Long-distance navigation and magnetoreception in migratory animals (original) (raw)
References
Wiltschko, R. & Wiltschko, W. Magnetic Orientation in Animals (Springer, Berlin, 1995). This book is an exhaustive account of almost all studies related to magnetoreception in any animal published before 1995, and it is a valuable historical account of the early achievements in the field. BookMATH Google Scholar
Berthold, P. A comprehensive theory for the evolution, control and adaptability of avian migration. Ostrich70, 1–11 (1999). Article Google Scholar
Mouritsen, H. in Avian Migration (eds Berthold, P., Gwinner, E. & Sonnenschein, E.) 493–513 (Springer, Berlin, 2003).
Mouritsen, H. in Sturkie’s Avian Physiology (ed. Scanes, C.) 113–133 (Elsevier, Amsterdam, 2015).
Schmaljohann, H., Fox, J. W. & Bairlein, F. Phenotypic response to environmental cues, orientation and migration costs in songbirds flying halfway around the world. Anim. Behav. 84, 623–640 (2012). Article Google Scholar
Salewski, V., Bairlein, F. & Leisler, B. Recurrence of some palaearctic migrant passerine species in West Africa. Ring. Migr. 20, 29–30 (2000). Article Google Scholar
Gill, R. E. Jr et al. Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc. R. Soc. Lond. B276, 447–457 (2009). Article Google Scholar
Egevang, C. et al. Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc. Natl Acad. Sci. USA107, 2078–2081 (2010). ArticleADSPubMedPubMed Central Google Scholar
Jouventin, P. & Weimerskirch, H. Satellite tracking of wandering albatrosses. Nature343, 746–748 (1990). ArticleADS Google Scholar
Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805 (2013). This paper convincingly showed that olfactory information is essential for long-distance homing in Cory’s shearwaters, because birds fitted with satellite transmitters and released about 800 km from home with their olfactory nerves cut wandered aimlessly around the Atlantic Ocean, whereas shearwaters with intact olfactory nerves but with cut ophthalmic branches of the trigeminal nerves went straight home. ArticlePubMed Google Scholar
Brower, L. Monarch butterfly orientation: missing pieces of a magnificent puzzle. J. Exp. Biol. 199, 93–103 (1996). PubMedCAS Google Scholar
Mouritsen, H. & Frost, B. J. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc. Natl Acad. Sci. USA99, 10162–10166 (2002). ArticleADSPubMedPubMed CentralCAS Google Scholar
Wehner, R., Cheng, K. & Cruse, H. in The New Visual Neurosciences 1153–1164 (MIT Press, Cambridge, 2014). Google Scholar
Bech, M., Homberg, U. & Pfeiffer, K. Receptive fields of locust brain neurons are matched to polarization patterns of the sky. Curr. Biol. 24, 2124–2129 (2014). This elegant electrophysiological paper used the scientific advantage of the simplicity of the insect brain to show that some neurons in the central complex of locusts seem to be matched filters to the natural polarization pattern, so that different cells respond to different orientations of the complete celestial polarization pattern across the dome of the sky, and that these neurons can differentiate between solar and antisolar directions based only on the polarization pattern. ArticlePubMedCAS Google Scholar
Heinze, S. Neuroethology: unweaving the senses of direction. Curr. Biol. 25, R1034–R1037 (2015). ArticlePubMedCAS Google Scholar
Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015). ArticlePubMed Google Scholar
Warrant, E. et al. The Australian bogong moth Agrotis infusa: a long-distance nocturnal navigator. Front. Behav. Neurosci. 10, 77 (2016). ArticlePubMedPubMed Central Google Scholar
Chapman, J. W. et al. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol. 18, 514–518 (2008). This paper was the first to show that high-flying insects are not at the mercy of the wind but that they actively orient themselves in mid-air and that they choose favourable airstreams that enable them to perform directed migration in spring and return migration in autumn; this paper therefore also disproved the ‘pied piper’ hypothesis that high-flying insects were blown in random directions. ArticlePubMedCAS Google Scholar
Chapman, J. W. et al. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science327, 682–685 (2010). ArticleADSPubMedCAS Google Scholar
Lohmann, K. J., Cain, S. D., Dodge, S. A. & Lohmann, C. M. F. Regional magnetic fields as navigational markers for sea turtles. Science294, 364–366 (2001). ArticleADSPubMedCAS Google Scholar
Putman, N. F. et al. Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon. Curr. Biol. 23, 312–316 (2013). This elegant paper used fisheries data and information on geomagnetic field drift to demonstrate that Pacific salmon returning to spawn had imprinted on the geomagnetic parameters of their natal river mouth before they left the area years earlier. ArticlePubMedCAS Google Scholar
Brothers, J. R. & Lohmann, K. J. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr. Biol. 25, 392–396 (2015). ArticlePubMedCAS Google Scholar
Bett, N. N. & Hinch, S. G. Olfactory navigation during spawning migrations: a review and introduction of the hierarchical navigation hypothesis. Biol. Rev. Camb. Philos. Soc. 91, 728–759 (2016). ArticlePubMed Google Scholar
Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. & Miller-Sims, V. Smelling home can prevent dispersal of reef fish larvae. Proc. Natl Acad. Sci. USA104, 858–863 (2007). This paper used genetic fingerprinting and behavioural tests to elegantly demonstrate that returning reef fish larvae are attracted to the odour of their natal reef, that they can discriminate this odour from the odour of other reefs, and that this olfactory imprinting on their natal reef might help explain the high levels of retention and speciation in coral reefs. ArticleADSPubMedPubMed CentralCAS Google Scholar
Mouritsen, H., Atema, J., Kingsford, M. J. & Gerlach, G. Sun compass orientation helps coral reef fish larvae return to their natal reef. PLoS One8, e66039 (2013). ArticleADSPubMedPubMed CentralCAS Google Scholar
Bottesch, M. et al. A magnetic compass that might help coral reef fish larvae return to their natal reef. Curr. Biol. 26, R1266–R1267 (2016). ArticlePubMedCAS Google Scholar
Alerstam, T. et al. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc. R. Soc. Lond. B278, 3074–3080 (2011). Article Google Scholar
Lohmann, K. J., Lohmann, C. M. F., Brothers, J. R. & Putman, N. F. in The Biology of Sea Turtles (eds Wyneken, J., Lohmann, K. J. & Musick, J. A.) vol. 3, 59–77 (CRC Press, Boca Raton, 2013).
Holland, R. A. True navigation in birds: from quantum physics to global migration. J. Zool. (Lond.)293, 1–15 (2014). Article Google Scholar
Mouritsen, H., Heyers, D. & Güntürkün, O. The neural basis of long-distance navigation in birds. Annu. Rev. Physiol. 78, 133–154 (2016). ArticlePubMedCAS Google Scholar
Guilford, T. & Biro, D. Route following and the pigeon’s familiar area map. J. Exp. Biol. 217, 169–179 (2014). ArticlePubMed Google Scholar
Griffin, D. R. Bird navigation. Biol. Rev. Camb. Philos. Soc. 27, 359–400 (1952). Article Google Scholar
Perdeck, A. C. Two types of orientation in migrating Sturnus vulgaris and Fringilla coelebs as revealed by displacement experiments. Ardea46, 1–37 (1958). Google Scholar
Chernetsov, N., Kishkinev, D. & Mouritsen, H. A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr. Biol. 18, 188–190 (2008). ArticlePubMedCAS Google Scholar
Chernetsov, N. et al. Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem. Curr. Biol. 27, 2647–2651.e2 (2017). This paper showed that adult, but not juvenile, Eurasian reed warblers can use magnetic declination—which requires two compasses—to correct for a virtual magnetic displacement from Kaliningrad to Scotland and therefore suggest that many bird species in Europe and North America could use magnetic declination to solve the enigmatic longitude problem. ArticlePubMedCAS Google Scholar
Mouritsen, H. et al. An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators. Proc. Natl Acad. Sci. USA110, 7348–7353 (2013). ArticleADSPubMedPubMed Central Google Scholar
Lugo Ramos, J. S., Delmore, K. E. & Liedvogel, M. Candidate genes for migration do not distinguish migratory and non-migratory birds. J. Comp. Physiol. 203, 383–397 (2017). ArticleCAS Google Scholar
Lohmann, K. J., Lohmann, C. M. F. & Putman, N. F. Magnetic maps in animals: nature’s GPS. J. Exp. Biol. 210, 3697–3705 (2007). ArticlePubMed Google Scholar
Mouritsen, H. & Mouritsen, O. A mathematical expectation model for bird navigation based on the clock-and-compass strategy. J. Theor. Biol. 207, 283–291 (2000). ArticlePubMedCAS Google Scholar
Thorup, K. et al. Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc. Natl Acad. Sci. USA104, 18115–18119 (2007). ArticleADSPubMedPubMed Central Google Scholar
Deutschlander, M. E., Phillips, J. B. & Munro, U. Age-dependent orientation to magnetically-simulated geographic displacements in migratory Australian silvereyes (Zosterops l. lateralis). Wilson J. Ornithol. 124, 467–477 (2012). Article Google Scholar
Holland, R. A. & Helm, B. A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J. R. Soc. Interface10, 20121047 (2013). ArticlePubMedPubMed Central Google Scholar
Phillips, J. B., Freake, M. J., Fischer, J. H. & Borland, C. Behavioral titration of a magnetic map coordinate. J. Comp. Physiol. 188, 157–160 (2002). Article Google Scholar
Kishkinev, D., Chernetsov, N., Heyers, D. & Mouritsen, H. Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement. PLoS One8, e65847 (2013). ArticleADSPubMedPubMed CentralCAS Google Scholar
Kishkinev, D., Chernetsov, N., Pakhomov, A., Heyers, D. & Mouritsen, H. Eurasian reed warblers compensate for virtual magnetic displacement. Curr. Biol. 25, R822–R824 (2015). ArticlePubMedCAS Google Scholar
Gagliardo, A. Forty years of olfactory navigation in birds. J. Exp. Biol. 216, 2165–2171 (2013). ArticlePubMed Google Scholar
Geva-Sagiv, M., Las, L., Yovel, Y. & Ulanovsky, N. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat. Rev. Neurosci. 16, 94–108 (2015). ArticlePubMedCAS Google Scholar
Sarel, A., Finkelstein, A., Las, L. & Ulanovsky, N. Vectorial representation of spatial goals in the hippocampus of bats. Science355, 176–180 (2017). This paper discovered a new type of spatial cell in the hippocampus of free-flying Egyptian fruit bats that is essential for navigational tasks—namely cells coding for the direction to a goal relative to an animal’s current heading. ArticleADSPubMedCAS Google Scholar
Stalleicken, J. et al. Do monarch butterflies use polarized skylight for migratory orientation? J. Exp. Biol. 208, 2399–2408 (2005). ArticlePubMed Google Scholar
Heinze, S. & Reppert, S. M. Sun compass integration of skylight cues in migratory monarch butterflies. Neuron69, 345–358 (2011). ArticlePubMedCAS Google Scholar
Scholz, A. T., Horrall, R. M., Cooper, J. C. & Hasler, A. D. Imprinting to chemical cues: the basis for home stream selection in salmon. Science192, 1247–1249 (1976). ArticleADSPubMedCAS Google Scholar
DeBose, J. L. & Nevitt, G. A. The use of odors at different spatial scales: comparing birds with fish. J. Chem. Ecol. 34, 867–881 (2008). ArticlePubMedCAS Google Scholar
Radford, C. A., Stanley, J. A., Simpson, S. D. & Jeffs, A. G. Juvenile coral reef fish use sound to locate habitats. Coral Reefs30, 295–305 (2011). ArticleADS Google Scholar
Mouritsen, H. in Neurosciences—From Molecule to Behavior: A University Textbook (eds Galizia, C. G. & Lledo, P.-M.) 427–443 (Springer, Heidelberg, 2013)
Cochran, W. W., Mouritsen, H. & Wikelski, M. Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science304, 405–408 (2004). ArticleADSPubMedCAS Google Scholar
Lohmann, K. J. & Lohmann, C. A light-independent magnetic compass in the leatherback sea turtle. Biol. Bull. 185, 149–151 (1993). ArticlePubMedCAS Google Scholar
Phillips, J. B. & Borland, S. C. Behavioral evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature359, 142–144 (1992). ArticleADS Google Scholar
Dennis, T. E., Rayner, M. J. & Walker, M. M. Evidence that pigeons orient to geomagnetic intensity during homing. Proc. R. Soc. Lond. B274, 1153–1158 (2007). Article Google Scholar
Komolkin, A. V. et al. Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals. J. R. Soc. Interface14, 20161002 (2017). ArticlePubMedPubMed Central Google Scholar
Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230 (2004). ArticlePubMedCAS Google Scholar
Begall, S., Malkemper, E. P., Červený, J., Němec, P. & Burda, H. Magnetic alignment in mammals and other animals. Mamm. Biol. 78, 10–20 (2013). Article Google Scholar
Kirschvink, J. L., Winklhofer, M. & Walker, M. M. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J. R. Soc. Interface7, S179–S191 (2010). ArticlePubMedPubMed Central Google Scholar
Solov’yov, I., Hore, P. J., Ritz, T. & Schulten, K. in Quantum Effects in Biology 218–236 (Cambridge Univ. Press, Cambridge, 2014) Book Google Scholar
Kattnig, D. R., Sowa, J. K., Solov’yov, I. A. & Hore, P. J. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor. New J. Phys. 18, 063007 (2016). ArticleADSCAS Google Scholar
Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016). This tutorial review summarizes in detail all aspects of the radical-pair mechanism and the evidence for and against it as a magnetoreception mechanism, and aims to provide a must-read text for new scientists entering this field by explaining the biological aspects of the mechanism to physicists and chemists and the physicochemical and quantum mechanical aspects to biologists. ArticlePubMedCAS Google Scholar
Paulin, M. G. Electroreception and the compass sense of sharks. J. Theor. Biol. 174, 325–339 (1995). Article Google Scholar
Rosenblum, B., Jungerman, R. L. & Longfellow, L. in Magnetite Biomineralization and Magnetoreception in Organisms 223–232 (Plenum, New York, 1985) Book Google Scholar
Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016). ArticlePubMedCAS Google Scholar
Winklhofer, M. & Kirschvink, J. L. A quantitative assessment of torque-transducer models for magnetoreception. J. R. Soc. Interface7, S273–S289 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Treiber, C. D. et al. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature484, 367–370 (2012). ADSPubMedCAS Google Scholar
Eder, S. H. et al. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc. Natl Acad. Sci. USA109, 12022–12027 (2012). ArticleADSPubMedPubMed Central Google Scholar
Edelman, N. B. et al. No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. Proc. Natl Acad. Sci. USA112, 262–267 (2015). This paper, together with Ref. 78, demonstrated that structures previously suggested to be strong candidates as magnetic-particle-based magnetoreceptors were dirt or non-magnetic iron accumulations, emphasizing that, to be considered as serious magnetoreception sensor candidates, magnetic particles must be proven to be located inside cells in exactly the same location and associated with nerve tissue in many individuals of the same species. ArticleADSPubMedCAS Google Scholar
Walker, M. M. et al. Structure and function of the vertebrate magnetic sense. Nature390, 371–376 (1997). ArticleADSPubMedCAS Google Scholar
Fleissner, G. et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J. Comp. Neurol. 458, 350–360 (2003). ArticlePubMedCAS Google Scholar
Němec, P., Altmann, J., Marhold, S., Burda, H. & Oelschläger, H. H. A. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science294, 366–368 (2001). ArticleADSPubMed Google Scholar
Burger, T. et al. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J. R. Soc. Interface7, 1275–1292 (2010). ArticlePubMedPubMed Central Google Scholar
Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712 (2005). ArticlePubMedCAS Google Scholar
Cadiou, H. & McNaughton, P. A. Avian magnetite-based magnetoreception: a physiologist’s perspective. J. R. Soc. Interface7, S193–S205 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Stanley, S. A., Sauer, J., Kane, R. S., Dordick, J. S. & Friedman, J. M. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2015). ArticlePubMedCAS Google Scholar
Schulten, K., Swenberg, C. E. & Weller, A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. 111, 1–5 (1978). This hardcore theoretical physics paper formulated the radical-pair hypothesis of magnetoreception for the first time, and it is now clear that it was decades ahead of its time. Article Google Scholar
Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature453, 387–390 (2008). This paper proved that a radical-pair mechanism is fundamentally able to detect Earth-strength magnetic fields, as the authors synthesized a model compound in which they could directly observe that the photochemistry of a radical-pair mechanism was sensitive to Earth-strength magnetic fields. ArticleADSPubMedCAS Google Scholar
Solov’yov, I. A., Mouritsen, H. & Schulten, K. Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophys. J. 99, 40–49 (2010). ArticleADSPubMedPubMed CentralCAS Google Scholar
Schwarze, S. et al. Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination. Sci. Rep. 6, 33805 (2016). ArticleADSPubMedPubMed CentralCAS Google Scholar
Phillips, J. B., Deutschlander, M. E., Freake, M. J. & Borland, S. C. The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J. Exp. Biol. 204, 2543–2552 (2001). PubMedCAS Google Scholar
Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. Red light disrupts magnetic orientation of migratory birds. Nature364, 525–527 (1993). ArticleADS Google Scholar
Schneider, T., Thalau, H. P., Semm, P. & Wiltschko, W. Melatonin is crucial for the migratory orientation of pied flycatchers Ficedula hypoleuca pallas. J. Exp. Biol. 194, 255–262 (1994). PubMedCAS Google Scholar
Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature429, 177–180 (2004). ArticleADSPubMedCAS Google Scholar
Engels, S. et al. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature509, 353–356 (2014). This paper demonstrated in a massive series of reproducible, double-blinded experiments that anthropogenic electromagnetic fields in the low megahertz range and with an intensity 1,000 times lower than the current WHO guideline levels disrupt the magnetic compass sense of a night-migratory songbird; this strongly suggests that a quantum mechanical mechanism is responsible for magnetic compass sensing in these birds. ArticleADSPubMedCAS Google Scholar
Kavokin, K. et al. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field. J. R. Soc. Interface11, 20140451 (2014). ArticlePubMedPubMed Central Google Scholar
Malkemper, E. P. et al. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Sci. Rep. 5, 9917 (2015). ArticleCAS Google Scholar
Schwarze, S. et al. Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front. Behav. Neurosci. 10, 55 (2016). ArticlePubMedPubMed Central Google Scholar
Hiscock, H. G., Mouritsen, H., Manolopoulos, D. E. & Hore, P. J. Disruption of magnetic compass orientation in migratory birds by radiofrequency electromagnetic fields. Biophys. J. 113, 1475–1484 (2017). ArticleADSPubMedCASPubMed Central Google Scholar
Björn, L. O. Photobiology: The Science of Light and Life (Springer, New York, 2015). Book Google Scholar
Liedvogel, M. et al. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS One2, e1106 (2007). ArticleADSPubMedPubMed CentralCAS Google Scholar
Maeda, K. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA109, 4774–4779 (2012). ArticleADSPubMedPubMed Central Google Scholar
Mouritsen, H. et al. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Natl Acad. Sci. USA101, 14294–14299 (2004). ArticleADSPubMedPubMed CentralCAS Google Scholar
Liedvogel, M. & Mouritsen, H. Cryptochromes—a potential magnetoreceptor: what do we know and what do we want to know? J. R. Soc. Interface7, S147–S162 (2010). ArticlePubMedCAS Google Scholar
Nießner, C. et al. Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating passerine bird. PLoS One11, e0150377 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Bolte, P. et al. Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PLoS One11, e0147819 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Günther, A. et al. Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr. Biol. 28, 211–223.e4 (2018). This paper suggests that cryptochrome 4 of night-migratory songbirds is a particularly strong candidate as the light-dependent magnetoreceptive protein because Cry4, in the retina, is exclusively expressed in the outer segments of the double cone and long-wavelength single cone photoreceptor cells, and is more strongly expressed in the migratory season in migratory birds, whereas no seasonal differences are observed in non-migratory birds. ArticlePubMedCAS Google Scholar
Kutta, R. J., Archipowa, N., Johannissen, L. O., Jones, A. R. & Scrutton, N. S. Vertebrate cryptochromes are vestigial flavoproteins. Sci. Rep. 7, 44906 (2017). ArticleADSPubMedPubMed CentralCAS Google Scholar
Worster, S., Mouritsen, H. & Hore, P. J. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J. R. Soc. Interface14, 20170405 (2017). ArticlePubMedPubMed Central Google Scholar
Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature454, 1014–1018 (2008). ArticleADSPubMedPubMed CentralCAS Google Scholar
Fedele, G., Green, E. W., Rosato, E. & Kyriacou, C. P. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat. Commun. 5, 4391 (2014). ArticleADSPubMedPubMed CentralCAS Google Scholar
Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K. & Jarvis, E. D. Night-vision brain area in migratory songbirds. Proc. Natl Acad. Sci. USA102, 8339–8344 (2005). ArticleADSPubMedPubMed CentralCAS Google Scholar
Heyers, D., Manns, M., Luksch, H., Güntürkün, O. & Mouritsen, H. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One2, e937 (2007). ArticleADSPubMedPubMed Central Google Scholar
Zapka, M., Heyers, D., Liedvogel, M., Jarvis, E. D. & Mouritsen, H. Night-time neuronal activation of Cluster N in a day- and night-migrating songbird. Eur. J. Neurosci. 32, 619–624 (2010). ArticlePubMedPubMed Central Google Scholar
Zapka, M. et al. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature461, 1274–1277 (2009). This paper demonstrates that Cluster N processes light-dependent magnetic compass information in night-migratory songbirds, because Cluster N-lesioned birds could still use their sun and star compasses but not their magnetic compass, and because Cluster N is part of the thalamofugal visual pathway in night-migratory songbirds 129. ArticleADSPubMedCAS Google Scholar
Wiltschko, W., Traudt, J., Güntürkün, O., Prior, H. & Wiltschko, R. Lateralization of magnetic compass orientation in a migratory bird. Nature419, 467–470 (2002). ArticleADSPubMedCAS Google Scholar
Hein, C. M., Engels, S., Kishkinev, D. & Mouritsen, H. Robins have a magnetic compass in both eyes. Nature471, E11–E12 (2011). ArticlePubMedCAS Google Scholar
Wiltschko, W., Traudt, J., Güntürkün, O., Prior, H. & Wiltschko, R. Wiltschko et al. reply. Nature471, E12–E13 (2011). ArticleCAS Google Scholar
Engels, S., Hein, C. M., Lefeldt, N., Prior, H. & Mouritsen, H. Night-migratory songbirds possess a magnetic compass in both eyes. PLOS One7, e43271 (2012). ArticleADSPubMedPubMed CentralCAS Google Scholar
Heyers, D., Zapka, M., Hoffmeister, M., Wild, J. M. & Mouritsen, H. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc. Natl Acad. Sci. USA107, 9394–9399 (2010). ArticleADSPubMedPubMed Central Google Scholar
Elbers, D., Bulte, M., Bairlein, F., Mouritsen, H. & Heyers, D. Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe). J. Comp. Physiol. 203, 591–600 (2017). ArticleCAS Google Scholar
Munro, U., Munro, J. A., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Evidence for a magnetite-based navigational ‘map’ in birds. Naturwissenschaften84, 26–28 (1997). ArticleADSCAS Google Scholar
Wiltschko, W., Wiltschko, R. & Keeton, W. T. Effects of a ‘permanent’ clock-shift on the orientation of young homing pigeons. Behav. Ecol. Sociobiol. 1, 229–243 (1976). Article Google Scholar
Schmidt-Koenig, K., Ganzhorn, J. U. & Ranvaud, R. in Orientation in Birds 1–15 (Birkhäuser, Basel, 1991). Book Google Scholar
Emlen, S. T. The stellar-orientation system of a migratory bird. Sci. Am. 233, 102–111 (1975). ArticlePubMedCAS Google Scholar
Heinze, S. & Homberg, U. Maplike representation of celestial _E_-vector orientations in the brain of an insect. Science315, 995–997 (2007). ArticleADSPubMedCAS Google Scholar
Wiltschko, R., Walker, M. & Wiltschko, W. Sun-compass orientation in homing pigeons: compensation for different rates of change in azimuth? J. Exp. Biol. 203, 889–894 (2000). PubMedCAS Google Scholar
Horváth, G. (Ed.) Polarized Light and Polarization Vision in Animal Sciences (Springer, Berlin, 2014).
Stalleicken, J., Labhart, T. & Mouritsen, H. Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J. Comp. Physiol. 192, 321–331 (2006). Article Google Scholar
Kamermans, M. & Hawryshyn, C. Teleost polarization vision: how it might work and what it might be good for. Phil. Trans. R. Soc. Lond. B366, 742–756 (2011). Article Google Scholar
Wiltschko, W., Daum, P., Fergenbauer-Kimmel, A. & Wiltschko, R. The development of the star compass in garden warblers, Sylvia borin. Ethology74, 285–292 (1987). Article Google Scholar
Michalik, A., Alert, B., Engels, S., Lefeldt, N. & Mouritsen, H. Star compass learning: how long does it take? J. Ornithol. 155, 225–234 (2014). Article Google Scholar
Mouritsen, H. & Larsen, O. N. Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass. J. Exp. Biol. 204, 3855–3865 (2001). PubMedCAS Google Scholar
Alert, B., Michalik, A., Helduser, S., Mouritsen, H. & Güntürkün, O. Perceptual strategies of pigeons to detect a rotational centre—a hint for star compass learning? PLoS One10, e0119919 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Dacke, M., Baird, E., Byrne, M., Scholtz, C. H. & Warrant, E. J. Dung beetles use the Milky Way for orientation. Curr. Biol. 23, 298–300 (2013). ArticlePubMedCAS Google Scholar
Zufall, F. & Munger, S. Chemosensory Transduction: The Detection of Odors, Tastes, and Other Chemostimuli (Academic, London, 2016). Google Scholar
Allison, J. D. & Cardé, R. T. Pheromone Communication in Moths: Evolution, Behavior, and Application (Univ. California Press, Oakland, 2016). Google Scholar
Jorge, P. E., Marques, P. A. & Phillips, J. B. Activational effects of odours on avian navigation. Proc. R. Soc. Lond. B277, 45–49 (2010). Article Google Scholar
Wallraff, H. G. & Andreae, M. O. Spatial gradients in ratios of atmospheric trace gases: a study stimulated by experiments on bird navigation. Tellus B Chem. Phys. Meterol. 52, 1138–1157 (2000). ArticleADS Google Scholar
Kullberg, C., Henshaw, I., Jakobsson, S., Johansson, P. & Fransson, T. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc. R. Soc. Lond. B274, 2145–2151 (2007). Article Google Scholar
Schmitz, H. & Bleckmann, H. The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera: Buprestidae). J. Comp. Physiol. A182, 647–657 (1998). Article Google Scholar
Hagstrum, J. T. Infrasound and the avian navigational map. J. Exp. Biol. 203, 1103–1111 (2000). PubMedCAS Google Scholar
Reynolds, A. M., Reynolds, D. R., Sane, S. P., Hu, G. & Chapman, J. W. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies. Phil. Trans. R. Soc. Lond. B371, 20150392 (2016). Article Google Scholar
Sjöberg, S. & Muheim, R. A new view on an old debate: type of cue-conflict manipulation and availability of stars can explain the discrepancies between cue-calibration experiments with migratory songbirds. Front. Behav. Neurosci. 10, 29 (2016). ArticlePubMedPubMed Central Google Scholar
Åkesson, S. & Bianco, G. Route simulations, compass mechanisms and long-distance migration flights in birds. J. Comp. Physiol. A203, 475–490 (2017). Article Google Scholar
Chernetsov, N., Kishkinev, D., Kosarev, V. & Bolshakov, C. V. Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study. J. Exp. Biol. 214, 2540–2543 (2011). ArticlePubMed Google Scholar
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature436, 801–806 (2005). ArticleADSPubMedCAS Google Scholar
Cheeseman, J. F. et al. Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc. Natl Acad. Sci. USA111, 8949–8954 (2014). ArticleADSPubMedPubMed CentralCAS Google Scholar