Analysis of minimal residual disease in childhood acute lymphoblastic leukemia: comparison between RQ-PCR analysis of Ig/TcR gene rearrangements and multicolor flow cytometric immunophenotyping (original) (raw)
Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001; 358: 1239–1241. ArticleCAS Google Scholar
Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339: 591–598. ArticleCAS Google Scholar
van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738. ArticleCAS Google Scholar
Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 2691–2696. CAS Google Scholar
Dworzak MN, Froschl G, Printz D, Mann G, Potschger U, Muhlegger N et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002; 99: 1952–1958. ArticleCAS Google Scholar
Bjorklund E, Mazur J, Soderhall S, Porwit-MacDonald A . Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia 2003; 17: 138–148. ArticleCAS Google Scholar
Willemse MJ, Seriu T, Hettinger K, d'Aniello E, Hop WC, Panzer-Grumayer ER et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 2002; 99: 4386–4393. ArticleCAS Google Scholar
Szczepanski T, Flohr T, van der Velden VH, Bartram CR, van Dongen JJ . Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 37–57. ArticleCAS Google Scholar
Szczepanski T, Orfao A, van der Velden VH, San Miguel JF, van Dongen JJ . Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417. ArticleCAS Google Scholar
van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034. ArticleCAS Google Scholar
Vidriales MB, San Miguel JF, Orfao A, Coustan-Smith E, Campana D . Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol 2003; 16: 599–612. Article Google Scholar
Dworzak MN, Panzer-Grumayer ER . Flow cytometric detection of minimal residual disease in acute lymphoblastic leukemia. Leuk Lymphoma 2003; 44: 1445–1455. Article Google Scholar
van der Velden VH, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJ . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380. ArticleCAS Google Scholar
van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928. ArticleCAS Google Scholar
Cazzaniga G, Rossi V, Biondi A . Monitoring minimal residual disease using chromosomal translocations in childhood ALL. Best Pract Res Clin Haematol 2002; 15: 21–35. ArticleCAS Google Scholar
Gabert J, Beillard E, van der Velolen VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357. ArticleCAS Google Scholar
Dworzak MN . Immunological detection of minimal residual disease in acute lymphoblastic leukemia. Onkologie 2001; 24: 442–448. CASPubMed Google Scholar
Campana D, Coustan-Smith E . Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 1–19. Article Google Scholar
Neale GA, Coustan-Smith E, Pan Q, Chen X, Gruhn B, Stow P et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 1999; 13: 1221–1226. ArticleCAS Google Scholar
Dworzak MN, Fritsch G, Panzer-Grumayer ER, Mann G, Gadner H . Detection of residual disease in pediatric B-cell precursor acute lymphoblastic leukemia by comparative phenotype mapping: method and significance. Leuk Lymphoma 2000; 38: 295–308. ArticleCAS Google Scholar
Malec M, Bjorklund E, Soderhall S, Mazur J, Sjogren AM, Pisa P et al. Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia 2001; 15: 716–727. ArticleCAS Google Scholar
Veltroni M, De Zen L, Sanzari MC, Maglia O, Dworzak MN, Ratei R et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 2003; 88: 1245–1252. PubMed Google Scholar
Gustafsson G, Schmiegelow K, Forestier E, Clausen N, Glomstein A, Jonmundsson G et al. Improving outcome through two decades in childhood ALL in the Nordic countries: the impact of high-dose methotrexate in the reduction of CNS irradiation. Nordic Society of Pediatric Haematology and Oncology (NOPHO). Leukemia 2000; 14: 2267–2275. ArticleCAS Google Scholar
Jaffe E, Harris NL, Stein H, Vardiman J (eds). Tumours of Haematopoietic and Lymphatic Tissues. Lyon: IARC Press, 2001. Google Scholar
Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9: 1783–1786. CAS Google Scholar
Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435. ArticleCAS Google Scholar
van der Velden VH, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJ . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936. ArticleCAS Google Scholar
Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118. ArticleCAS Google Scholar
Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 1998; 12: 2006–2014. ArticleCAS Google Scholar
Szczepanski T, van der Velden VHJ, van Dongen JJ . Real-time quantitative (RQ)-PCR for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Haematologica 2002; 87 (Suppl 1): 183–191. Google Scholar
Lucio P, Parreira A, van den Beemd MW, van Lochem EG, van Wering ER, Baars E et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999; 13: 419–427. ArticleCAS Google Scholar
Porwit-MacDonald A, Bjorklund E, Lucio P, van Lochem EG, Mazur J, Parreira A et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia 2000; 14: 816–825. ArticleCAS Google Scholar
Nyvold C, Madsen HO, Ryder LP, Seyfarth J, Svejgaard A, Clausen N et al. Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood 2002; 99: 1253–1258. ArticleCAS Google Scholar
Borowitz MJ, Pullen DJ, Shuster JJ, Viswanatha D, Montgomery K, Willman CL et al. Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: relation to other risk factors. A Children's Oncology Group study. Leukemia 2003; 17: 1566–1572. ArticleCAS Google Scholar
Coustan-Smith E, Sancho J, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 2002; 100: 2399–2402. ArticleCAS Google Scholar
Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998; 351: 550–554. ArticleCAS Google Scholar
Germano G, del Giudice L, Palatron S, Giarin E, Cazzaniga G, Biondi A et al. Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring. Leukemia 2003; 17: 1573–1582. ArticleCAS Google Scholar
Li A, Zhou J, Zuckerman D, Rue M, Dalton V, Lyons C et al. Sequence analysis of clonal immunoglobulin and T-cell receptor gene rearrangements in children with acute lymphoblastic leukemia at diagnosis and at relapse: implications for pathogenesis and for the clinical utility of PCR-based methods of minimal residual disease detection. Blood 2003; 102: 4520–4526. ArticleCAS Google Scholar
Szczepanski T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ . Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002; 99: 2315–2323. ArticleCAS Google Scholar
Szczepanski T, van der Velden VH, Raff T, Jacobs DC, van Wering ER, Bruggemann M et al. Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia 2003; 17: 2149–2156. ArticleCAS Google Scholar
Bierings M, Szczepanski T, van Wering ER, Willemse MJ, Langerak AW, Revesz T et al. Two consecutive immunophenotypic switches in a child with immunogenotypically stable acute leukaemia. Br J Haematol 2001; 113: 757–762. ArticleCAS Google Scholar
Szczepanski T, der Velden VH, Hoogeveen PG, De Bie M, Jacobs DC, Van Wering ER et al. V{delta}2-J{alpha} gene rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood 2003, (Epub ahead of print).
Bruggemann M, van der Velden VH, Raff T, Droese J, Ritgen M, Pott C et al. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia 2004; 18: 709–719. ArticleCAS Google Scholar
van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317. ArticleCAS Google Scholar
Coustan-Smith E, Sancho J, Behm FG, Hancock ML, Razzouk BI, Ribeiro RC et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002; 100: 52–58. ArticleCAS Google Scholar
Campana D . Determination of minimal residual disease in leukaemia patients. Br J Haematol 2003; 121: 823–838. Article Google Scholar
Neale GAM, Coustan-SMith E, Stow P, Pam Q, Chen X, Pui C-H et al. Comparative analysis of polymerase chain reaction and flow cytometry for the detection of miniomal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2004; 18: 934–938. ArticleCAS Google Scholar
Basso G, Buldini B, De Zen L, Orfao A . New methodologic approaches in immunophenotyping acute leukemias. Hematologica 2001; 86: 675–692. CAS Google Scholar
Szczepanski T, Pongers-Willemse MJ, Langerak AW, van Dongen JJ . Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Curr Top Microbiol Immunol 1999; 246: 205–213, discussion 214–215. CASPubMed Google Scholar
Rosenquist R, Thunberg U, Li AH, Forestier E, Lonnerholm G, Lindh J et al. Clonal evolution as judged by immunoglobulin heavy chain gene rearrangements in relapsing precursor-B acute lymphoblastic leukemia. Eur J Haematol 1999; 63: 171–179. ArticleCAS Google Scholar