 (2004). CASPubMed Google Scholar
Kloosterman, W. P. et al. Characteristics of de novo structural changes in the human genome. Genome Res.25, 792–801 (2015). CASPubMedPubMed Central Google Scholar
Nagasaki, M. et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat. Commun.6, 8018 (2015). CASPubMed Google Scholar
Morales, J. et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol.19, 21 (2018). PubMedPubMed Central Google Scholar
Zook, J. M. et al. A robust benchmark for germline structural variant detection. bioRxivhttps://doi.org/10.1101/664623 (2019). This study integrates multiple platforms to develop a gold standard reference set for SV benchmarking.
Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature517, 608–611 (2015). This is one of the first papers using PacBio for comprehensive SV discovery, detecting thousands of previously undetectable SVs, including small insertions in tandem repeats and mobile elements. CASPubMed Google Scholar
Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet.13, 36–46 (2012). CAS Google Scholar
Medvedev, P., Stanciu, M. & Brudno, M. Computational methods for discovering structural variation with next-generation sequencing. Nat. Methods6, S13–S20 (2009). CASPubMed Google Scholar
Kitzman, J. O. et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat. Biotechnol.29, 59–63 (2011). CASPubMed Google Scholar
McCoy, R. C. et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLOS ONE9, 13 (2014). Google Scholar
Zheng, G. X. Y. et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol.34, 303–311 (2016). This paper is the first major study using linked reads to detect SVs in human genomes and demonstrates the ability of linked reads in phasing large haplotype blocks and detecting gene fusions. CASPubMedPubMed Central Google Scholar
Bishara, A. et al. Read clouds uncover variation in complex regions of the human genome. Genome Res.25, 1570–1580 (2015). CASPubMedPubMed Central Google Scholar
Marks, P. et al. Resolving the full spectrum of human genome variation using linked-reads. Genome Res.29, 635–645 (2019). CASPubMedPubMed Central Google Scholar
Spies, N. et al. Genome-wide reconstruction of complex structural variants using read clouds. Nat. Methods14, 915–920 (2017). CASPubMedPubMed Central Google Scholar
Fang, L. et al. LinkedSV: detection of mosaic structural variants from linked-read exome and genome sequencing data. bioRxivhttps://doi.org/10.1101/409789 (2019).
Elyanow, R., Wu, H.-T. & Raphael, B. J. Identifying structural variants using linked-read sequencing data. Bioinformatics34, 353–360 (2018). CASPubMed Google Scholar
Eslami Rasekh, M. et al. Discovery of large genomic inversions using long range information. BMC Genom.18, 65 (2017). Google Scholar
Karaoglanoglu, F. et al. Characterization of segmental duplications and large inversions using linked-reads. bioRxivhttps://doi.org/10.1101/394528 (2018).
Xia, L. C. et al. Identification of large rearrangements in cancer genomes with barcode linked reads. Nucleic Acids Res.46, e19 (2018). CASPubMed Google Scholar
Wong, K. H. Y., Levy-Sakin, M. & Kwok, P.-Y. De novo human genome assemblies reveal spectrum of alternative haplotypes in diverse populations. Nat. Commun.9, 3040 (2018). PubMedPubMed Central Google Scholar
Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res.27, 757–767 (2017). CASPubMedPubMed Central Google Scholar
Meleshko, D., Marks, P., Williams, S. & Hajirasouliha, I. Detection and assembly of novel sequence insertions using linked-read technology. bioRxivhttps://doi.org/10.1101/551028 (2019).
Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet.19, 329–346 (2018). This Review discusses the main bioinformatics challenges faced by many of the described technologies. Topics include phasing, assembly, long-range expression and methylation. CASPubMed Google Scholar
Shajii, A., Numanagić, I., Whelan, C. & Berger, B. Statistical binning for barcoded reads improves downstream analyses. Cell Syst.7, 219–226.e5 (2018). CASPubMedPubMed Central Google Scholar
Falconer, E. et al. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat. Methods9, 1107–1112 (2012). This is the first major study showing the utility of Strand-seq for the detection of chromosomal rearrangements, along with the first application of this method in human genomes. CASPubMedPubMed Central Google Scholar
Sanders, A. D. et al. Characterizing polymorphic inversions in human genomes by single-cell sequencing. Genome Res.26, 1575–1587 (2016). This paper is the first major work using Strand-seq to detect inversions and reveals numerous inverted loci of interest within the human genome. CASPubMedPubMed Central Google Scholar
Hills, M., O’Neill, K., Falconer, E., Brinkman, R. & Lansdorp, P. M. BAIT: organizing genomes and mapping rearrangements in single cells. Genome Med.5, 82 (2013). PubMedPubMed Central Google Scholar
Sanders, A. D., Falconer, E., Hills, M., Spierings, D. C. J. & Lansdorp, P. M. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs. Nat. Protoc.12, 1151–1176 (2017). CASPubMed Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293 (2009). CASPubMedPubMed Central Google Scholar
Harewood, L. et al. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol.18, 125 (2017). This is the first study detecting both large chromosomal rearrangements and copy number changes with Hi-C. PubMedPubMed Central Google Scholar
Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol.31, 1119–1125 (2013). CASPubMedPubMed Central Google Scholar
Steininger, A. et al. Genome-wide analysis of interchromosomal interaction probabilities reveals chained translocations and overrepresentation of translocation breakpoints in genes in a cutaneous T-cell lymphoma cell line. Front. Oncol.8, 183 (2018). PubMedPubMed Central Google Scholar
Seaman, L. et al. Nucleome analysis reveals structure–function relationships for colon cancer. Mol. Cancer Res.15, 821–830 (2017). CASPubMedPubMed Central Google Scholar
Chakraborty, A. & Ay, F. Identification of copy number variations and translocations in cancer cells from Hi-C data. Bioinformatics34, 338–345 (2018). CASPubMed Google Scholar
Zhang, X. et al. Local and global chromatin interactions are altered by large genomic deletions associated with human brain development. Nat. Commun.9, 5356 (2018). PubMedPubMed Central Google Scholar
Dixon, J. R. et al. Integrative detection and analysis of structural variation in cancer genomes. Nat. Genet.50, 1388–1398 (2018). This study integrates three platforms, showing that their combination is necessary to detect the range of SVs in cancer genomes, and describes the only algorithm that currently detects most SV types with Hi-C. CASPubMedPubMed Central Google Scholar
Díaz, N. et al. Chromatin conformation analysis of primary patient tissue using a low input Hi-C method. Nat. Commun.9, 4938 (2018). PubMedPubMed Central Google Scholar
Lee, H. & Schatz, M. C. Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score. Bioinformatics28, 2097–2105 (2012). CASPubMedPubMed Central Google Scholar
Stephens, Z., Wang, C., Iyer, R. K. & Kocher, J.-P. Detection and visualization of complex structural variants from long reads. BMC Bioinform.19, 508 (2018). CAS Google Scholar
English, A. C., Salerno, W. J. & Reid, J. G. PBHoney: identifying genomic variants via long-read discordance and interrupted mapping. BMC Bioinform.15, 180 (2014). Google Scholar
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods15, 461–468 (2018). CASPubMedPubMed Central Google Scholar
Huddleston, J. et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res.27, 677–685 (2017). CASPubMedPubMed Central Google Scholar
Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics35, 2907–2915 (2019). PubMedPubMed Central Google Scholar
Fang, L., Hu, J., Wang, D. & Wang, K. NextSV: a meta-caller for structural variants from low-coverage long-read sequencing data. BMC Bioinform.19, 180 (2018). Google Scholar
Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).
Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genom. Proteom. Bioinform.13, 278–289 (2015). Google Scholar
Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods12, 780–786 (2015). CASPubMedPubMed Central Google Scholar
Seo, J.-S. et al. De novo assembly and phasing of a Korean human genome. Nature538, 243–247 (2016). CASPubMed Google Scholar
Ameur, A. et al. De novo assembly of two Swedish genomes reveals missing segments from the human GRCh38 reference and improves variant calling of population-scale sequencing data. Genes9, 486 (2018). PubMed Central Google Scholar
Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape genomes. Science360, eaar6343 (2018). PubMedPubMed Central Google Scholar
Nagasaki, M. Construction of JRG (Japanese reference genome) with single-molecule real-time sequencing. Hum. Genome Var.6, 27 (2019). PubMedPubMed Central Google Scholar
Audano, P. A. et al. Characterizing the major structural variant alleles of the human genome. Cell176, 663–675.e19 (2019). This study is the most comprehensive PacBio-based SV discovery project to date, detecting variants over 15 deeply sequenced individuals and creating a call-set reference with major shared SVs. CASPubMedPubMed Central Google Scholar
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol.4, 265–270 (2009). CASPubMed Google Scholar
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science323, 133–138 (2009). CASPubMed Google Scholar
Cretu Stancu, M. et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat. Commun.8, 1326 (2017). This is the first major paper using nanopore sequencing to detect SVs in human genomes and describes the NanoSV algorithm. PubMedPubMed Central Google Scholar
Gong, L. et al. Picky comprehensively detects high-resolution structural variants in nanopore long reads. Nat. Methods15, 455–460 (2018). CASPubMedPubMed Central Google Scholar
De Coster, W. et al. Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Res.29, 1178–1187 (2019). PubMedPubMed Central Google Scholar
Lam, E. T. et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol.30, 771–776 (2012). This is the first major study using Bionano optical mapping to detect SVs in human genomes, leveraging the long molecules to characterize the highly polymorphic major histocompatibility complex. CASPubMed Google Scholar
Schwartz, D. et al. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science262, 110–114 (1993). CASPubMed Google Scholar
Teague, B. et al. High-resolution human genome structure by single-molecule analysis. Proc. Natl Acad. Sci. USA107, 10848–10853 (2010). CASPubMedPubMed Central Google Scholar
Cao, H. et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. GigaScience3, 34 (2014). PubMedPubMed Central Google Scholar
Mak, A. C. Y. et al. Genome-wide structural variation detection by genome mapping on nanochannel arrays. Genetics202, 351–362 (2016). CASPubMed Google Scholar
Levy-Sakin, M. et al. Genome maps across 26 human populations reveal population-specific patterns of structural variation. Nat. Commun.10, 1025 (2019). PubMedPubMed Central Google Scholar
Li, L. et al. OMSV enables accurate and comprehensive identification of large structural variations from nanochannel-based single-molecule optical maps. Genome Biol.18, 230 (2017). PubMedPubMed Central Google Scholar
Hastie, A. R. et al. Rapid automated large structural variation detection in a diploid genome by nanochannel based next-generation mapping. bioRxivhttps://doi.org/10.1101/102764 (2017).
Lima, L. et al. Comparative assessment of long-read error correction software applied to nanopore RNA-sequencing data. Brief. Bioinform. https://doi.org/10.1093/bib/bbz058 (2019).
Fu, S., Wang, A. & Au, K. F. A comparative evaluation of hybrid error correction methods for error-prone long reads. Genome Biol.20, 26 (2019). PubMedPubMed Central Google Scholar
Zhang, H., Jain, C. & Aluru, S. A comprehensive evaluation of long read error correction methods. bioRxivhttps://doi.org/10.1101/519330 (2019)
Jaratlerdsiri, W. et al. Next generation mapping reveals novel large genomic rearrangements in prostate cancer. Oncotarget8, 23588–23602 (2017). PubMedPubMed Central Google Scholar
Xu, J. et al. An integrated framework for genome analysis reveals numerous previously unrecognizable structural variants in leukemia patients’ samples. bioRxivhttps://doi.org/10.1101/563270 (2019).
Zhou, B. et al. Comprehensive, integrated, and phased whole-genome analysis of the primary ENCODE cell line K562. Genome Res.29, 472–484 (2019). CASPubMedPubMed Central Google Scholar
Zhou, B. et al. Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2. Nucleic Acids Res.47, 3846–3861 (2019). CASPubMedPubMed Central Google Scholar
Chan, E. K. F. et al. Optical mapping reveals a higher level of genomic architecture of chained fusions in cancer. Genome Res.28, 726–738 (2018). CASPubMedPubMed Central Google Scholar
English, A. C. et al. Assessing structural variation in a personal genome—towards a human reference diploid genome. BMC Genom.16, 286 (2015). This study is one of the first applications of hybrid assembly for structural variant detection, showing highly increased sensitivity from platform integration. Google Scholar
Ritz, A. et al. Characterization of structural variants with single molecule and hybrid sequencing approaches. Bioinformatics30, 3458–3466 (2014). CASPubMedPubMed Central Google Scholar
Fan, X., Chaisson, M., Nakhleh, L. & Chen, K. HySA: a Hybrid Structural variant Assembly approach using next-generation and single-molecule sequencing technologies. Genome Res.27, 793–800 (2017). CASPubMedPubMed Central Google Scholar
Weischenfeldt, J. et al. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat. Genet.49, 65–74 (2017). CASPubMed Google Scholar
McPherson, A. et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLOS Comput. Biol.7, e1001138 (2011). CASPubMedPubMed Central Google Scholar
McPherson, A. et al. nFuse: discovery of complex genomic rearrangements in cancer using high-throughput sequencing. Genome Res.22, 2250–2261 (2012). CASPubMedPubMed Central Google Scholar
Yorukoglu, D. et al. Dissect: detection and characterization of novel structural alterations in transcribed sequences. Bioinformatics28, i179–i187 (2012). CASPubMedPubMed Central Google Scholar
Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature538, 265–269 (2016). CASPubMed Google Scholar
Gheldof, N. et al. Structural variation-associated expression changes are paralleled by chromatin architecture modifications. PLOS ONE8, e79973 (2013). CASPubMedPubMed Central Google Scholar
Fudenberg, G. & Pollard, K. S. Chromatin features constrain structural variation across evolutionary timescales. Proc. Natl Acad. Sci. USA116, 2175–2180 (2019). CASPubMedPubMed Central Google Scholar
Quigley, D. A. et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell174, 758–769.e9 (2018). CASPubMedPubMed Central Google Scholar
Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science315, 848–853 (2007). CASPubMedPubMed Central Google Scholar
Merker, J. D. et al. Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet. Med.20, 159–163 (2018). CASPubMed Google Scholar
Miao, H. et al. Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis. Hereditas155, 32 (2018). PubMedPubMed Central Google Scholar
Roberts, D. S. et al. Linked-read sequencing analysis reveals tumor-specific genome variation landscapes in neurofibromatosis type 2 (NF2) patients. Otol. Neurotol.40, e150–e159 (2019). PubMed Google Scholar
Sanchis-Juan, A. et al. Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med. 10, 95 (2018).
Cantsilieris, S. et al. Recurrent structural variation, clustered sites of selection, and disease risk for the complement factor H (CFH) gene family. Proc. Natl Acad. Sci. USA115, E4433–E4442 (2018). CASPubMedPubMed Central Google Scholar
Nattestad, M. et al. Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line. Genome Res.28, 1126–1135 (2018). CASPubMedPubMed Central Google Scholar
Aneichyk, T. et al. Dissecting the causal mechanism of X-linked dystonia–parkinsonism by integrating genome and transcriptome assembly. Cell172, 897–909.e21 (2018). CASPubMedPubMed Central Google Scholar
Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. bioRxivhttps://doi.org/10.1101/504993 (2019).
Beck, C. R. et al. Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell176, 1310–1324.e10 (2019). CASPubMedPubMed Central Google Scholar
Viswanathan, S. R. et al. Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell174, 433–447.e19 (2018). This study leverages layered biological information to understand the role of SVs in oncogene amplification for a specific cancer type. CASPubMedPubMed Central Google Scholar
Huynh, L. & Hormozdiari, F. TAD fusion score: discovery and ranking the contribution of deletions to genome structure. Genome Biol. 20, 60 (2019).
Feuk, L., Carson, A. R. & Scherer, S. W. Structural variation in the human genome. Nat. Rev. Genet.7, 85–97 (2006). CASPubMed Google Scholar
Sebat, J. Large-scale copy number polymorphism in the human genome. Science305, 525–528 (2004). CASPubMed Google Scholar
McCarroll, S. A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet.40, 1166–1174 (2008). CASPubMed Google Scholar
Kidd, J. M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature453, 56–64 (2008). CASPubMedPubMed Central Google Scholar
Zhou, B. et al. Whole-genome sequencing analysis of CNV using low-coverage and paired-end strategies is efficient and outperforms array-based CNV analysis. J. Med. Genet.55, 735–743 (2018). CASPubMed Google Scholar
Speicher, M. R. & Carter, N. P. The new cytogenetics: blurring the boundaries with molecular biology. Nat. Rev. Genet.6, 782–792 (2005). CASPubMed Google Scholar
Lee, C., Iafrate, A. J. & Brothman, A. R. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat. Genet.39, S48–S54 (2007). CASPubMed Google Scholar
Scherer, S. W. et al. Challenges and standards in integrating surveys of structural variation. Nat. Genet.39, S7–S15 (2007). CASPubMedPubMed Central Google Scholar
Tattini, L., D’Aurizio, R. & Magi, A. Detection of genomic structural variants from next-generation sequencing data. Front. Bioeng. Biotechnol.3, 92 (2015). PubMedPubMed Central Google Scholar
Guan, P. & Sung, W.-K. Structural variation detection using next-generation sequencing data. Methods102, 36–49 (2016). CASPubMed Google Scholar
Quinlan, A. R. & Hall, I. M. Characterizing complex structural variation in germline and somatic genomes. Trends Genet.28, 43–53 (2012). CASPubMed Google Scholar
Tan, R. et al. An evaluation of copy number variation detection tools from whole-exome sequencing data. Hum. Mutat.35, 899–907 (2014). CASPubMed Google Scholar
Hehir-Kwa, J. Y., Tops, B. B. J. & Kemmeren, P. The clinical implementation of copy number detection in the age of next-generation sequencing. Expert. Rev. Mol. Diagn.18, 907–915 (2018). CASPubMed Google Scholar
Hehir-Kwa, J. Y., Pfundt, R. & Veltman, J. A. Exome sequencing and whole genome sequencing for the detection of copy number variation. Expert. Rev. Mol. Diagn.15, 1023–1032 (2015). CASPubMed Google Scholar
Pang, A. W. et al. Towards a comprehensive structural variation map of an individual human genome. Genome Biol. 11, R52 (2010). PubMedPubMed Central Google Scholar
Park, H. et al. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat. Genet.42, 400–405 (2010). CASPubMedPubMed Central Google Scholar
Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol.36, 338–345 (2018). CASPubMedPubMed Central Google Scholar
Lappalainen, I. et al. dbVar and DGVa: public archives for genomic structural variation. Nucleic Acids Res.41, D936–D941 (2012). PubMedPubMed Central Google Scholar
Demaerel, W. et al. The 22q11 low copy repeats are characterized by unprecedented size and structure variability. Genome Res.29, 1389–1401 (2019). CASPubMedPubMed Central Google Scholar
Carvalho, C. M. B. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet.17, 224–238 (2016). CASPubMedPubMed Central Google Scholar
Vollger, M. R. et al. Long-read sequence and assembly of segmental duplications. Nat. Methods16, 88–94 (2019). CASPubMed Google Scholar
Meng, G. et al. TSD: a computational tool to study the complex structural variants using PacBio targeted sequencing data. G39, 1371–1376 (2019). CASPubMedPubMed Central Google Scholar
Frith, M. C. & Khan, S. A survey of localized sequence rearrangements in human DNA. Nucleic Acids Res.46, 1661–1673 (2018). CASPubMed Google Scholar
Bakhtiari, M., Shleizer-Burko, S., Gymrek, M., Bansal, V. & Bafna, V. Targeted genotyping of variable number tandem repeats with adVNTR. Genome Res.28, 1709–1719 (2018). CASPubMedPubMed Central Google Scholar
Ummat, A. & Bashir, A. Resolving complex tandem repeats with long reads. Bioinformatics30, 3491–3498 (2014). CASPubMed Google Scholar
Liu, Q., Zhang, P., Wang, D., Gu, W. & Wang, K. Interrogating the “unsequenceable” genomic trinucleotide repeat disorders by long-read sequencing. Genome Med.9, 65 (2017). PubMedPubMed Central Google Scholar
Shao, H. et al. npInv: accurate detection and genotyping of inversions using long read sub-alignment. BMC Bioinform.19, 261 (2018). Google Scholar
Mitsuhashi, S. Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol.20, 58 (2019). PubMedPubMed Central Google Scholar
Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer7, 233–245 (2007). CASPubMed Google Scholar
Zhang, Q. et al. Clinical application of single-molecule optical mapping to a multigeneration FSHD1 pedigree. Mol. Genet. Genom. Med.7, e565 (2019). Google Scholar
Norris, A. L., Workman, R. E., Fan, Y., Eshleman, J. R. & Timp, W. Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther.17, 246–253 (2016). CASPubMedPubMed Central Google Scholar
Euskirchen, P. et al. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol.134, 691–703 (2017). CASPubMedPubMed Central Google Scholar
Greer, S. U. et al. Linked read sequencing resolves complex genomic rearrangements in gastric cancer metastases. Genome Med.9, 57 (2017). PubMedPubMed Central Google Scholar
Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet.82, 477–488 (2008). CASPubMedPubMed Central Google Scholar
Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell177, 162–183 (2019). CASPubMedPubMed Central Google Scholar
Yuen, R. K. et al. Genome-wide characteristics of de novo mutations in autism. Npj Genomic Med.1, 160271–1602710 (2016). Google Scholar
Brand, H. et al. Paired-duplication signatures mark cryptic inversions and other complex structural variation. Am. J. Hum. Genet.97, 170–176 (2015). CASPubMedPubMed Central Google Scholar
Turner, T. N. et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am. J. Hum. Genet.98, 58–74 (2016). CASPubMed Google Scholar
Brandler, W. M. et al. Paternally inherited _cis_-regulatory structural variants are associated with autism. Science360, 327–331 (2018). CASPubMedPubMed Central Google Scholar
Mizuguchi, T. et al. Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J. Hum. Genet.64, 191–197 (2019). CASPubMed Google Scholar
Mizuguchi, T. et al. A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing. J. Hum. Genet.64, 359–368 (2019). PubMed Google Scholar
Barseghyan, H. et al. Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis. Genome Med. 9, 90 (2017).
Collins, R. L. et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol. 18, 36 (2017).
Eisfeldt, J. et al. Comprehensive structural variation genome map of individuals carrying complex chromosomal rearrangements. PLOS Genet.15, e1007858 (2019). CASPubMedPubMed Central Google Scholar
Dutta, U. R. et al. Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing. Genomics111, 1108–1114 (2019). CASPubMed Google Scholar
Sherman, R. M. et al. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat. Genet.51, 30–35 (2019). CASPubMed Google Scholar
Zhou, B. et al. Extensive and deep sequencing of the Venter/HuRef genome for developing and benchmarking genome analysis tools. Sci. Data5, 180261 (2018). CASPubMedPubMed Central Google Scholar
Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. bioRxivhttps://doi.org/10.1101/735928 (2019).
Wang, Y.-C. et al. High-coverage, long-read sequencing of Han Chinese trio reference samples. Sci. Data6, 91 (2019). PubMedPubMed Central Google Scholar
Zook, J. M. et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci. Data3, 160025 (2016). CASPubMedPubMed Central Google Scholar