Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci (original) (raw)
References
- Lim, S.S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).
Article PubMed PubMed Central Google Scholar - Toka, H.R. & Luft, F.C. Monogenic forms of human hypertension. Semin. Nephrol. 22, 81–88 (2002).
Article CAS PubMed Google Scholar - Toka, H.R., Koshy, J.M. & Hariri, A. The molecular basis of blood pressure variation. Pediatr. Nephrol. 28, 387–399 (2013).
Article PubMed Google Scholar - Garovic, V.D., Hilliard, A.A. & Turner, S.T. Monogenic forms of low-renin hypertension. Nat. Clin. Pract. Nephrol. 2, 624–630 (2006).
Article CAS PubMed Google Scholar - Zhu, X. et al. Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium. Hum. Mol. Genet. 20, 2285–2295 (2011).
Article CAS PubMed PubMed Central Google Scholar - Tragante, V. et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am. J. Hum. Genet. 94, 349–360 (2014).
Article CAS PubMed PubMed Central Google Scholar - Wain, L.V. et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 43, 1005–1011 (2011).
Article CAS PubMed PubMed Central Google Scholar - Padmanabhan, S., Newton-Cheh, C. & Dominiczak, A.F. Genetic basis of blood pressure and hypertension. Trends Genet. 28, 397–408 (2012).
Article CAS PubMed Google Scholar - Johnson, A.D. et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension 57, 903–910 (2011).
Article CAS PubMed Google Scholar - Johnson, T. et al. Blood pressure loci identified with a gene-centric array. Am. J. Hum. Genet. 89, 688–700 (2011).
Article CAS PubMed PubMed Central Google Scholar - Ganesh, S.K. et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum. Mol. Genet. 22, 1663–1678 (2013).
Article CAS PubMed PubMed Central Google Scholar - Franceschini, N. et al. Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am. J. Hum. Genet. 93, 545–554 (2013).
Article CAS PubMed PubMed Central Google Scholar - Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676 (2009).
Article CAS PubMed PubMed Central Google Scholar - Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).
Article CAS PubMed PubMed Central Google Scholar - Ehret, G.B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
Article CAS PubMed Google Scholar - Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP–trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).
Article CAS PubMed Google Scholar - Oliver, P.M. et al. Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc. Natl. Acad. Sci. USA 95, 2547–2551 (1998).
Article CAS PubMed PubMed Central Google Scholar - Oliver, P.M. et al. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc. Natl. Acad. Sci. USA 94, 14730–14735 (1997).
Article CAS PubMed PubMed Central Google Scholar - Willer, C.J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
Article CAS PubMed PubMed Central Google Scholar - Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).
Article CAS PubMed PubMed Central Google Scholar - Fernando, M.M. et al. Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G. Ann. Rheum. Dis. 71, 777–784 (2012).
Article CAS PubMed Google Scholar - Plenge, R.M. et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N. Engl. J. Med. 357, 1199–1209 (2007).
Article CAS PubMed PubMed Central Google Scholar - Lippert, C. et al. An exhaustive epistatic SNP association analysis on expanded Wellcome Trust data. Sci. Rep. 3, 1099 (2013).
Article CAS PubMed PubMed Central Google Scholar - Qiu, L. et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PLoS One 9, e93961 (2014).
Article CAS PubMed PubMed Central Google Scholar - Phani, N.M. et al. Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case–control and meta-analysis study. PLoS One 9, e107021 (2014).
Article CAS PubMed PubMed Central Google Scholar - Chambers, J.C. et al. Genetic loci influencing kidney function and chronic kidney disease. Nat. Genet. 42, 373–375 (2010).
Article CAS PubMed PubMed Central Google Scholar - Elks, C.E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077–1085 (2010).
Article CAS PubMed PubMed Central Google Scholar - Eijgelsheim, M. et al. Genome-wide association analysis identifies multiple loci related to resting heart rate. Hum. Mol. Genet. 19, 3885–3894 (2010).
Article CAS PubMed PubMed Central Google Scholar - Heid, I.M. et al. Meta-analysis identifies 13 new loci associated with waist–hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).
Article CAS PubMed PubMed Central Google Scholar - Paré, G. et al. Novel associations of CPS1, MUT, NOX4, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide evaluation of 13 974 participants in the Women's Genome Health Study. Circ Cardiovasc Genet 2, 142–150 (2009).
Article CAS PubMed PubMed Central Google Scholar - Brooks, J.D. et al. Variants in tamoxifen metabolizing genes: a case–control study of contralateral breast cancer risk in the WECARE study. Int. J. Mol. Epidemiol. Genet. 4, 35–48 (2013).
CAS PubMed PubMed Central Google Scholar - Geller, F. et al. Genome-wide association analyses identify variants in developmental genes associated with hypospadias. Nat. Genet. 46, 957–963 (2014).
Article CAS PubMed Google Scholar - Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).
- Tetsuro, M. et al. Identification of group of hypertension-susceptibility genes. Chinese patent CN103667326 B (2016).
- Ingelsson, E., Syvänen, A.C. & Lind, L. Endothelium-dependent vasodilation in conduit and resistance vessels in relation to the endothelial nitric oxide synthase gene. J. Hum. Hypertens. 22, 569–578 (2008).
Article CAS PubMed Google Scholar - Chasman, D.I. et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat. Genet. 43, 695–698 (2011).
Article CAS PubMed PubMed Central Google Scholar - Arndt, A.K. et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy. Am. J. Hum. Genet. 93, 67–77 (2013).
Article CAS PubMed PubMed Central Google Scholar - Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).
Article CAS PubMed PubMed Central Google Scholar - Castaño Betancourt, M.C. et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc. Natl. Acad. Sci. USA 109, 8218–8223 (2012).
Article PubMed PubMed Central Google Scholar - Morgenthaler, S. & Thilly, W.G. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat. Res. 615, 28–56 (2007).
Article CAS PubMed Google Scholar - Li, B. & Leal, S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 83, 311–321 (2008).
Article CAS PubMed PubMed Central Google Scholar - Wu, M.C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).
Article CAS PubMed PubMed Central Google Scholar - Ji, W. et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 40, 592–599 (2008).
Article CAS PubMed PubMed Central Google Scholar - Febbo, P.G. et al. Literature Lab: a method of automated literature interrogation to infer biology from microarray analysis. BMC Genomics 8, 461 (2007).
Article PubMed PubMed Central Google Scholar - Boyle, A.P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).
Article CAS PubMed PubMed Central Google Scholar - Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).
Article CAS PubMed Google Scholar - Naiche, L.A., Harrelson, Z., Kelly, R.G. & Papaioannou, V.E. T-box genes in vertebrate development. Annu. Rev. Genet. 39, 219–239 (2005).
Article CAS PubMed Google Scholar - Chapman, D.L. et al. Expression of the T-box family genes, Tbx1_–_Tbx5, during early mouse development. Dev. Dyn. 206, 379–390 (1996).
Article CAS PubMed Google Scholar - Leslie, R., O'Donnell, C.J. & Johnson, A.D. GRASP: analysis of genotype–phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 30, i185–i194 (2014).
Article CAS PubMed PubMed Central Google Scholar - Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).
CAS PubMed PubMed Central Google Scholar - Kabakchiev, B. & Silverberg, M.S. Expression quantitative trait loci analysis identifies associations between genotype and gene expression in human intestine. Gastroenterology 144, 1488–1496 (2013).
Article CAS PubMed Google Scholar - Murphy, A. et al. Mapping of numerous disease-associated expression polymorphisms in primary peripheral blood CD4+ lymphocytes. Hum. Mol. Genet. 19, 4745–4757 (2010).
CAS PubMed PubMed Central Google Scholar - Zeller, T. et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS One 5, e10693 (2010).
Article CAS PubMed PubMed Central Google Scholar - Heap, G.A. et al. Complex nature of SNP genotype effects on gene expression in primary human leucocytes. BMC Med. Genomics 2, 1 (2009).
Article CAS PubMed PubMed Central Google Scholar - Stranger, B.E. et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 8, e1002639 (2012).
Article CAS PubMed PubMed Central Google Scholar - Zou, F. et al. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet. 8, e1002707 (2012).
Article CAS PubMed PubMed Central Google Scholar - Schadt, E.E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).
Article CAS PubMed PubMed Central Google Scholar - Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N. Engl. J. Med. 374, 1134–1144 (2016).
- Wu, D.A. et al. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22. J. Clin. Invest. 97, 2111–2118 (1996).
Article CAS PubMed PubMed Central Google Scholar - Goodarzi, M.O. et al. Lipoprotein lipase is a gene for insulin resistance in Mexican Americans. Diabetes 53, 214–220 (2004).
Article CAS PubMed Google Scholar - Goodarzi, M.O. et al. The 3′ untranslated region of the lipoprotein lipase gene: haplotype structure and association with post-heparin plasma lipase activity. J. Clin. Endocrinol. Metab. 90, 4816–4823 (2005).
Article CAS PubMed Google Scholar - Goodarzi, M.O. et al. Haplotypes in the lipoprotein lipase gene influence fasting insulin and discovery of a new risk haplotype. J. Clin. Endocrinol. Metab. 92, 293–296 (2007).
Article CAS PubMed Google Scholar - Kraja, A.T. et al. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 60, 1329–1339 (2011).
Article CAS PubMed PubMed Central Google Scholar - Kraja, A.T. et al. Pleiotropic genes for metabolic syndrome and inflammation. Mol. Genet. Metab. 112, 317–338 (2014).
Article CAS PubMed PubMed Central Google Scholar - Adzhubei, I., Jordan, D.M. & Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. Chapter 7, Unit 7.20 (2013).
- Das, S., Au, E., Krazit, S.T. & Pandey, K.N. Targeted disruption of guanylyl cyclase-A/natriuretic peptide receptor-A gene provokes renal fibrosis and remodeling in null mutant mice: role of proinflammatory cytokines. Endocrinology 151, 5841–5850 (2010).
Article CAS PubMed PubMed Central Google Scholar - Robertson, D. et al. Isolated failure of autonomic noradrenergic neurotransmission. Evidence for impaired β-hydroxylation of dopamine. N. Engl. J. Med. 314, 1494–1497 (1986).
Article CAS PubMed Google Scholar - Biaggioni, I., Goldstein, D.S., Atkinson, T. & Robertson, D. Dopamine-β-hydroxylase deficiency in humans. Neurology 40, 370–373 (1990).
Article CAS PubMed Google Scholar - Kim, C.H. et al. Mutations in the dopamine β-hydroxylase gene are associated with human norepinephrine deficiency. Am. J. Med. Genet. 108, 140–147 (2002).
Article PubMed Google Scholar - Kapoor, A., Shandilya, M. & Kundu, S. Structural insight of dopamine β-hydroxylase, a drug target for complex traits, and functional significance of exonic single nucleotide polymorphisms. PLoS One 6, e26509 (2011).
Article CAS PubMed PubMed Central Google Scholar - Velasco, M., Gilbert, C.A., Rutledge, C.O. & McNay, J.L. Antihypertensive effect of a dopamine β hydroxylase inhibitor, bupicomide: a comparison with hydralazine. Clin. Pharmacol. Ther. 18, 145–153 (1975).
Article CAS PubMed Google Scholar - Dhalla, N.S., Adameova, A. & Kaur, M. Role of catecholamine oxidation in sudden cardiac death. Fundam. Clin. Pharmacol. 24, 539–546 (2010).
Article CAS PubMed Google Scholar - Leon, A.S. & Abrams, W.B. The role of catecholamines in producing arrhythmias. Am. J. Med. Sci. 262, 9–13 (1971).
Article CAS PubMed Google Scholar - Pagliarini, D.J. et al. Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol. Cell 19, 197–207 (2005).
Article CAS PubMed Google Scholar - Grove, M.L. et al. Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS One 8, e68095 (2013).
Article CAS PubMed PubMed Central Google Scholar - Gauderman, W.J. Sample size requirements for association studies of gene-gene interaction. Am. J. Epidemiol. 155, 478–484 (2002).
Article PubMed Google Scholar - Borenstein, M., Hedges, L.V., Higgins, J.P.T. & Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 1, 97–111 (2010).
Article PubMed Google Scholar - Liu, D.J. et al. Meta-analysis of gene-level tests for rare variant association. Nat. Genet. 46, 200–204 (2014).
Article CAS PubMed Google Scholar - Zaykin, D.V. Optimally weighted _Z_-test is a powerful method for combining probabilities in meta-analysis. J. Evol. Biol. 24, 1836–1841 (2011).
Article CAS PubMed PubMed Central Google Scholar - Stergachis, A.B. et al. Exonic transcription factor binding directs codon choice and affects protein evolution. Science 342, 1367–1372 (2013).
Article CAS PubMed PubMed Central Google Scholar - Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Google Scholar - Zhong, H., Yang, X., Kaplan, L.M., Molony, C. & Schadt, E.E. Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Am. J. Hum. Genet. 86, 581–591 (2010).
Article CAS PubMed PubMed Central Google Scholar
Acknowledgements
We thank the two anonymous reviewers and editors for their helpful comments. Study-specific funding sources and acknowledgments are reported in the Supplementary Note.
Author information
Author notes
- Chunyu Liu, Aldi T Kraja, Jennifer A Smith, Jennifer A Brody, Nora Franceschini and Christopher Newton-Cheh: These authors contributed equally to this work.
- Georg B Ehret, Christopher Newton-Cheh, Daniel Levy and Daniel I Chasman: These authors jointly directed this work.
Authors and Affiliations
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
Chunyu Liu, Audrey Y Chu, Martin G Larson, Shih-Jen Hwang, Tianxiao Huan, Ramachandran S Vasan, Christopher J O'Donnell & Daniel Levy - Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, USA
Chunyu Liu & Martin G Larson - Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
Chunyu Liu, Audrey Y Chu, Shih-Jen Hwang, Tianxiao Huan & Daniel Levy - Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
Aldi T Kraja, E Warwick Daw & Ingrid B Borecki - Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
Jennifer A Smith, Wei Zhao & Sharon L R Kardia - Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
Jennifer A Brody, Joshua C Bis & Bruce M Psaty - Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
Nora Franceschini - Department of Biostatistics, University of Washington, Seattle, Washington, USA
Kenneth Rice - Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
Alanna C Morrison, Megan L Grove & Eric Boerwinkle - Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Yingchang Lu, Erwin P Bottinger, Omri Gottesman & Ruth J F Loos - DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
Stefan Weiss, Marcus Dörr, Stephan B Felix, Rainer Rettig, Henry Völzke & Uwe Völker - Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Germany
Stefan Weiss & Uwe Völker - Los Angeles Biomedical Research Institute and Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California, USA
Xiuqing Guo, Yii-Der Ida Chen, Jie Yao, Kent D Taylor, Eric Kim & Jerome I Rotter - Division of General Medicine, Columbia University Medical Center, New York, New York, USA
Walter Palmas - George Washington University School of Medicine and Health Sciences, Washington, DC, USA
Lisa W Martin - Department of Public Health and Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
Praveen Surendran - Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
Fotios Drenos - MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
Fotios Drenos - Department of Biostatistics, University of Liverpool, Liverpool, UK
James P Cook - Department of Health Sciences, University of Leicester, Leicester, UK
James P Cook - Joseph J. Zilber School of Public Health, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
Paul L Auer - Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
Audrey Y Chu, Franco Giulianini, Paul M Ridker & Daniel I Chasman - Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Ayush Giri, Krystal S Tsosie, Digna R Velez Edwards & Todd L Edwards - Icelandic Heart Association, Kopavogur, Iceland
Johanna Jakobsdottir, Albert V Smith & Vilmundur Gudnason - Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
Li-An Lin & Myriam Fornage - Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
Jeanette M Stafford - Department of Epidemiology, Genetic Epidemiology Unit, Erasmus MC, Rotterdam, the Netherlands
Najaf Amin & Cornelia M van Duijn - Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, Mississippi, USA
Hao Mei - Bill and Melinda Gates Foundation, Seattle, Washington, USA
Arend Voorman - Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
Martin G Larson - Faculty of Medicine, University of Iceland, Reykjavik, Iceland
Albert V Smith & Vilmundur Gudnason - Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
Han Chen - Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
Gulum Kosova, Sekar Kathiresan & Christopher Newton-Cheh - Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
Gulum Kosova, Sekar Kathiresan & Christopher Newton-Cheh - Division of Cardiology, Department of Medicine and Department of Genetics, Washington University School of Medicine, Missouri, St. Louis, USA
Nathan O Stitziel - Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
Nilesh Samani - NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
Nilesh Samani - Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
Heribert Schunkert - DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
Heribert Schunkert - Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
Panos Deloukas - William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
Panos Deloukas - Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
Man Li - Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC), Bolzano, Italy (affiliated with the University of Lübeck, Lübeck, Germany).,
Christian Fuchsberger & Cristian Pattaro - Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
Mathias Gorski - Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
Charles Kooperberg - Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
George J Papanicolaou & Jacques E Rossouw - Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
Jessica D Faul & David R Weir - Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
Claude Bouchard - Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
Leslie J Raffel - Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
André G Uitterlinden & Oscar H Franco - Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
André G Uitterlinden - Department of Preventive Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
Ramachandran S Vasan - Department of Medicine, Cardiology Section, Boston Veterans Administration Healthcare, Boston, Massachusetts, USA
Christopher J O'Donnell - Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
Christopher J O'Donnell - Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
Christopher J O'Donnell - Northwestern University School of Medicine, Chicago, Illinois, USA
Kiang Liu - Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
Santhi Ganesh - Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
Santhi Ganesh - Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Elias Salfati, Aravinda Chakravarti & Georg B Ehret - Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
Tamara B Harris - Neuroepidemiology Section, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
Lenore J Launer - Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
Marcus Dörr & Stephan B Felix - Institute of Physiology, University of Greifswald, Greifswald, Germany
Rainer Rettig - DZD (German Center for Diabetes Research), site Greifswald, Greifswald, Germany
Henry Völzke - Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
Henry Völzke - Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
Wen-Jane Lee - Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
I-Te Lee & Wayne H-H Sheu - School of Medicine, National Yang-Ming University, Taipei, Taiwan
I-Te Lee & Wayne H-H Sheu - School of Medicine, Chung Shan Medical University, Taichung, Taiwan
I-Te Lee - Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
Wayne H-H Sheu - School of Medicine, National Defense Medical Center, Taipei, Taiwan
Wayne H-H Sheu - Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Digna R Velez Edwards - Epidemiology and Prevention Center for Genomics and Personalized Medicine Research, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
Yongmei Liu - Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
Adolfo Correa - Harvard Medical School, Boston, Massachusetts, USA
Paul M Ridker & Daniel I Chasman - Department of Epidemiology, University of Washington, Seattle, Washington, USA
Alexander P Reiner & Bruce M Psaty - Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Todd L Edwards - Los Angeles Biomedical Research Institute and Department of Medicine, Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California, USA
Jerome I Rotter - Department of Health Services, University of Washington, Seattle, Washington, USA
Bruce M Psaty - Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Bruce M Psaty - Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Ruth J F Loos - Cardiology, Geneva University Hospitals, Geneva, Switzerland
Georg B Ehret - Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
Christopher Newton-Cheh
Authors
- Chunyu Liu
- Aldi T Kraja
- Jennifer A Smith
- Jennifer A Brody
- Nora Franceschini
- Joshua C Bis
- Kenneth Rice
- Alanna C Morrison
- Yingchang Lu
- Stefan Weiss
- Xiuqing Guo
- Walter Palmas
- Lisa W Martin
- Yii-Der Ida Chen
- Praveen Surendran
- Fotios Drenos
- James P Cook
- Paul L Auer
- Audrey Y Chu
- Ayush Giri
- Wei Zhao
- Johanna Jakobsdottir
- Li-An Lin
- Jeanette M Stafford
- Najaf Amin
- Hao Mei
- Jie Yao
- Arend Voorman
- Martin G Larson
- Megan L Grove
- Albert V Smith
- Shih-Jen Hwang
- Han Chen
- Tianxiao Huan
- Gulum Kosova
- Nathan O Stitziel
- Sekar Kathiresan
- Nilesh Samani
- Heribert Schunkert
- Panos Deloukas
- Man Li
- Christian Fuchsberger
- Cristian Pattaro
- Mathias Gorski
- Charles Kooperberg
- George J Papanicolaou
- Jacques E Rossouw
- Jessica D Faul
- Sharon L R Kardia
- Claude Bouchard
- Leslie J Raffel
- André G Uitterlinden
- Oscar H Franco
- Ramachandran S Vasan
- Christopher J O'Donnell
- Kent D Taylor
- Kiang Liu
- Erwin P Bottinger
- Omri Gottesman
- E Warwick Daw
- Franco Giulianini
- Santhi Ganesh
- Elias Salfati
- Tamara B Harris
- Lenore J Launer
- Marcus Dörr
- Stephan B Felix
- Rainer Rettig
- Henry Völzke
- Eric Kim
- Wen-Jane Lee
- I-Te Lee
- Wayne H-H Sheu
- Krystal S Tsosie
- Digna R Velez Edwards
- Yongmei Liu
- Adolfo Correa
- David R Weir
- Uwe Völker
- Paul M Ridker
- Eric Boerwinkle
- Vilmundur Gudnason
- Alexander P Reiner
- Cornelia M van Duijn
- Ingrid B Borecki
- Todd L Edwards
- Aravinda Chakravarti
- Jerome I Rotter
- Bruce M Psaty
- Ruth J F Loos
- Myriam Fornage
- Georg B Ehret
- Christopher Newton-Cheh
- Daniel Levy
- Daniel I Chasman
Consortia
CHD Exome+ Consortium
ExomeBP Consortium
GoT2DGenes Consortium
T2D-GENES Consortium
Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia
CKDGen Consortium
Contributions
Study design: A.T.K., C.L., N.F., G.B.E., C.N.-C., J.I.R., B.M.P., D.L., D.I.C. Phenotyping: E.B., V.G., B.M.P., D.L., D.R.W., A. Correa, A. Chakravarti, W.P., M.D., R.R., W.H.-H.S., P.M.R., A.P.R., J.E.R., C.K., N.F., K.L., C.B., Y.-D.I.C., A.T.K., M.G.L., L.J.R., E.P.B., O.G., H.V., W.-J.L., J.I.R., O.H.F., R.S.V., R.J.F.L., A. Correa, A. Chakravarti, T.L.E., I.-T.L., L.W.M., G.J.P. Genotyping: E.B., D.L., A.P.R., C.K., Y.-D.I.C., M.F., C.J.O'D., S.L.R.K., U.V., D.I.C., C.N.-C., J.A.B., J.C.B., E.W.D., K.D.T., C.L., J.A.S., W.Z., J.D.F., Y.-D.I.C., S.W., E.K., A.G.U., A.Y.C., J.I.R., B.M.P., D.R.V.E., Y. Liu, C.M.v.D., I.B.B., R.J.F.L., L.J.L., T.B.H., T.L.E., S.B.F., F.G., P.L.A., M.L.G. Quality control: A.P.R., D.I.C., C.N.-C., J.A.B., J.C.B., E.W.D., K.D.T., C.L., S.-J.H., J.A.S., W.Z., J.D.F., S.W., A.Y.C., F.G., P.L.A., M.L.G., M.D., H.V., G.B.E., A.C.M., J.J., A.V.S., L. Lin. Software development: J.A.B., C.L., A.Y.C., F.G., P.L.A., A.T.K., K.R., A.V., H.C., D.I.C. Statistical analysis: A.P.R., D.I.C., C.N.-C., G.K., J.A.B., J.C.B., C.L., Y. Lu, J.A.S., W.Z., J.D.F., S.W., A.Y.C., F.G., P.L.A., G.B.E., A.C.M., J.J., A.V.S., L. Lin, J.M.S., N.A., K.S.T., T.H., A.G., C.K., N.F., A.T.K., M.G.L., S.G., E.S., K.R., H.M., X.G., J.Y., P.S., F.D., J.P.C., S.K., N.O.S., H.S., P.D., N.S., C.F., M.G., M.L., C.P. Manuscript writing: C.L., A.T.K., J.A.S., N.F., J.C.B., Y. Lu, W.P., L.W.M., M.G.L., K.R., T.L.E., M.F., G.B.E., J.I.R., C.N.-C., D.L., D.I.C.
Corresponding authors
Correspondence toChunyu Liu, Daniel Levy or Daniel I Chasman.
Ethics declarations
Competing interests
B.M.P. serves on the DSMB for a clinical trial funded by the manufacturer (Zoll LifeCor) and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. The other authors declare no competing financial interests.
Additional information
A list of members and affiliations appears in the Supplementary Note
A list of members and affiliations appears in the Supplementary Note
A list of members and affiliations appears in the Supplementary Note
A list of members and affiliations appears in the Supplementary Note
A list of members and affiliations appears in the Supplementary Note
A list of members and affiliations appears in the Supplementary Note
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–3, Supplementary Tables 7–20 and Supplementary Note. (PDF 3709 kb)
Supplementary Table 1
CHARGE+ Exome Chip BP Consortium: experiment-wide significant associations in meta-analysis. (XLSX 15 kb)
Supplementary Table 2
CHARGE+ Exome Chip BP Consortium: associations with P < 1 × 10−4 in samples of all ancestries. (XLSX 76 kb)
Supplementary Table 3
CHARGE+ Exome Chip BP Consortium: previously identified GWAS loci with P < 0.001 for any blood pressure trait. (XLSX 23 kb)
Supplementary Table 4
Meta-analysis of the discovery and follow-up samples of European ancestry: associations with P < 3.4 × 10−7. (XLSX 20 kb)
Supplementary Table 5
Meta-analysis of the discovery and follow-up samples of all ancestries: associations with P < 3.4 × 10−7. (XLSX 21 kb)
Supplementary Table 6
CHARGE+ Exome Chip BP Consortium: effects of the coded alleles on the five blood pressure traits in all ancestries. (XLSX 23 kb)
Supplementary Table 21
Exome Chip genotyping, data cleaning, and quality control. (XLSX 13 kb)
Rights and permissions
About this article
Cite this article
Liu, C., Kraja, A., Smith, J. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci.Nat Genet 48, 1162–1170 (2016). https://doi.org/10.1038/ng.3660
- Received: 24 July 2015
- Accepted: 05 August 2016
- Published: 12 September 2016
- Issue date: October 2016
- DOI: https://doi.org/10.1038/ng.3660