- Aksnes A, Mundheim H, Toppe J et al (2006) The effect of dietary hydroxyproline supplementation on salmon (Salmo salar L.) fed high plant protein diets. Aquaculture 275:242–249
Article Google Scholar
- Austic RE (1976) Nutritional and metabolic interrelationships of arginine, glutamic acid and proline in the chicken. Fed Proc 35:1914–1916
PubMed CAS Google Scholar
- Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41
Article PubMed CAS Google Scholar
- Ball RO, Atkinson JL, Bayley HS (1986) Proline as an essential amino acid for the young pig. Br J Nutr 55:659–668
Article PubMed CAS Google Scholar
- Barbul A (2008) Proline precursors to sustain mammalian collagen synthesis. J Nutr 138:2021S–2024S
PubMed CAS Google Scholar
- Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825
Article PubMed CAS Google Scholar
- Blachier F, Lancha AH Jr, Boutry C et al (2010) Alimentary proteins, amino acids and cholesterolemia. Amino Acids 38:15–22
Article PubMed CAS Google Scholar
- Brandsch M (2006) Transport of l-proline, l-proline-containing peptides and related drugs at mammalian epithelial cell membranes. Amino Acids 31:119–136
Article PubMed CAS Google Scholar
- Chandel NS (2010) Mitochondrial regulation of oxygen sensing. Adv Exp Med Biol 661:339–354
Article PubMed CAS Google Scholar
- Chen LX, Li P, Wang JJ et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152
Article PubMed CAS Google Scholar
- Chung TK, Baker DH (1993) A note on the dispensability of proline for weanling pigs. Anim Prod 56:407–408
Article Google Scholar
- Dai ZL, Zhang J, Wu G et al (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids. doi:10.1007/s00726-010-0556-9
- Davis TA, Nguyen HV, Garciaa-Bravo R et al (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132
PubMed CAS Google Scholar
- Dillon EL, Knabe DA, Wu G (1999) Lactate inhibits citrulline and arginine synthesis from proline in pig enterocytes. Am J Physiol Gastrointest Liver Physiol 276:G1079–G1086
CAS Google Scholar
- Elango R, Ball RO, Pencharz PB (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids 37:19–27
Article PubMed CAS Google Scholar
- Ferreira AG, Lima DD, Delwing D et al (2010) Proline impairs energy metabolism in cerebral cortex of young rats. Metab Brain Dis 25:161–168
Article PubMed CAS Google Scholar
- Flynn NE, Bird JG, Guthrie AS (2009) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37:123–129
Article PubMed CAS Google Scholar
- Fu WJ, Stromberg AJ, Viele K et al (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem 21:561–572
Article PubMed CAS Google Scholar
- Gorres KL, Raines RT (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45:106–124
Article PubMed CAS Google Scholar
- Gottlob RO, DeRouchey JM, Tokach MD et al (2006) Amino acid and energy digestibility of protein sources for growing pigs. J Anim Sci 84:1396–1402
PubMed CAS Google Scholar
- Graber G, Baker DH (1971) Ornithine utilization by the chick. Proc Soc Exp Biol Med 138:585–588
PubMed CAS Google Scholar
- Graber G, Allen NK, Scott HM (1970) Proline essentiality and weight gain. Poul Sci 49:692–697
CAS Google Scholar
- Hansen JA, Knabe DA, Burgoon KG (1993) Amino acid supplementation of low-protein sorghum-soybean meal diets for 20- to 50-kilogram swine. J Anim Sci 71:442–451
PubMed CAS Google Scholar
- Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142
Article PubMed CAS Google Scholar
- He QH, Kong XF, Wu GY et al (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208
Article PubMed CAS Google Scholar
- Hu CA, Khalil S, Zhaorigetu S et al (2008) Human ∆1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672
Article PubMed CAS Google Scholar
- Jobgen W, Fu WJ, Gao H et al (2009) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198
Article PubMed CAS Google Scholar
- Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of l-proline: evidence from in vitro assays. Amino Acids 34:315–320
Article PubMed CAS Google Scholar
- Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630
PubMed CAS Google Scholar
- Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95
Article PubMed CAS Google Scholar
- Kirchgessner VM, Rader G, Roth-Maier DA (1991) Influence of an oral arginine supplementation on lactation performance of sows. J Anim Physiol Anim Nutr 66:38–44
Article CAS Google Scholar
- Kirchgessner M, Fickler J, Roth FX (1995) Effect of dietary proline supply on N-balance of piglets. 3. Communication on the importance of nonessential amino acids for protein retention. J Anim Physiol Anim Nutr 73:57–65
Article CAS Google Scholar
- Knabe DA, LaRue DC, Gregg EJ et al (1989) Apparent digestibility of nitrogen and amino acids in protein feedstuffs by growing pigs. J Anim Sci 67:441–458
PubMed CAS Google Scholar
- Krane SM (2008) The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 35:703–710
Article PubMed CAS Google Scholar
- Kwon H, Spencer TE, Bazer FW et al (2003a) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820
Article PubMed CAS Google Scholar
- Kwon H, Wu G, Bazer FW et al (2003b) Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod 69:1626–1634
Article PubMed CAS Google Scholar
- LaRue DC, Knabe DA, Tanskley TD Jr (1985) Commercially processed glandless cottonseed meal for starter, grower and finisher swine. J Anim Sci 60:495–502
CAS Google Scholar
- Li P, Yin YL, Li DF et al (2007) Amino acids and immune function. Br J Nutr 98:237–252
Article PubMed CAS Google Scholar
- Li P, Mai KS, Trushenski J et al (2009a) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37:43–53
Article PubMed Google Scholar
- Li XL, Bazer FW, Gao HJ et al (2009b) Amino acids and gaseous signaling. Amino Acids 37:65–78
Article PubMed Google Scholar
- Li P, Kim SW, Li XL et al (2009c) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716
Article PubMed Google Scholar
- Li XL, Bazer FW, Johnson GA et al (2010) Dietary supplementation with 0.8% l-arginine between days 0 and 25 of gestation reduces litter size in gilts. J Nutr 140:1111–1116
Article PubMed CAS Google Scholar
- Liao XH, Majithia A, Huang XL et al (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770
Article PubMed CAS Google Scholar
- Lin FD, Knabe DA, Tanksley TD Jr (1987) Apparent digestibility of amino acids, gross energy and starch in corn, sorghum, wheat, barley, oat groats and wheat middlings for growing pigs. J Anim Sci 64:1655–1663
PubMed CAS Google Scholar
- Mateo RD, Wu G, Moon HK et al (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827–835
Article PubMed CAS Google Scholar
- Motyl T, Ploszaj T, Wojtasik A et al (1995) Polyamines in cow’s and sow’s milk. Comp Biochem Physiol B 111:427–433
Article PubMed CAS Google Scholar
- Mutch DM, Wahli W, Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J 19:1602–1616
Article PubMed CAS Google Scholar
- National Research Council (NRC) (1998) Nutrient requirements of swine, 10th edn. National Academy Press, Washington, DC
- O’Quinn PR, Knabe DA, Wu G (2002) Arginine catabolism in lactating porcine mammary tissue. J Anim Sci 80:467–474
PubMed Google Scholar
- Oka T, Perry JW (1974) Arginase affects lactogenesis through its influence on the biosynthesis of spermidine. Nature 250:660–661
Article PubMed CAS Google Scholar
- Palii SS, Kays CE, Deval C et al (2009) Specificity of amino acid regulated gene expression: analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids 37:79–88
Article PubMed CAS Google Scholar
- Pérez-Arellano I, Carmona-Alvarez F, Martínez AI et al (2010) Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 19:372–382
PubMed Google Scholar
- Phang JM, Donald SP, Pandhare J et al (2008) The metabolism of proline, as a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690
Article PubMed CAS Google Scholar
- Phang JM, Liu W, Zabirnyk O (2010) Proline metabolism and microenvironmental stress. Annu Rev Nutr 30:441–463
Google Scholar
- Pistollato F, Persano L, Rampazzo E et al (2010) l-Proline as a modulator of ectodermal differentiation in ES cells. Am J Physiol Cell Physiol 298:C979–C981
Article PubMed CAS Google Scholar
- Reeds PJ, Burrin DG (2001) Glutamine and the bowel. J Nutr 131:2505S–2508S
PubMed CAS Google Scholar
- Reynolds LP, Caton JS, Redmer DA et al (2006) Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol 572:51–58
PubMed CAS Google Scholar
- Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122
Article CAS Google Scholar
- Satterfield MC, Bazer FW, Spencer TE, Wu G (2010) Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction. J Nutr 140:251–258
Article PubMed CAS Google Scholar
- Sjostrom H, Noren O, Josefsson L (1973) Purification and specificity of pig intestinal prolidase. Biochim Biophys Acta 327:457–470
PubMed CAS Google Scholar
- Srivastava D, Zhu W, Johnson WH Jr et al (2010) The structure of the proline utilization a proline dehydrogenase domain inactivated by _N_-propargylglycine provides insight into conformational changes induced by substrate binding and flavin reduction. Biochemistry 49:560–569
Article PubMed CAS Google Scholar
- Stipanuk MH, Ueki I, Dominy JE et al (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63
Article PubMed CAS Google Scholar
- Suryawan A, O’Connor PMJ, Bush JA et al (2009) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:97–104
Article PubMed CAS Google Scholar
- Tan BE, Li XG, Kong XF et al (2009a) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331
Article PubMed CAS Google Scholar
- Tan BE, Yin YL, Liu ZQ et al (2009b) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175
Article PubMed CAS Google Scholar
- van Meijl LE, Popeijus HE, Mensink RP (2010) Amino acids stimulate Akt phosphorylation, and reduce IL-8 production and NF-kappaB activity in HepG2 liver cells. Mol Nutr Food Res doi:10.1002/mnfr.200900438
- Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759
Article PubMed CAS Google Scholar
- Wang W, Qiao S, Li D (2009a) Amino acids and gut function. Amino Acids 37:105–110
Article PubMed CAS Google Scholar
- Wang XQ, Ou DY, Yin JD et al (2009b) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218
Article PubMed Google Scholar
- Wang J, Ma H, Tong C et al (2010) Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB J 24:2066–2076
Article PubMed CAS Google Scholar
- Watford M (2008) Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr 138:2003S–2007S
PubMed CAS Google Scholar
- Wenger RH, Hoogewijs D (2010) Regulated oxygen sensing by protein hydroxylation in renal erythropoietin-producing cells. Am J Physiol Renal Physiol 298:F1287–F1296
Article PubMed CAS Google Scholar
- Wu G (1993) Determination of proline by reversed-phase high performance liquid chromatography with automated pre-column _o_-phthaldialdehyde derivatization. J Chromatogr 641:168–175
Article CAS Google Scholar
- Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390
CAS Google Scholar
- Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252
PubMed CAS Google Scholar
- Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17
Article PubMed Google Scholar
- Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424
PubMed CAS Google Scholar
- Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17
PubMed CAS Google Scholar
- Wu G, Self JT (2005) Proteins. In: Pond WG, Bell AW (eds) Encyclopedia of animal science. Marcel Dekker, New York, pp 757–759
Google Scholar
- Wu G, Borbolla AG, Knabe DA (1994) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444
PubMed CAS Google Scholar
- Wu G, Bazer FW, Tuo W (1995a) Developmental changes of free amino acid concentrations in fetal fluids of pigs. J Nutr 125:2859–2868
PubMed CAS Google Scholar
- Wu G, Knabe DA, Yan W et al (1995b) Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol Regulatory Integr Comp Physiol 268:R334–R342
CAS Google Scholar
- Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584
PubMed CAS Google Scholar
- Wu G, Ott TL, Knabe DA et al (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038
PubMed CAS Google Scholar
- Wu G, Flynn NE, Knabe DA (2000) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:E395–E402
PubMed CAS Google Scholar
- Wu G, Bazer FW, Cudd TA et al (2004) Maternal nutrition and fetal development. J Nutr 134:2169–2172
PubMed CAS Google Scholar
- Wu G, Bazer FW, Hu J et al (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850
Article PubMed CAS Google Scholar
- Wu G, Bazer FW, Wallace JM et al (2006) Intrauterine growth retardation: Implications for the animal sciences. J Anim Sci 84:2316–2337
Article PubMed CAS Google Scholar
- Wu G, Bazer FW, Cudd TA et al (2007a) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S
PubMed CAS Google Scholar
- Wu G, Bazer FW, Davis TA et al (2007b) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22
Article Google Scholar
- Wu G, Bazer FW, Datta S et al (2008) Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids 35:691–702
Article PubMed CAS Google Scholar
- Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168
Article PubMed CAS Google Scholar
- Wu G, Bazer FW, Burghardt RC et al (2010a) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195–E204
Article PubMed CAS Google Scholar
- Wu G, Bazer FW, Burghardt RC (2010b) Functional amino acids in swine nutrition and production. In: Doppenberg J et al (eds) Dynamics in animal nutrition. Wageningen Academic Publishers, The Netherlands, pp 69–98
Google Scholar
- Zeng XF, Wang FL, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425
PubMed CAS Google Scholar
- Zhang Y, Dabrowski K, Hliwa P et al (2006) Indispensable amino acid concentrations decrease in tissues of stomachless fish, common carp in response to free amino acid- or peptide-based diets. Amino Acids 31:165–172
Article PubMed CAS Google Scholar